首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A series of cis and trans 3beta-aryl-2-carbomethoxy-6-azabicyclo[3.2.1]octanes, with different substitution at the para-position of the aryl group, were synthesized and examined for reuptake inhibition at the dopamine transporter (DAT). The potency for inhibition of DA reuptake was compared with that of cocaine to determine the significance of the replacement of the 8-azabicyclo[3.2.1]octane (tropane nucleus), displayed in cocaine, for the 6-azabicyclo[3.2.1]octane (normorphan framework). This bicyclic core structure constitutes a novel chemical scaffold in DAT inhibitor design, which may provide new insights into the 3D structure of the DAT and its interaction with cocaine and DA. Among these compounds, the trans-amine series 8 were the most potent ligands at the DAT. In particular, the normorphan analogue 8c (bearing a p-chloro substituent at the beta-aryl group, IC(50)=452 nM) displayed a potency that is in the same range as cocaine (IC(50)=459 nM) itself.  相似文献   

2.
A series of 3-[2-(diarylmethoxyethylidene)]-8-alkylaryl-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine and serotonin transporters. The 8-phenylpropyl analogues 8a (K(i)=4.1 nM) and 8b (K(i)=3.7 nM) were the most potent compounds of the series with binding affinities 3 times greater than GBR-12909. In addition, 8a (SERT/DAT=327) was over 300-fold more selective for the dopamine transporter than the serotonin transporter.  相似文献   

3.
Cocaine, a potent stimulant of the central nervous system, owes its reinforcing and stimulant properties to its ability to inhibit monoamine uptake systems such as the Dopamine Transporter (DAT), and the Serotonin Transporter (SERT) located on presynaptic neurons in the striatum. The search for pharmacotherapies for cocaine addiction has focused on the design of compounds that bind selectively to the DAT and manifest slow onset of stimulatory action with long duration of action. We had reported that 3-aryl-2-carbomethoxy-8-thiabicyclo[3.2.1]octanes are potent and selective inhibitors of the DAT. In this Letter we report on the effects of replacement of the 2-carbomethoy group by a 2-isoxazole. This new class of 8-thiabicyclo[3.2.1]octanes provides potent and selective inhibitors of the DAT. The 3β-aryl compounds are particularly potent inhibitors of DAT (IC50 = 7-43 nM) with substantial selectivity versus inhibition of SERT.  相似文献   

4.
A series of diarylmethoxymethyltropane-GBR hybrid analogues with all three possible stereochemical orientations at C3 were synthesized and evaluated at dopamine and serotonin transporters. The 3alpha derivatives were found to be the most potent compounds with the 3alpha-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 15b (Ki = 5 nM) being the most potent compound of the series. The corresponding 3-di(4-fluorophenyl)-methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]oct-2-ene 12b (Ki = 12 nM) was slightly less potent than the 3alpha-analogue, while the 3beta-di(4-fluorophenyl)methoxymethyl-8-(3-phenylpropyl)-8-azabicyclo[3.2.1]octane 23b (Ki = 78 nM) exhibited only modest affinity for the dopamine transporter. Only the 3alpha-analogue 15b (SERT/DAT = 48) exhibited higher SERT/DAT selectivity than GBR 12909. These results indicate that the dopamine transporter can tolerate some variability in proximity of the benzhydryl ether to the basic nitrogen atom of the tropane without loss in potency. In addition, the structure-activity data for these tropane-GBR 12909 hybrid analogues support previous findings that the stereochemical and conformational effects imparted by unsaturation at C3 are important for dopamine transporter selectivity over the serotonin transporter.  相似文献   

5.
Cocaine is a potent stimulant of the central nervous system. Its reinforcing and stimulant properties have been associated with inhibition of the dopamine transporter (DAT) on presynaptic neurons. In the search for medications for cocaine abuse, we have prepared 2-carbomethoxy-3-aryl-8-thiabicyclo[3.2.1]octane analogues of cocaine. We report that this class of compounds provides potent and selective inhibitors of the DAT and SERT. The selectivity resulted from reduced activity at the SERT. The 3beta-(3,4-dichlorophenyl) analogue inhibits the DAT and SERT with a potency of IC(50)=5.7 nM and 8.0 nM, respectively. The 3-(3,4-dichlorophenyl)-2,3-unsaturated analogue inhibits the DAT potently (IC(50)=4.5 nM) and selectively (>800-fold vs SERT). Biological enantioselectivity of DAT inhibition was limited for both the 3-aryl-2,3-unsaturated and the 3alpha-aryl analogues (2-fold), but more robust (>10-fold) for the 3beta-aryl analogues. The (1R)-configuration provided the eutomers.  相似文献   

