首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Syndecan-4 is a cell membrane heparan sulfate proteoglycan that is composed of a core protein and covalently attached glycosaminoglycans (GAG) and N-linked glycosylated (N-glycosylated) chains. Syndecan-4 has been shown to function independent of its GAG chains. Syndecan-4 may derive its biological function from the N-glycosylated chains due to the biological role of N-glycosylated chains in protein folding and cell membrane localization. The objective of the current study was to investigate the role of syndecan-4 N-glycosylated chains and the interaction between GAG and N-glycosylated chains in turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 (FGF2) responsiveness. The wild type turkey syndecan-4 and the syndecan-4 without GAG chains were cloned into the expression vector pCMS-EGFP and used as templates to generate syndecan-4 N-glycosylated one-chain and no-chain mutants with or without GAG chains. The wild type syndecan-4, all of the syndecan-4 N-glycosylated chain mutants were transfected into turkey myogenic satellite cells. Cell proliferation, differentiation, and responsiveness to FGF2 were measured. The overexpression of syndecan-4 N-glycosylated mutants with or without GAG chains did not change cell proliferation, differentiation, and responsiveness to FGF2 compared to the wild type syndecan-4 except that the overexpression of syndecan-4 N-glycosylated mutants without GAG chains increased cell proliferation at 48 and 72 h post-transfection. These data suggest that syndecan-4 functions in an FGF2-independent manner, and the N-glycosylated and GAG chains are required for syndecan-4 to regulate turkey myogenic satellite cell proliferation, but not differentiation.  相似文献   

2.
Syndecan-4 core protein is composed of extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain functions in transmitting signals into the cell through the protein kinase C alpha (PKCα) pathway. The glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains attached to the extracellular domain influence cell proliferation. The current study investigated the function of syndecan-4 cytoplasmic domain in combination with GAG and N-glycosylated chains in turkey muscle cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Syndecan-4 or syndecan-4 without the cytoplasmic domain and with or without the GAG and N-glycosylated chains were transfected or co-transfected with a small interfering RNA targeting syndecan-4 cytoplasmic domain into turkey muscle satellite cells. The overexpression of syndecan-4 mutants increased cell proliferation but did not change differentiation. Syndecan-4 mutants had increased cellular responsiveness to FGF2 during proliferation. Syndecan-4 increased PKCα cell membrane localization, whereas the syndecan-4 mutants decreased PKCα cell membrane localization compared to syndecan-4. However, compared to the cells without transfection, syndecan-4 mutants increased cell membrane localization of PKCα. These data indicated that the syndecan‐4 cytoplasmic domain and the GAG and N-glycosylated chains are critical in syndecan-4 regulating satellite cell proliferation, responsiveness to FGF2, and PKCα cell membrane localization.  相似文献   

3.
Proteoglycans participate in growth factor interaction with the cell surface through their heparan sulfate chains (HS), but it is not known if they are otherwise involved in growth factor signaling. It appears now that the syndecan-4 core protein, a transmembrane proteoglycan shown previously to bind phosphatidylinositol 4,5-bisphosphate (PIP(2)) and activate PKC alpha, participates in mediating the effects of fibroblast growth factor (FGF)2 on cell function. Mutations in the cytoplasmic tail of syndecan-4 that either reduced its affinity to PIP(2) (PIP(2)(-)) or disrupted its postsynaptic density 95, disk large, zona occludens-1 (PDZ)-dependent binding (PDZ(-)) produced a FGF2-specific dominant negative phenotype in endothelial cells as evidenced by the marked decline of their migration and proliferation rates and the impairment of their capacity to form tubes. In both cases, the molecular mechanism was determined to consist of a decrease in the syndecan-4-dependent activation of PKC alpha. This decrease was caused either by inhibition of FGF2-induced syndecan-4 dephosphorylation in the case of the PDZ(-) mutation or by disruption of basolateral targeting of syndecan-4 and its associated PDZ-dependent complex in the case of the PIP(2)(-) mutation. These results suggest that PKCalpha activation and PDZ-mediated formation of a serine/threonine phosphatase-containing complex by syndecan-4 are downstream events of FGF2 signaling.  相似文献   

