首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The new role of SAGE in gene discovery   总被引:11,自引:0,他引:11  
Boheler KR  Stern MD 《Trends in biotechnology》2003,21(2):55-7; discussion 57-8
  相似文献   

2.
Xiao YL  Malik M  Whitelaw CA  Town CD 《Plant physiology》2002,130(4):2118-2128
About 25% of the genes in the fully sequenced and annotated Arabidopsis genome have structures that are predicted solely by computer algorithms with no support from either nucleic acid or protein homologs from other species or expressed sequence matches from Arabidopsis. These are referred to as "hypothetical genes." On chromosome 2, sequenced by The Institute for Genomic Research, there are approximately 800 hypothetical genes among a total of approximately 4,100 genes. To test their expression under various growth conditions and in specific tissues, we used six cDNA populations prepared from cold-treated, heat-treated, and pathogen (Xanthomonas campestris pv campestris)-infected plants, callus, roots, and young seedlings. To date, 169 hypothetical genes were tested, and 138 of them are found to be expressed in one or more of the six cDNA populations. By sequencing multiple clones from each 5'- and 3'-rapid amplification of cDNA ends (RACE) product and assembling the sequences, we generated full-length sequences for 16 of these genes. For 14 genes, there was one full-length assembly that precisely supported the intron-exon boundaries of their gene predictions, adding only 5'- and 3'-untranslated region sequences. However, for three of these genes, the other assemblies represent additional exons and alternatively spliced or unspliced introns. For the remaining two genes, the cDNA sequences reveal major differences with predicted gene structures. In addition, a total of six genes displayed more than one polyadenylation site. These data will be used to update gene models in The Institute for Genomic Research annotation database ATH1.  相似文献   

3.
4.
5.
6.
7.
8.
Nicotine binds to and activates a family of ligand-gated ion channels, neuronal nicotinic acetylcholine receptors (nAChRs). Chronic nicotine exposure alters the expression of various nAChR subtypes, which likely contributes to nicotine dependence; however, the underlying mechanisms regulating these changes remain unclear. A growing body of evidence indicates that microRNAs (miRNAs) may be involved in nAChR regulation. Using bioinformatics, miRNA library screening, site-directed mutagenesis, and gene expression analysis, we have identified a limited number of miRNAs that functionally interact with the 3′-untranslated regions (3′ UTRs) of mammalian neuronal nAChR subunit genes. In silico analyses revealed specific, evolutionarily conserved sites within the 3′ UTRs through which the miRNAs regulate gene expression. Mutating these sites disrupted miRNA regulation confirming the in silico predictions. In addition, the miRNAs that target nAChR 3′ UTRs are expressed in mouse brain and are regulated by chronic nicotine exposure. Furthermore, we show that expression of one of these miRNAs, miR-542-3p, is modulated by nicotine within the mesocorticolimbic reward pathway. Importantly, overexpression of miR-542-3p led to a decrease in the protein levels of its target, the nAChR β2 subunit. Bioinformatic analysis suggests that a number of the miRNAs play a general role in regulating cholinergic signaling. Our results provide evidence for a novel mode of nicotine-mediated regulation of the mammalian nAChR gene family.  相似文献   

9.
10.
11.
12.
To discover causes of infertility and potential contraceptive targets, we used in silico subtraction and genomic database mining to identify conserved genes with germ cell-specific expression. In silico subtraction identified an expressed sequence tag (EST) present exclusively in a newborn mouse ovary library. The full-length cDNA sequence corresponding to this EST encodes a novel protein containing four ankyrin (ANK) repeats, a sterile-alpha motif (SAM), and a putative basic leucine zipper (bZIP) domain. Northern blot and semiquantitative RT-PCR analyses demonstrated that the mRNA is exclusively expressed in the mouse testis and ovary. The expression sites were localized by in situ hybridization to pachytene spermatocytes in the testis and oocytes in the ovary. Immunohistochemistry showed that the novel protein is localized to the cytoplasm in pachytene spermatocytes and early spermatids, oocytes at all stages of oogenesis, and in early preimplantation embryos. Based on its germ cell-specific expression and the presence of ANK, SAM, and basic leucine zipper domains, we have termed this novel protein GASZ. The mouse Gasz gene, which consists of 13 exons and spans 60 kb, is located on chromosome 6 between the Wnt2 and cystic fibrosis transmembrane conductance regulator (Cftr) genes. Using genomic database mining, orthologous genes encoding GASZ were identified in the rat, cow, baboon, chimpanzee, and human. Phylogenetic analyses reveal that the GASZ proteins are highly conserved among these species. Human and mouse GASZ proteins share 85.3% amino acid identity, and human and chimpanzee GASZ proteins differ by only 3 out of 475 amino acids. In humans, the GASZ gene resides on chromosome 7 and is similarly composed of 13 exons. Because both ANK repeats and the SAM domain function as protein-protein interaction modules that mediate signal transduction cascades in some systems, GASZ may represent an important cytoplasmic signal transducer that mediates protein-protein interactions during germ cell maturation in both males and females and during preimplantation embryogenesis.  相似文献   

