首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ompF gene codes for a major outer membrane protein of Escherichia coli. A plasmid was constructed in which the structural gene for human beta-endorphin is preceded by the upstream region of the ompF gene consisting of the promoter region and the coding regions for the signal peptide and the N terminus of the OmpF protein. When the plasmid was introduced into E. coli N99, and OmpF-beta-endorphin fused peptide was synthesized and secreted into the culture medium through both the cytoplasmic and outer membranes. The OmpF signal peptide was cleaved correctly during the secretion, indicating that the export of the fused protein across the cytoplasmic membrane was dependent on the signal peptide. The secretion into the culture medium was apparently selective. Neither beta-lactamase nor alkaline phosphatase (both are periplasmic proteins) appeared in the culture medium in significant amounts. The mode of passage of the fused peptide across the outer membrane is discussed.  相似文献   

2.
Synthesis of OmpA protein of Escherichia coli K12 in Bacillus subtilis   总被引:5,自引:0,他引:5  
We have inserted a C-terminally truncated gene of the major outer membrane protein OmpA of Escherichia coli downstream from the promoter and signal sequence of the secretory alpha-amylase of Bacillus amyloliquefaciens in a secretion vector of Bacillus subtilis. B. subtilis transformed with the hybrid plasmid synthesized a protein that was immunologically identified as OmpA. All the protein was present in the particulate fraction. The size of the protein compared to the peptide synthesized in vitro from the same template indicated that the alpha-amylase derived signal peptide was not removed; this was verified by N-terminal amino acid sequence determination. The lack of cleavage suggests that there was little or no translocation of OmpA protein across the cytoplasmic membrane. This is an unexpected difference compared with periplasmic proteins, which were both secreted and processed when fused to the same signal peptide. A requirement of a specific component for the export of outer membrane proteins is suggested.  相似文献   

3.
Twin-arginine translocation (Tat)-mediated protein transport across the bacterial cytoplasmic membrane occurs only after synthesis and folding of the substrate protein that contains a signal peptide with a characteristic twin-arginine motif. This implies that premature contact between the Tat signal peptide and the Tat translocon in the membrane must be prevented. We used site-specific photo-crosslinking to demonstrate that the signal peptide of nascent Tat proteins is in close proximity to the chaperone and peptidyl-prolyl isomerase trigger factor (TF). The contact with TF was strictly dependent on the context of the translating ribosome, started early in biogenesis when the nascent chain left the ribosome near L23, and persisted until the chain reached its full length. Despite this exclusive and prolonged contact, depletion or overexpression of TF had little effect on the kinetics and efficiency of the Tat export process.  相似文献   

4.
The twin-arginine translocation (Tat) system targets cofactor-containing proteins across the Escherichia coli cytoplasmic membrane via distinct signal peptides bearing a twin-arginine motif. In this study, we have analysed the mechanism and capabilities of the E. coli Tat system using green fluorescent protein (GFP) fused to the twin-arginine signal peptide of TMAO reductase (TorA). Fractionation studies and fluorescence measurements demonstrate that GFP is exported to the periplasm where it is fully active. Export is almost totally blocked in tat deletion mutants, indicating that the observed export in wild-type cells occurs predominantly, if not exclusively, by the Tat pathway. Imaging studies reveal a halo of fluorescence in wild-type cells corresponding to the exported periplasmic form; the GFP is distributed uniformly throughout the cytoplasm in a tat mutant. Because previous work has shown GFP to be incapable of folding in the periplasm, we propose that GFP is exported in a fully folded, active state. These data also show for the first time that heterologous proteins can be exported in an active form by the Tat pathway.  相似文献   

5.
Cytochrome b2 reaches the intermembrane space of mitochondria by transport into the matrix followed by export across the inner membrane. While in the matrix, the protein interacts with hsp60, which arrests its folding prior to export. The bacterial-type export sequence in pre-cytochrome b2 functions by inhibiting the ATP-dependent release of the protein from hsp60. Release for export apparently requires, in addition to ATP, the interaction of the signal sequence with a component of the export machinery in the inner membrane. Export can occur before import is complete provided that a critical length of the polypeptide chain has been translocated into the matrix. Thus, hsp60 combines two activities: catalysis of folding of proteins destined for the matrix, and maintaining proteins in an unfolded state to facilitate their channeling between the machineries for import and export across the inner membrane. Anti-folding signals such as the hydrophobic export sequence in cytochrome b2 may act as switches between these two activities.  相似文献   