4.
Syndecan-4 is composed of a core protein and covalently attached glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein is divided into extracellular, transmembrane, and cytoplasmic domains. The cytoplasmic domain has two conserved regions and a variable region in the middle. The Ser residue in the conserved region 1 and the Tyr residue in the variable region are important in regulating protein kinase C alpha (PKCα) membrane localization and focal adhesion formation. The objective of the current study was to investigate the role of syndecan-4 Ser and Tyr residues in combination with the GAG and N-glycosylated chains in turkey satellite cell proliferation, differentiation, fibroblast growth factor 2 (FGF2) responsiveness, and PKCα membrane localization. Site-directed mutagenesis was used to generate Ser and Tyr mutants with or without GAG and N-glycosylated chains. The wild type and mutant syndecan-4 constructs were transfected into turkey satellite cells. The over-expression of Ser and Tyr mutants increased cell proliferation and differentiation and decreased membrane localization of PKCα. Furthermore, Ser mutants enhanced cellular responsiveness to FGF2. The results from this study are the first demonstration of a role of syndecan-4 cytoplasmic domain Ser and Tyr residues in regulating satellite cell proliferation, differentiation, and the modulation of cellular responsiveness to FGF2.  相似文献   

5.
Syndecan-4 is one of the principal heparan sulfate-carrying proteins on the cell surface. Unlike other members of syndecan family, syndecan-4 mediates phosphatidylinositol 4,5-bisphosphate 2 (PIP(2))-dependent PKC-alpha activation, and overexpression of syndecan-4 in vitro results in enhanced FGF2 signaling. The present study was designed to test the functional effect of increased syndecan-4 expression in endothelial cells in transgenic mice. Several transgenic mice lines expressing syndecan-4 cDNA under control of human endothelial nitric oxide (NO) synthase (eNOS) promoter were generated. Exogenous syndecan-4 was mainly expressed in the heart, brain, and lungs. In particular, the heart demonstrated the greatest increase in the ratio of transgenic-to-native syndecan-4 gene expression. Vessels from the eNOS-syndecan-4 mice demonstrated more pronounced vasodilation to FGF2 but not to VEGF-A(165), sodium nitroprusside, and A 23187 compared with wild-type mice. To elucidate the mechanism of this effect, we measured NO release from primary cardiac endothelial cells isolated from transgenic or wild-type adult mice. Cells from the eNOS-syndecan-4 transgenic mice had a significant increase in FGF2- and VEGF-A(165)-induced NO release compared with endothelial cells from the wild-type mice. However, the absolute magnitude of this increase was higher for FGF2 than VEGF-A(165). In conclusion, enhanced syndecan-4 expression in mouse cardiac endothelial cells results in preferential augmentation of FGF2 but not VEGF-A(165)-induced NO release.  相似文献   

6.
The trafficking, membrane localization, and lipid raft association of Ras proteins, which are crucial oncogenic mediators, dictate their isoform-specific biological responses. Accordingly, their spatiotemporal dynamics are tightly regulated. While extensively studied for H- and K-Ras, such information on N-Ras, an etiological oncogenic factor, is limited. Here, we report a novel mechanism regulating the activation-dependent spatiotemporal organization of N-Ras, its modulation by biologically relevant stimuli, and isoform-specific effects on signaling. We combined patching/immobilization of another membrane protein with fluorescence recovery after photobleaching (patch-FRAP) and FRAP beam size analysis to investigate N-Ras membrane interactions. Clustering of raft-associated proteins, either glycosylphosphatidylinositol-anchored influenza virus hemagglutinin (HA-GPI) or fibronectin receptors, selectively enhanced the plasma membrane-cytoplasm exchange of N-Ras-GTP (preferentially associated with raft domains) in a cholesterol-dependent manner. Electron microscopy (EM) analysis showed N-Ras-GTP localization in cholesterol-sensitive clusters, from which it preferentially detached upon HA-GPI cross-linking. HA-GPI clustering enhanced the Golgi compartment (GC) accumulation and signaling of epidermal growth factor (EGF)-stimulated N-Ras-GTP. Notably, the cross-linking-mediated enhancement of N-Ras-GTP exchange and GC accumulation depended strictly on depalmitoylation. We propose that the N-Ras activation pattern (e.g., by EGF) is altered by raft protein clustering, which enhances N-Ras-GTP raft localization and depalmitoylation, entailing its exchange and GC accumulation following repalmitoylation. This mechanism demonstrates a functional signaling role for the activation-dependent differential association of Ras isoforms with raft nanodomains.  相似文献   

7.