6.
3Beta-(5-indolyl)-8-azabicyclo[3.2.1]octanes display potent binding affinity for both the dopamine and serotonin transporters, while certain 3beta-(4-(2-pyrrolyl)phenyl)-8-azabicyclo[3.2.1]octanes selectively bind to the serotonin transporter.  相似文献   

7.
A series of 2beta-[3'-(substituted benzyl)isoxazol-5-yl]- and 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes were prepared and evaluated for affinities at dopamine, serotonin, and norepinephrine transporters using competitive radioligand binding assays. The 2beta-[3'-(substituted benzyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (3a-h) showed high binding affinities for the dopamine transporter (DAT). The IC(50) values ranged from 5.9 to 22nM. On the other hand, the 2beta-[3'-methyl-4'-(substituted phenyl)isoxazol-5-yl]-3beta-(substituted phenyl)tropanes (4a-h), with IC(50) values ranging from 65 to 173nM, were approximately 3- to 25-fold less potent than the corresponding 2beta-[3'-(substituted benzyl)isoxazol]tropanes. All tested compounds were selective for the DAT relative to the norepinephrine transporter (NET) and serotonin transporter (5-HTT). 3Beta-(4-Methylphenyl)-2beta-[3'-(4-fluorobenzyl)isoxazol-5-yl]tropane (3b) with IC(50) of 5.9nM at the DAT and K(i)s of 454 and 113nM at the NET and 5-HTT, respectively, was the most potent and DAT-selective analog. Molecular modeling studies suggested that the rigid conformation of the isoxazole side chain in 4a-h might play an important role on their low DAT binding affinities.  相似文献   

8.
Herein we report the synthesis of a series of bicyclo[3.2.1]octanes and their binding characteristics at the dopamine and serotonin transporters. The data confirm that a heteroatom at position 8 of the tropane nucleus is not a prerequisite for binding since the bicyclo[3.2.1]octanes prove potent inhibitors of both transporters. Therefore the three-dimensional topology of the ligand may be more important than specific functionality with respect to stereospecific binding at the acceptor site.  相似文献   

9.
《Life sciences》1996,58(12):PL231-PL239
We have synthesized several derivatives of dl-threo-methylphenidate (Ritalin) bearing substituents on the phenyl ring. IC50 values for binding of these compounds to rat brain monoamine transporters were assessed using [3H]WIN 35,428 (striatal membranes, dopamine transporters, DAT), [3H]nisoxetine (frontal cortex membranes, norepinephrine transporters, NET) and [3H]paroxetine (brain stem membranes, 5HT transporters, 5HTT). Affinities (1/Ki) decreased in the order: DAT > NET ⪢ 5HTT. Substitution at the para position of dl-threo-methylphenidate generally led to retained or increased affinity for the dopamine transporter (bromo > iodo > methoxy > hydroxy). Substitution at the meta position also increased affinity for the DAT (m-bromo > methylphenidate; m-iodo-p-hydroxy > p-hydroxy). Substitution at the ortho position with bromine considerably decreased affinity. Similar IC50 values for binding of o-bromomethylphenidate to the dopamine transporter were measured at 0, 22 and 37 degrees. N-Methylation of the piperidine ring of methylphenidate also considerably reduced affinity. The dl-erythro isomer of obromomethylphenidate did not bind to the DAT (IC50 > 50,000 nM). Affinities at the dopamine and norepinephrine transporters for substituted methylphenidate derivatives were well correlated (r2 = 0.90). Abilities of several methylphenidate derivatives to inhibit [3H]dopamine uptake in striatal synaptosomes corresponded well with inhibition of [3H]WIN 35, 428 binding. None of the compounds examined exhibited significant affinity to dopamine D1 or D2 receptors (IC50 > 500 or 5,000 nM, respectively), as assessed by inhibition of binding of [3H]SCH 23390 or [123I]epidepride, respectively, to striatal membranes.  相似文献   

10.
The synthesis and structure–activity relationships of 8-substituted-3-[2-(diarylmethoxyethylidenyl)]-8-azabicyclo[3.2.1]octane derivatives were investigated at the dopamine transporter (DAT), the serotonin transporter (SERT) and norepinephrine transporter (NET). The rigid ethylidenyl-8-azabicyclic[3.2.1]octane skeleton imparted modestly stereoselective binding and uptake inhibition at the DAT. Additional structure–activity studies provided a transporter affinity profile that was reminiscent of the structure–activity of GBR 12909. From these studies, the 8-cyclopropylmethyl group has been identified as a unique moiety that imparts high SERT/DAT selectivity. In this study the 8-cyclopropylmethyl derivative 22e (DAT Ki of 4.0 nM) was among the most potent compounds of the series at the DAT and was the most DAT selective ligand of the series (SERT/DAT: 1060). Similarly, the 8-chlorobenzyl derivative 22g (DAT Ki of 3.9 nM) was found to be highly selective for the DAT over the NET (NET/DAT: 1358).  相似文献   

