首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Some physical, catalytic, and regulatory properties of ketopantoate hydroxymethyltransferase (5,10-methylenetetrahydrofolate: alpha-ketoisovalerate hydroxymethyltranferase) from Escherichia coli are described. This enzyme catalyzes the reversible synthesis of ketopantoate (Reaction 1), an essential precursor of pantothenic acid. (1) HC(CH3)2COCOO- + 5,10-methylene tetrahydrofolate f in equilibrium r HOCH2C(CH3)2COCOO- + tetrahydrofolate It has a molecular weight by sedimentation equilibrium of 255,000, a sedimentation coefficient (S20,w) of 11 S, a partial specific volume of 0.74 ml/g, an isoelectric point of 4.4, and an absorbance, (see article), of 0.85. Polyacrylamide gel electrophoresis in sodium dodecyl sulfate and amino acid analyses give a subunit molecular weight of 27,000 and 25,700, respectively; both procedures indicate the presence of 10 identical subunits. The NH2-terminal sequence is Met-Tyr---. The enzyme is stable and active over a broad pH range, with an optimum from 7.0 to 7.6. It requires Mg2+ for activity; Mn2+, Co2+, Zn2+ are progressively less active. The enzyme is not inactivated by borohydride reduction in the presence of excess substrates, i.e. it is a Class II aldolase. Reaction 1f is partially inhibited by concentrations of formaldehyde (0.8 mM) and tetrahydrofolate (0.38 mM) below or near the Km values, apparent Km values are 0.18, 1.1 and 5.9 mM for tetrahydrofolate, alpha-ketoisovalerate, and formaldehyde, respectively. For Reaction 1r, apparent Km values are 0.16 and 0.18 mM, respectively, for ketopantoate and tetrahydrofolate, and the saturation curves for both substrates show positive cooperativity. Forward and reverse reactions occur at similar maximum velocities (Vmax approximately equal to 8 mumol of ketopantoate formed or decomposed per min per mg of enzyme at 37 degrees). Only 1-tetrahydrofolate is active in Reaction 1; d-tetrahydrofolate, folate, and methotrexate were neither active nor inhibitory. However, 1-tetrahydrofolate was effectively replaced with conjugates containing 1 to 6 additional glutamate residues; of these, tetrahydropterolpenta-, tetra-, and triglutamate were effective at lower concentrations than tetrahydrofolate itself; they were also the predominant conjugates of tetrahydrofolate present in E. coli. Alpha-Ketobutyrate, alpha-ketovalerate, and alpha-keto-beta-methylvalerate replaced alpha-ketoisovalerate as substrates; pyruvate was inactive as a substrate, but like isovalerate, 3-methyl-2-butanone and D- or L-valine, inhibited Reaction 1. the transferase has regulatory properties expected of an enzyme catalyzing the first committed step in a biosynthetic pathway. Pantoate (greater than or equal to 500 muM) and coenzyme A (above 1 mM) all inhibit; the Vmax is decreased, Km is increased, and the cooperativity for substrate (ketopantoate) is enhanced. Catalytic activity of the transferase is thus regulated by the products of the reaction path of which it is one component; transferase synthesis is not repressed by growth in the presence of pantothenate.  相似文献   

3.
A new purification procedure was adopted for Eastern equine encephalitis virus which does not subject the virus to pelleting at any stage. Three- to 4-liter volumes were passed through a diethylaminoethyl cellulose column. The virus-containing fractions were banded on a sucrose cushion and finally concentrated in an isopycnic band in a linear sucrose gradient. This method reduced the volume 1,000-fold with a concomitant increase in viral titer, i.e., better than 90% recovery. Numerous criteria have been used to establish that this viral preparation was essentially free from cellular debris and nonviral material. Physical studies on this purified viral product were initiated. The sedimentation coefficient as determined by band sedimentation was 240S, the buoyant density in sucrose was 1.18 g/cc, and the diameter of the virus was 54 nm. From the diameter and the buoyant density it was possible to calculate the molecular weight of a spherical particle. In this case, the calculated molecular weight for Eastern equine encephalitis virus was 58 x 10(6) daltons.  相似文献   