13.
Pre-mRNA splicing is essential to ensure accurate expression of many genes in eukaryotic organisms. In Entamoeba histolytica, a deep-branching eukaryote, approximately 30% of the annotated genes are predicted to contain introns; however, the accuracy of these predictions has not been tested. In this study, we mined an expressed sequence tag (EST) library representing 7% of amoebic genes and found evidence supporting splicing of 60% of the testable intron predictions, the majority of which contain a GUUUGU 5' splice site and a UAG 3' splice site. Additionally, we identified several splice site misannotations, evidence for the existence of 30 novel introns in previously annotated genes, and identified novel genes through uncovering their spliced ESTs. Finally, we provided molecular evidence for the E. histolytica U2, U4, and U5 snRNAs. These data lay the foundation for further dissection of the role of RNA processing in E. histolytica gene expression.  相似文献   

14.
15.
16.
17.
We describe here a systematic screen of an anterior endomesoderm (AEM) cDNA library to isolate novel genes which are expressed in the head organizer region. After removing clones which hybridized to labeled cDNA probes synthesized with total RNA from a trunk region of tailbud embryos, the 5' ends of 1039 randomly picked cDNA clones were sequenced to make expressed sequence tags (ESTs), which formed 754 tentative unique clusters. Those clusters were compared against public databases and classified according to similarities found to other genes and gene products. Of them, 151 clusters were identified as known Xenopus genes, including eight organizer-specific ones (5.3%). Gene expression pattern screening was performed for 198 unique clones, which were selected because they either have no known function or are predicted to be developmental regulators in other species. The screen revealed nine possible organizer-specific clones (4.5%), four of which appeared to be expressed in the head organizer region. Detailed expression analysis from gastrula to neurula stages showed that these four genes named crescent, P7E4 (homologous to human hypothetical genes), P8F7 (an unclassified gene), and P17F11 (homologous to human and Arabidopsis hypothetical genes) demarcate spatiotemporally distinct subregions of the AEM corresponding to the head organizer region. These results indicate that our screening strategy is effective in isolating novel region-specific genes.  相似文献   

18.
19.
S Blackshaw  R E Fraioli  T Furukawa  C L Cepko 《Cell》2001,107(5):579-589
To identify the full set of genes expressed by mammalian rods, we conducted serial analysis of gene expression (SAGE) by using libraries generated from mature and developing mouse retina. We identified 264 uncharacterized genes that were specific to or highly enriched in rods. Nearly half of all cloned human retinal disease genes are selectively expressed in rod photoreceptors. In silico mapping of the human orthologs of genes identified in our screen revealed that 86 map within intervals containing uncloned retinal disease genes, representing 37 different loci. We expect these data will allow identification of many disease genes, and that this approach may be useful for cloning genes involved in classes of disease where cell type-specific expression of disease genes is observed.  相似文献   

20.
We have previously isolated and characterized a mouse cDNA orthologous to the human synovial sarcoma associated SS18 (formerly named SSXT and SYT) cDNA. Here, we report the characterization of the genomic structure of the mouse Ss18 gene. Through in silico methods with sequence information contained in the public databases, we did the same for the human SS18 gene and two human SS18 homologous genes, SS18L1 and SS18L2. In addition, we identified a mouse Ss18 processed pseudogene and mapped it to chromosome 1, band A2-3. The mouse Ss18 gene, which is subject to extensive alternative splicing, is made up of 11 exons, spread out over approximately 45 kb of genomic sequence. The human SS18 gene is also composed of 11 exons with similar intron-exon boundaries, spreading out over about 70 kb of genomic sequence. One alternatively spliced exon, which is not included in the published SS18 cDNA, corresponds to a stretch of sequence which we previously identified in the mouse Ss18 cDNA. The human SS18L1 gene, which is also made up of 11 exons with similar intron-exon boundaries, was mapped to chromosome 20 band q13.3. The smaller SS18L2 gene, which is composed of three exons with similar boundaries as the first three exons of the other three genes, was mapped to chromosome 3 band p21. Through sequence and mutation analyses this gene could be excluded as a candidate gene for 3p21-associated renal cell cancer. In addition, we created a detailed BAC map around the human SS18 gene, placing it unequivocally between the CA-repeat marker AFMc014wf9 and the dihydrofolate reductase pseudogene DHFRP1. The next gene in this map, located distal to SS18, was found to be the TBP associated factor TAFII-105 (TAF2C2). Further analogies between the mouse Ss18 gene, the human SS18 gene and its two homologous genes were found in the putative promoter fragments. All four promoters resemble the promoters of housekeeping genes in that they are TATA-less and embedded in canonical CpG islands, thus explaining the high and widespread expression of the SS18 genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号