Background

Heparan sulfate proteoglycans (HSPGs) are one of the basic constituents of plasma membranes. Specific molecular interactions between HSPGs and a number of extracellular ligands have been reported. Mechanisms involved in controlling the localization and abundance of HSPG on specific domains on the cell surface, such as membrane rafts, could play important regulatory roles in signal transduction.

Methodology/Principal Findings

Using metabolic radiolabeling and sucrose-density gradient ultracentrifugation techniques, we identified [35S]sulfate-labeled macromolecules associated with detergent-resistant membranes (DRMs) isolated from a rat parathyroid cell line. DRM fractions showed high specific radioactivity ([35S]sulfate/mg protein), implying the specific recruitment of HSPGs to the membrane rafts. Identity of DRM-associated [35S]sulfate-labeled molecules as HSPGs was confirmed by Western blotting with antibodies that recognize heparan sulfate (HS)-derived epitope. Analyses of core proteins by SDS-PAGE revealed bands with an apparent MW of syndecan-4 (30–33 kDa) and syndecan-1 (70 kDa) suggesting the presence of rafts with various HSPG species. DRM fractions enriched with HSPGs were characterized by high sphingomyelin content and found to only partially overlap with the fractions enriched in ganglioside GM1. HSPGs could be also detected in DRMs even after prior treatment of cells with heparitinase.

Conclusions/Significance

Both syndecan-1 and syndecan-4 have been found to specifically associate with membrane rafts and their association seemed independent of intact HS chains. Membrane rafts in which HSPGs reside were also enriched with sphingomyelin, suggesting their possible involvement in FGF signaling. Further studies, involving proteomic characterization of membrane domains containing HSPGs might improve our knowledge on the nature of HSPG-ligand interactions and their role in different signaling platforms.  相似文献   

8.
Fibroblast growth factor-2 (FGF2) is a potent angiogenic factor in gliomas. Heparan sulfate promotes ligand binding to receptor tyrosine kinase and regulates signaling. The goal of this study was to examine the contribution of heparan sulfate proteoglycans (HSPGs) to glioma angiogenesis. Here we show that all brain endothelial cell HSPGs carry heparan sulfate chains similarly capable of forming a ternary complex with FGF2 and fibroblast growth factor receptor-1c and of promoting a mitogenic signal. Immunohistochemical analysis revealed that glypican-1 was overexpressed in glioma vessel endothelial cells, whereas this cell-surface HSPG was consistently undetectable in normal brain vessels. To determine the effect of increased glypican-1 expression on FGF2 signaling, we transfected normal brain endothelial cells, which express low base-line levels of glypican-1, with this proteoglycan. Glypican-1 expression enhanced growth of brain endothelial cells and sensitized them to FGF2-induced mitogenesis despite the fact that glypican-1 remained a minor proteoglycan. In contrast, overexpression of syndecan-1 had no effect on growth or FGF2 sensitivity. We conclude that the glypican-1 core protein has a specific role in FGF2 signaling. Glypican-1 overexpression may contribute to angiogenesis and the radiation resistance characteristic of this malignancy.  相似文献   

9.
The plasma membrane is not homogeneous but contains specific subcompartments characterized by their unique lipid and protein composition. Based on their enrichment in various signaling molecules, these membrane microdomains are recognized to be sites of localized signal transduction for a number of extracellular stimuli. We have previously shown that fibroblast growth factor-2 (FGF2) induced a specific signaling response within a lipid raft membrane microdomain in human neuroblastoma cells characterized by the tyrosine phosphorylation of a p80 phosphoprotein. Herein, we show that this protein is the signaling adaptor FRS2 and that it is localized exclusively to lipid rafts in vitro and in vivo. We have examined how the tyrosine phosphorylation and serine-threonine phosphorylation of FRS2 within lipid rafts affect the response of cells to FGF2 signaling. Our data suggest that activation of protein kinase C, Src family kinases, and MEK1/2 are involved in regulating serine-threonine phosphorylation of FRS2, which can indirectly affect FRS2 phosphotyrosine levels. We also show that Grb2 is recruited to lipid rafts during signaling events and that activation of MEK1/2 by different mechanisms within lipid rafts may lead to different cellular responses. This work suggests that compartmentalized signaling within lipid rafts may provide a level of specificity for growth factor signaling.  相似文献   