4.
5.
A simplified purification procedure for mung bean nuclease has been developed yielding a stable enzyme that is homogeneous in regards to shape and size. The nuclease is a glycoprotein consisting of 29% carbohydrate by weight. It has a molecular weight of 39 000 as determined by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme contains 1 sulfhydryl group and 3 disulfide bonds per molecule. It has a high content (12.6 mol %) of aromatic residues. Approximately 70% of the enzyme molecules contain a peptide bond cleavage at a single region in the protein. The two polypeptides, 25 000 and 15 000 daltons, are covalently linked by a disulfide bond(s). Both the cleaved and intact forms of the enzyme are equally active in the hydrolysis of the phosphate ester linkages in either DNA, RNA, or adenosine 3'-monophophate. The enzymatic activity of mung bean nuclease can be stabilized at pH 5 in the presence of 0.1 mM zinc acetate, 1.0 mM cysteine, and 0.001% Triton X-100. The enzyme can be inactivated and reactivated by the removal and readdition of Zn2+ or sulfhydryl compounds.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
A rapid two-step purification to homogeneity of the calmodulin-activated adenylyl cyclase from urea extracts of Bordetella pertussis organisms (strain 114) is described. Catalytic and invasive activities are purified 30- and 177-fold, respectively, and virtually no degraded forms are found. Specific activities are 0.4 mmol/min/mg and 0.5 mumol/mg of enzyme protein/mg of cell protein/min for catalytic and invasive activities, respectively. The 15 amino-terminal amino acids agree with those deduced from the DNA sequence, as does the molecular mass of 175 kDa (guanidine) or 177 kDa (urea) obtained by equilibrium sedimentation. The larger apparent molecular mass seen in sodium dodecyl sulfate-polyacrylamide gel electrophoresis can be ascribed to anomalous migration. Half-maximal cyclase activation occurs at 3-4 X 10(-10) M calmodulin in the presence of Ca2+ and at 2 X 10(-8) M calmodulin in its absence. Ca2+ activation is maximal at 60-100 microM free CaCl2 (at low calmodulin concentrations), and free Ca2+ concentrations above approximately 125 microM are inhibitory at any calmodulin concentration. Extracellular Ca2+ is essential for intoxication. In Chinese hamster ovary cells, exogenous calmodulin does not inhibit penetration of the cyclase.  相似文献   

14.
15.
16.
17.
18.
19.
The metabolic syndrome is defined as the coexistence of multiple cardiovascular and diabetes risk factors, the prevalence of which has increased dramatically in adult populations in the last decades. More recently, the same cluster of metabolic risk factors has also been recognized in children and adolescents. Epidemiological evidence suggests that high levels of cardiorespiratory fitness (CRF) and physical activity are associated with a favorable metabolic risk profile in adults. However, in youth the role of these factors is less clear. Therefore, the purpose of this mini-review is to examine the recent evidence between objectively measured habitual physical activity and CRF with clustered metabolic risk in youth. In general, it appears that both physical activity and CRF are separately and independently associated with metabolic risk factors in youth, possibly through different causal pathways. Further research is necessary to quantify how much physical activity is needed to prevent the metabolic syndrome and the diseases with which it is associated. Public health approaches that encourage increased physical activity and reduce sedentary behaviors may prove useful in reducing the population burden associated with metabolic risk.  相似文献   

20.
Asparagusate dehydrogenases I and II and lipoyl dehydrogenase have been obtained in homogeneous state from asparagus mitochondria. They are flavin enzymes with 1 mol of FAD/mol of protein. Asparagusate dehydrogenases I and II and lipoyl dehydrogenase have s20,w of 6.22 S, 6.39 S, and 5.91 S, respectively, and molecular weights of 111,000, 110,000, and 95,000 (sedimentation equilibrium) or 112,000, 112,000, and 92,000 (gel filtration). They are slightly acidic proteins with isoelectric points of 6.75, 5.75, and 6.80. Both asparagusate dehydrogenases catalyzed the reaction Asg(SH)2 + NAD+ equilibrium AsgS2 + NADH + H+ and exhibit lipoyl dehydrogenase and diaphorase activities. Lipoyl dehydrogenase is specific for lipoate and has no asparagusate dehydrogenase activity. NADP cannot replace NAD in any case. Optimum pH for substrate reduction of the three enzymes are near 5.9. Asparagusate dehydrogenases I and II have Km values of 21.5 mM and 20.0 mM for asparagusate and 3.0 mM and 3.3 mM for lipoate, respectively. Lipoyl dehydrogenase activity of asparagusate dehydrogenases is enhanced by NAD and surfactants such as lecithin and Tween 80, but asparagusate dehydrogenase activity is not enhanced. Asparagusate dehydrogenases are strongly inhibited by mercuric ion, p-chloromercuribenzoic acid, and N-ethylmaleimide. Amino acid composition of the three enzymes is presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号