11.
A series of 3alpha-benzyl-8-(diarylmethoxyethyl)-8-azabicyclo[3.2.1]octanes was synthesized and the binding affinities of the compounds were determined at the dopamine transporter. The unsubstituted analogue 7b (K(i)=98nM) was the most potent compound of the series with binding affinity three-times greater than cocaine and only 5-fold less than GBR-12909. The structure-activity data for 7a-f suggests that these compounds may be binding at the dopamine transporter in a similar fashion to GBR 12909.  相似文献   

12.
LBT-999 (8-((E)-4-fluoro-but-2-enyl)-3beta-p-tolyl-8-aza-bicyclo[3.2.1]octane-2beta-carboxylic acid methyl ester), a cocaine derivative belonging to a new generation of highly selective dopamine transporter (DAT) ligands, and its corresponding carboxylic acid derivative, the latter used as precursor for labelling both with tritium and the positron-emitter carbon-11 (half-life: 20.38 min), were synthesized from (R)-cocaine. [(3)H]LBT-999 (>99% radiochemically pure, specific radioactivity of 3.1 TBq/mmol) was prepared from [(3)H]methyl iodide, allowing its in vitro pharmacological evaluation (K(D): 9 nM for DAT and IC(50) > 1000 nM for SERT and NET). Routine production batches of 4.5-9.0 GBq of iv injectable solutions of [(11)C]LBT-999 (with specific radioactivities ranging from 30 to 45 GBq/mumol) were prepared in 25-30 min (HPLC purification and formulation included) using the efficient methylation reagent [(11)C]methyl triflate. The preliminary in vivo pharmacological evaluation of [(11)C]LBT-999, using both biodistributions in rats and brain imaging in monkeys with positron emission tomography (PET), clearly illustrates that this ligand is an excellent candidate for quantification with PET of DAT in humans.  相似文献   

13.
Starting from 3-aza-6,8-dioxa-bicyclo[3.2.1]octane scaffold (BTAa) a virtual library of molecules was generated and screened in silico against the crystal structure of the Human Macrophage Metalloelastase (MMP-12). The molecules obtaining high score were synthesized and the affinity for the catalytic domain of MMP-12 was experimentally proved by NMR experiments. A BTAa scaffold 20 having a N-hydroxyurea group in position 3 and a p-phenylbenzylcarboxy amide in position 7 showed a fair inhibition potency (IC50 = 149 microM) for MMP-12 and some selectivity towards five different MMPs. These results, taken together with the X-ray structure of the adduct between MMP-12, the inhibitor 20 and the acetohydroxamic acid (AHA), suggest that bicyclic scaffold derivatives may be exploited for the design of new selective matrix metalloproteinase inhibitors (MMPIs).  相似文献   

14.
A series of 2beta-alkynyl and 2beta-(1,2,3-triazol)substituted 3beta-(substituted phenyl)tropanes were synthesized and evaluated for affinities at dopamine, serotonin, and norepinephrine membrane transporters using competitive radioligand binding assays. All tested compounds were found to exhibit nanomolar or subnanomolar affinity for the dopamine transporter (DAT). One of the most potent and selective compounds in the series was 3beta-(4-chlorophenyl)-2beta-(4-nitrophenylethynyl)tropane (10c) that possessed an IC(50) value of 0.9nM at the DAT and K(i) values of 230nM and 620nM at the norepinephrine transporter (NET) and serotonin transporter (5-HTT), respectively.  相似文献   

15.
Cocaine inhibits the dopamine transporter and the consequent elevation of dopamine is thought to contribute to the addictive properties of cocaine. Tropane analogues of cocaine, targeted to the dopamine transporter (DAT), are a significant focus of drug design for cocaine addiction medications. Herein, we report the function of the ortho hydroxy substituents in dopamine with respect to the azabicyclo[3.2.1]octane skeleton. The introduction of the o-dihydroxyl functionality led to reduced binding potency at monoamine transporters, rather than enhanced interaction with the DAT. It is therefore likely that the binding site for these compounds on the DAT is not the same as that for dopamine. Notwithstanding the moderate potency of the free catechols (>100 nM), 7 manifested stimulant activity with a duration of effect that exceeded 4 h in a rat locomotor activity assay. Compound 10, a diacetoxy prodrug for 7, substituted fully for cocaine in a rat drug-discrimination paradigm and is now undergoing further investigation as a potential medication for cocaine abuse.  相似文献   