6.
Functional Tat transport of unstructured, small, hydrophilic proteins   总被引:2,自引:0,他引:2  
The twin-arginine translocation (Tat) system is a protein translocation system that is adapted to the translocation of folded proteins across biological membranes. An understanding of the folding requirements for Tat substrates is of fundamental importance for the elucidation of the transport mechanism. We now demonstrate for the first time Tat transport for fully unstructured proteins, using signal sequence fusions to naturally unfolded FG repeats from the yeast Nsp1p nuclear pore protein. The transport of unfolded proteins becomes less efficient with increasing size, consistent with only a single interaction between the system and the substrate. Strikingly, the introduction of six residues from the hydrophobic core of a globular protein completely blocked translocation. Physiological data suggest that hydrophobic surface patches abort transport at a late stage, most likely by membrane interactions during transport. This study thus explains the observed restriction of the Tat system to folded globular proteins on a molecular level.  相似文献   

7.
The export of the maltose-binding protein (MBP), themalE gene product, to the periplasm ofEschericha coli cells has been extensively investigated. The isolation of strains synthesizing MalE-LacZ hybrid proteins led to a novel genetic selection for mutants that accumulate export-defective precursor MBP (preMBP) in the cytoplasm. The export defects were subsequently shown to result from alterations in the MBP signal peptide. Analysis of these and a variety of mutants obtained in other ways has provided considerable insight into the requirements for an optimally functional MBP signal peptide. This structure has been shown to have multiple roles in the export process, including promoting entry of preMBP into the export pathway and initiating MBP translocation across the cytoplasmic membrane. The latter has been shown to be a late event relative to synthesis and can occur entirely posttranslationally, even many minutes after the completion of synthesis. Translocation requires that the MBP polypeptide exist in an export-competent conformation that most likely represents an unfolded state that is not inhibitory to membrane transit. The signal peptide contributes to the export competence of preMBP by slowing the rate at which the attached mature moiety folds. In addition, preMBP folding is thought to be further retarded by the binding of a cytoplasmic protein, SecB, to the mature moiety of nascent preMBP. In cells lacking this antifolding factor, MBP export represents a race between delivery of newly synthesized, export-competent preMBP to the translocation machinery in the cytoplasmic membrane and folding of preMBP into an export-incompetent conformation. SecB is one of threeE. coli proteins classified as molecular chaperones by their ability to stabilize precursor proteins for membrane translocation.  相似文献   

8.
In Escherichia coli, the Tat system does not translocate Tat signal sequence fused PhoA (RR-PhoA), as it requires disulfide formation for folding. Here we show that such a RR-PhoA construct can be efficiently targeted to the Tat translocon, but the transport is not completed. RR-PhoA is detectable in a 580-kDa TatBC-containing complex, which is the first substrate-bound TatBC complex detected in a bacterial system so far. A second TatBC complex near 440 kDa comprises most of the TatB and TatC but is devoid of RR-PhoA. The targeting of PhoA to the Tat translocon depends on the twin-arginine motif and results in severe growth defects. This physiological effect is likely to be due to proton leakage at the cytoplasmic membrane. The results point to mechanistic incompatibilities of the Tat system with unfolded proteins such as RR-PhoA. There does not exist an intrinsic quality control at the TatBC complex itself, although correct folding is inevitable for Tat-dependent translocation.  相似文献   