10.
Localization of signaling complexes to specific microdomains coordinates signal transduction at the plasma membrane. Using immunogold electron microscopy of plasma membrane sheets coupled with spatial point pattern analysis, we have visualized morphologically featureless microdomains, including lipid rafts, in situ and at high resolution. We find that an inner-plasma membrane lipid raft marker displays cholesterol-dependent clustering in microdomains with a mean diameter of 44 nm that occupy 35% of the cell surface. Cross-linking an outer-leaflet raft protein results in the redistribution of inner leaflet rafts, but they retain their modular structure. Analysis of Ras microlocalization shows that inactive H-ras is distributed between lipid rafts and a cholesterol-independent microdomain. Conversely, activated H-ras and K-ras reside predominantly in nonoverlapping, cholesterol-independent microdomains. Galectin-1 stabilizes the association of activated H-ras with these nonraft microdomains, whereas K-ras clustering is supported by farnesylation, but not geranylgeranylation. These results illustrate that the inner plasma membrane comprises a complex mosaic of discrete microdomains. Differential spatial localization within this framework can likely account for the distinct signal outputs from the highly homologous Ras proteins.  相似文献   

11.
Many angiogenesis inhibitors are breakdown products of endogenous extracellular matrix proteins. Plasmin and matrix metalloproteinase-3 generate breakdown products of matrix-bound plasminogen activator inhibitor-1 (PAI-1). We produced a truncated form of PAI-1, rPAI-1(23), that possesses significant anti-angiogenic activity and stimulates high levels of apoptosis in quiescent arterial endothelial cells. Quiescent endothelial cells are less susceptible to apoptosis than angiogenic endothelial cells. The present study was designed to determine the mechanism of the rPAI-1(23) effects in bovine aortic endothelial cells. Apoptosis was measured in annexin V and caspase 3 assays. Expression of death and survival signaling molecules were examined by Western blot and kinase activity. Fibroblast growth factor 2 (FGF2) functions were analyzed in angiogenesis assays. The early response to rPAI-1(23) was an increase in annexin V-positive cells and phosphorylated (p) JNK isoform expression followed by an increase in p-Akt and p-c-Jun expression. Caspase 3 was activated at 4 h, whereas p-Akt was reduced to control levels. By 6 h of rPAI-1(23) treatment cell number was reduced by 35%, and p-c-Jun and p-JNK were degraded by proteasomes. Confocal microscopic images showed increased amounts of FGF2 in the extracellular matrix. However, rPAI-1(23) blocked FGF2 signaling through FGF receptor 1 and syndecan-4, inhibiting cell migration, tubulogenesis, and proliferation. Exogenous FGF2 stimulation could not reverse these effects. We conclude that rPAI-1(23) stimulation of apoptosis in BAEC triggers a cascade of death versus survival events that includes release of FGF2. The rPAI-1(23) anti-angiogenic activity inhibits FGF2 pro-angiogenic functions by blocking FGF2 signaling through FGF receptor 1 and syndecan-4 and downstream effectors p-Akt, p-JNK, and p-c-Jun.  相似文献   

12.
13.
Syndecan-1-expressing Raji lymphoid cells (Raji-S1 cells) bind and spread rapidly when attaching to matrix ligands that contain heparan sulfate-binding domains. However, these ligands also contain binding sites for integrins, which are widely known to signal, raising the question of whether the proteoglycan core protein participates in generation of the signal for spreading. To address this question, the spreading of the Raji-S1 cells is examined on ligands specific for either β1 integrins, known to be present on the Raji cells, or the syndecan-1 core protein. The cells adhere and spread on invasin, a ligand that activates β1 integrins, the IIICS fragment of fibronectin, which is a specific ligand for the α4β1 integrin, or mAb281.2, an antibody specific for the syndecan-1 core protein. The signaling resulting from adhesion to the syndecan-specific antibody appears integrin independent as (i) the morphology of the cells spreading on the antibody is distinct from spreading initiated by the integrins alone; (ii) spreading on the syndecan or integrin ligands is affected differently by the kinase inhibitors tyrphostin 25, genistein, and staurosporine; and (iii) spreading on the syndecan-specific antibody is not disrupted by blocking β1 integrin activation with mAb13, a β1 inhibitory antibody. These data demonstrate that ligation of syndecan-1 initiates intracellular signaling and suggest that this signaling occurs when cells expressing syndecan-1 adhere to matrix ligands containing heparan sulfate-binding domains.  相似文献   