16.
The 3'-iodo positional isomer of 2-beta-carbomethoxy-3-beta-(4'-iodophenyl)tropane (beta-CIT) and other 3'-substituted analogs were synthesized and evaluated for binding to monoamine transporters in rat forebrain and membranes of cell lines selectively expressing human transporter genes. All 3'-substituted compounds displayed affinity for both serotonin (SERT) and dopamine (DAT), but much less for norepinephrine transporters (NET), with selectivity for rat (r) or human (h) SERT over NET, but only 3'-iodo-substituted phenyltropanes showed selectivity for SERT versus DAT. The 3'-iodo, N-methyl analog of beta-CIT (7) displayed 29-fold selectivity and high affinity for hSERT (K(i) =9.6 nM) over hDAT (K(i) =279 nM), and its nor-congener (8) showed even higher hSERT potency (K(i) =1.2 nM) and selectivity over DAT (415-fold).  相似文献   

17.
A series of new 3-aryl-tropanes have been synthesized, and their affinities and selectivities were evaluated for monoamine transporters. (1RS)-3-(Fluoren-2-yl)-8-methyl-8-azabicyclo[3.2.1]oct-2-ene exhibited the highest affinity for the human serotonin transporter (IC50 = 14.5 nM). It is also 52-fold and 230-fold selective over human dopamine and norepinephrine transporters, respectively.  相似文献   

18.
P C Contreras  M E Bremer  T S Rao 《Life sciences》1990,47(22):PL133-PL137
Fluspirilene and GBR-12909, two compounds structurally similar to BMY-14802 and haloperidol, were assessed for their ability to interact with sigma receptors. Fluspirilene, an antipsychotic agent that interacts potently with dopamine receptors, inhibited the binding of [3H]-(+) 3-PPP (IC50 = 380 nM) more potently than rimcazole, a putative sigma antagonist that was tested clinically for antipsychotic activity. GBR-12909, a potent dopamine uptake blocker, also inhibited the binding of [3H]-(+) 3-PPP with an IC50 of 48 nM. However, other compounds that block the re-uptake of catecholamines, such as nomifensine, desipramine, imipramine, xylamine, benztropine and cocaine, were much weaker than GBR-12909 as sigma ligands. Thus, GBR-12909 and fluspirilene, compounds structurally similar to BMY-14802, are potent sigma ligands.  相似文献   

19.
Abnormal dopamine signaling in brain has been implicated in several conditions such as cocaine abuse, Parkinson's disease and depression. Potent and selective dopamine transporter inhibitors may be useful as pharmacological tools and therapeutic agents. Simple substituted pyridines were discovered as novel dopamine transporter (DAT) inhibitors through pharmacophore-based 3D-database search. The most potent compound 18 has a K(i) value of 79 nM in inhibition of WIN35,248 binding to dopamine transporter and 255 nM in inhibition of dopamine reuptake, respectively, as potent as cocaine. Preliminary structure-activity relationship studies show that the geometry and the nature of the substituents on the pyridine ring determine the inhibitory activity and selectivity toward the three monoamine transporters. The substituted pyridines described herein represent a class of novel DAT inhibitors with simple chemical structures and their discovery provides additional insights into the binding site of DAT.  相似文献   

20.
Our earlier effort to develop constrained analogues of flexible piperidine derivatives for monoamine transporters led to the development of a series of 3,6-disubstituted piperidine derivatives, and a series of 4,8-disubstituted 1,4-diazabicyclo[3.3.1]nonane derivatives. In further structure-activity relationship (SAR) studies on these constrained derivatives, several novel analogues were developed where an exocyclic hydroxyl group was introduced on the N-alkyl-aryl side chain. All synthesized derivatives were tested for their affinities for the dopamine transporter (DAT), serotonin (5-HT) transporter (SERT), and norepinephrine transporter (NET) in the brain by measuring their potency in inhibiting the uptake of [(3)H]DA, [(3)H]5-HT, and [(3)H]NE, respectively. Compounds were also tested for their binding potency at the DAT by their ability to inhibit binding of [(3)H]WIN 35,428. The results indicated that position of the hydroxyl group on the N-alkyl side chain is important along with the length of the side chain. In general, hydroxyl derivatives derived from more constrained bicyclic diamines exhibited greater selectivity for interaction with DAT compared to the corresponding 3,6-disubstituted diamines. In the current series of molecules, compound 11b with N-propyl side chain with the hydroxyl group attached in the benzylic position was the most potent and selective for DAT (K(i)=8.63nM; SERT/DAT=172 and NET/DAT=48.4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号