9.
The bacteriocin release protein (BRP) mediates the secretion of cloacin DF13. The BRP precursor is slowly processed to yield the mature BRP and its stable signal peptide which is also involved in cloacin DF13 secretion. The function of the stable BRP signal peptide was analysed by constructing two plasmids. First, the stable BRP signal peptide was fused to the murein lipoprotein and, second, a stop codon was introduced after the BRP signal sequence. Exchange of the unstable murein lipoprotein signal peptide for the stable BRP signal peptide resulted in an accumulation of precursors of the hybrid murein lipoprotein. This indicated that the BRP signal peptide, as part of this hybrid precursor, is responsible for the slow processing. The stable BRP signal peptide itself was not able to direct the transfer of cloacin DF13 into the periplasmic space or into the culture medium. Over-expression of the BRP signal peptide was lethal and caused 'lysis'. Subcellular fractionation experiments revealed that the BRP signal peptide is located exclusively in the cytoplasmic membrane whereas the mature BRP, targeted by either the stable BRP signal peptide or the unstable Lpp signal peptide, is located in both the cytoplasmic and outer membrane. These results are in agreement with the hypothesis that the stable signal peptide and the mature BRP together are required for the passage of cloacin DF13 across the cell envelope.  相似文献   

10.
Proteins destined for export via the Sec-dependent pathway are synthesized with a short N-terminal signal peptide. A requirement for export is that the proteins are in a translocationally competent state. This is a loosely folded state that allows the protein to pass through the SecYEG apparatus and pass into the periplasm. In order to maintain pre-secretory proteins in an export-competent state, there are many factors that slow the folding of the pre-secretory protein in the cytoplasm. These include cytoplasmic chaperones, such as SecB, and the signal recognition particle, which bind the pre-secretory protein and direct it to the cytoplasmic membrane for export. Recently, evidence has been published that non-optimal codons in the signal sequence are important for a time-critical early event to allow the correct folding of pre-secretory proteins. This review details the recent developments in folding of the signal peptide and the pre-secretory protein.  相似文献   

11.
While the role of the signal sequence in targeting proteins to specific subcellular compartments is well characterized, there are fewer studies that characterize its effects on the stability and folding kinetics of the protein. We report a detailed characterization of the folding kinetics and thermodynamic stabilities of maltose binding protein (MBP) and its precursor form, preMBP. Isothermal GdmCl and urea denaturation as a function of temperature and thermal denaturation studies have been carried out to compare stabilities of the two proteins. preMBP was found to be destabilized by about 2-6 kcal/mol (20-40%) with respect to MBP. Rapid cleavage of the signal peptide by various proteases shows that the signal peptide is accessible in the native form of preMBP. The observed rate constant of the major slow phase in folding was decreased 5-fold in preMBP relative to MBP. The rate constants of unfolding were similar at 25 degrees C, but preMBP also exhibited a large burst phase change in unfolding that was absent in MBP. At 10 degrees C, preMBP exhibited a higher unfolding rate than MBP as well as a large burst phase. The appreciable destabilization of MBP by signal peptide is functionally relevant, because it enhances the likelihood of finding the protein in an unfolded translocation-competent form and may influence the interactions of the protein with the translocation machinery. Destabilization is likely to result from favorable interactions between the hydrophobic signal peptide and other hydrophobic regions that are exposed in the unfolded state.  相似文献   

12.
Several E. coli endogenous, cytoplasmic proteins that are known clients of the chaperonin GroEL were overexpressed to examine the fate of accumulated unfolded polypeptides. Substantial fractions of about half of the proteins formed insoluble aggregates, consistent with the hypothesis that these proteins were produced at rates or in amounts that exceeded the protein-folding capacity of GroEL. In addition, large fractions of three overexpressed GroEL client proteins were localized in an extra-cytoplasmic, osmotically-sensitive compartment, suggesting they had initially accumulated in the cytoplasm as soluble unfolded polypeptides and thus were able to access a protein export pathway. Consistent with this model, an intrinsically unfoldable, hydrophilic, non-secretory polypeptide was quantitatively exported from the E. coli cytoplasm into an osmotically-sensitive compartment. Our results support the conclusion that a soluble, unfolded conformation alone may be sufficient to direct non-secretory polypeptides into a protein export pathway for signal peptide-independent translocation across the inner membrane, and that export rather than degradation by cytoplasmic proteases is the preferred fate for newly-synthesized, soluble, unfolded polypeptides that accumulate in the cytoplasm. The stable folded conformation of exported GroEL client proteins further suggests that the requirement for GroEL may be conditional on protein folding in the molecularly-crowded environment of the cytoplasm.  相似文献   

13.
14.
Transport of hemolysin by Escherichia coli   总被引:25,自引:0,他引:25  
The hemolytic phenotype in Escherichia coli is determined by four genes. Two (hlyC and hlyA) determine the synthesis of a hemolytically active protein which is transported across the cytoplasmic membrane. The other two genes (hlyBa and hlyBb) encode two proteins which are located in the outer membrane and seem to form a specific transport system for hemolysin across the outer membrane. The primary product of gene hlyA is a protein (protein A) of 106,000 daltons which is nonhemolytic and which is not transported. No signal peptide can be recognized at its N-terminus. In the presence of the hlyC gene product (protein C), the 106,000-dalton protein is processed to the major proteolytic product of 58,000 daltons, which is hemolytically active and is transported across the cytoplasmic membrane. Several other proteolytic fragments of the 106,000-dalton protein are also generated. During the transport of the 58,000-dalton fragment (and possible other proteolytic fragments of hlyA gene product), the C protein remains in the cytoplasm. In the absence of hlyBa and hlyBb the entire hemolytic activity (mainly associated with the 58,000-dalton protein) is located in the periplasm: Studies on the location of hemolysin in hlyBa and hlyBb mutants suggest that the gene product of hlyBa (protein Ba) binds hemolysin and leads it through the outer membrane whereas the gene product of hlyBb (protein Bb) releases hemolysin from the outer membrane. This transport system is specific for E coli hemolysin. Other periplasmic enzymes of E coli and heterologous hemolysin (cereolysin) are not transported.  相似文献   

15.
The hybrid pre-enzyme formed by fusion of the signal peptide of the OmpA protein, a major outer membrane protein of Escherichia coli, to Staphylococcal nuclease A, a protein secreted by Staphylococcus aureus, is translocated across the cytoplasmic membrane of E. coli with concomitant cleavage of the signal peptide. A DNA fragment containing the coding sequence for the ompA signal peptide was initially ligated to a DNA fragment containing the coding sequence for nuclease A, with a linker sequence of 33 nucleotides separating the coding sequences. When this fused gene was induced, an enzymatically active nuclease was secreted into the periplasmic space; sequential Edman degradation of this protein revealed that the ompA signal peptide was removed at its normal cleavage site resulting in a modified version of the nuclease having 11 extra amino acid residues attached to the amino terminus of nuclease A. The 33 nucleotides between the coding sequences for the ompA signal peptide and the structural gene for nuclease A were subsequently deleted by synthetic oligonucleotide-directed site-specific mutagenesis. The nuclease produced by this hybrid gene was secreted into the periplasmic space and by sequential Edman degradation was identical to nuclease A. Thus, the ompA signal peptide is able to direct the secretion of fused staphylococcal nuclease A, and signal peptide processing occurs at the normal cleavage site. When the hybrid gene is expressed under the control of the lpp promoter, nuclease A is produced to the extent of 10% of the total cellular protein.  相似文献   

16.
N Chen  FL Hong  HH Wang  QH Yuan  WY Ma  XN Gao  R Shi  RJ Zhang  CS Sun  SB Wang 《PloS one》2012,7(8):e42519
The correct folding of a protein is a pre-requirement for its proper posttranslational modification. The Escherichia coli Sec pathway, in which preproteins, in an unfolded, translocation-competent state, are rapidly secreted across the cytoplasmic membrane, is commonly assumed to be unfavorable for their modification in the cytosol. Whether posttranslationally modified recombinant preproteins can be efficiently transported via the Sec pathway, however, remains unclear. ACP and BCCP domain (BCCP87) are carrier proteins that can be converted into active phosphopantetheinylated ACP (holo-ACP) and biotinylated-BCCP (holo-BCCP) by AcpS and BirA, respectively. In the present study, we show that, when ACP or BCCP87 is fused to the C-terminus of secretory protein YebF or MBP, the resulting fusion protein preYebF-ACP, preYebF-BCCP87, preMBP-ACP or preMBP-BCCP87 can be modified and then secreted. Our data demonstrate that posttranslational modification of preYebF-ACP, preYebF-BCCP87 preMBP-ACP and preMBP-BCCP87 can take place in the cytosol prior to translocation, and the Sec machinery accommodates these previously modified fusion proteins. High levels of active holo-ACP and holo-BCCP87 are achieved when AcpS or BirA is co-expressed, especially when sodium azide is used to retard their translocation across the inner membrane. Our results also provide an alternative to achieve a high level of modified recombinant proteins expressed extracellularly.  相似文献   

17.
A J Denzer  C E Nabholz    M Spiess 《The EMBO journal》1995,14(24):6311-6317
Upon insertion of a signal-anchor protein into the endoplasmic reticulum membrane, either the C-terminal or the N-terminal domain is translocated across the membrane. Charged residues flanking the transmembrane domain are important determinants for this decision, but are not necessarily sufficient to generate a unique topology. Using a model protein that is inserted into the membrane to an equal extent in either orientation, we have tested the influence of the size and the folding state of the N-terminal domain on the insertion process. A small zinc finger domain or the full coding sequence of dihydrofolate reductase were fused to the N-terminus. These stably folding domains hindered or even prevented their translocation. Disruption of their structure by destabilizing mutations largely restored transport across the membrane. Translocation efficiency, however, did not depend on the size of the N-terminal domain within a range of 40-237 amino acids. The folding behavior of the N-terminal domain is thus an important factor in the topogenesis of signal-anchor proteins.  相似文献   

18.
The twin-arginine translocation (Tat) pathway, one of four protein transport pathways operating at the thylakoid membrane of chloroplasts, shows remarkable substrate flexibility. Here, we have analyzed the thylakoid transport of chimeric tandem substrates that are composed of two different passenger proteins fused to a single Tat transport signal. The chimera 23/23-EGFP in which the reporter protein EGFP is connected to the C-terminus of the OEC23 precursor shows that a single Tat transport signal is sufficient to mediate transport of two distinct passenger proteins in a row. Replacing the transit peptide of OEC23 in 23/23-EGFP by its homolog from OEC16 yields the chimera 16/23-EGFP, which can likewise be fully translocated by the Tat pathway across the thylakoid membrane. However, transport of 16/23-EGFP is retarded at specific steps in the transport process leading to the temporary and consecutive accumulation of three translocation intermediates with distinct membrane topology. They are associated with two oligomeric membrane complexes presumably representing TatBC-receptor complexes. The composition of the translocation intermediates as determined by immunoprecipitation experiments suggests that the two passenger proteins are translocated in a stepwise manner across the membrane.  相似文献   

19.
The Tat pathway is distinct from the Sec machinery given its unusual capacity to export folded proteins, which contain a twin-arginine (RR) signal peptide, across the plasma membrane. The functionality of the Tat pathway has been demonstrated for several Gram-negative and Gram-positive mesophilic bacteria. To assess the specificity of the Tat system, and to analyze the capacity of a mesophilic bacterial Tat system to translocate cytoplasmic proteins from hyperthermophilic bacteria, we fused the Thermus thermophilus beta-glycosidase (Glc) to the twin-arginine signal peptide of the E. coli TorA protein. When expressed in E. coli, the thermophilic RR-Glc chimera was successfully synthesized and efficiently translocated into the periplasm of the wild type strain. In contrast, the beta-glycosidase accumulated within the cytoplasm of all the tat mutants analyzed. The beta-glycosidase synthesized in these strains exhibited thermophilic properties. These results demonstrated, for the first time, the capacity of the E. coli Tat system to export cytoplasmic hyperthermophilic protein, implying an important potential of the Tat system for the production of thermostable enzymes used in bioprocessing applications.  相似文献   

20.
The twin-arginine (Tat) protein translocase is a highly unusual protein transport machine that is dedicated to the movement of folded proteins across the bacterial cytoplasmic membrane. Proteins are targeted to the Tat pathway by means of N-terminal signal peptides harbouring a distinctive twin-arginine motif. In this minireview, we describe our current knowledge of the Tat system, paying particular attention to the function of the TatA protein and to the often overlooked step of signal peptide cleavage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号