14.
The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe167) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe167 was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe167 in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.  相似文献   

15.
16.
Dual-specific A-kinase-anchoring protein 2 (D-AKAP2/AKAP10), which interacts at its carboxyl terminus with protein kinase A and PDZ domain proteins, contains two tandem regulator of G-protein signaling (RGS) domains for which the binding partners have remained unknown. We show here that these RGS domains interact with Rab11 and GTP-bound Rab4, the first demonstration of RGS domains binding small GTPases. Rab4 and Rab11 help regulate membrane trafficking through the endocytic recycling pathways by recruiting effector proteins to specific membrane domains. Although D-AKAP2 is primarily cytosolic in HeLa cells, a fraction of the protein localizes to endosomes and can be recruited there to a greater extent by overexpression of Rab4 or Rab11. D-AKAP2 also regulates the morphology of the Rab11-containing compartment, with co-expression causing accumulation of both proteins on enlarged endosomes. Knockdown of D-AKAP2 by RNA interference caused a redistribution of both Rab11 and the constitutively recycling transferrin receptor to the periphery of cells. Knockdown also caused an increase in the rate of transferrin recycling, suggesting that D-AKAP2 promotes accumulation of recycling proteins in the Rab4/Rab11-positive endocytic recycling compartment.  相似文献   

17.
BALB/3T3 cells transfected with plasmids pcDNA3.1-[S-ras(Q(61)K)] of shrimp Penaeus japonicus were applied to reveal a complex of p120-GAP/syndecan-2 being highly expressed upon transformation. Of interest, most of the p120-GAP/syndecan-2 complex was localized at caveolae, a membrane microdomain enriched with caveolin-1. To confirm the molecular interaction between syndecan-2 and p120-GAP, we further purified p120-GAP protein from mouse brains by using an affinity column of HiTrap-RACK1 and expressed mouse RACK1-encoded fusion protein and mouse syndecan-2-encoded fusion protein in bacteria. We report molecular affinities exist between p120-GAP and RACK1, syndecan-2 and RACK1 as well as p120-GAP and syndecan-2. The selective affinity between p120-GAP and syndecan-2 was found to be sufficient to detach RACK1. The p120-GAP/syndecan-2 complex was demonstrated to keep Src tyrosine kinase in an activated form. On the other hand, the syndecan-2/RACK1 complex was found to have Src in an inactivated form. These data indicate that the p120-GAP/syndecan-2 complex at caveolae could provide a docking site for Src to transmit tyrosine signaling, implying that syndecan-2/p120-GAP functions as a tumor promoter upon transformation with oncogenic ras of shrimp P. japonicus.  相似文献   

18.
Syndecan-4 is a cell membrane proteoglycan composed of a transmembrane core protein and substituted glycosaminoglycan (GAG) and N-linked glycosylated (N-glycosylated) chains. The core protein has three domains: extracellular, transmembrane and cytoplasmic domains. The GAG and N-glycosylated chains and the cytoplasmic domain of syndecan-4, especially the amino acids: Ser(178) and Tyr(187) are critical in regulation of turkey satellite cell growth and development. How these processes are regulated is still unknown. The objective of the current study was to determine whether the syndecan-4 GAG and N-glycosylated chains and the cytoplasmic domain functions through modulating focal adhesion formation and apoptosis. Twelve mutant clones were generated: a truncated syndecan-4 without the cytoplasmic domain with or without GAG and N-glycosylated chains, and Ser(178) and Tyr(187) mutants with or without GAG and N-glycosylated chains. The wild type syndecan-4 and all of the syndecan-4 mutants were transfected into turkey myogenic satellite cells after which cell apoptosis and focal adhesion formation were measured. Syndecan-4 increased cell membrane localization of β1 integrin and the activity of focal adhesion kinase (FAK) whereas the cytoplasmic domain mutation decreased the phosphorylation of FAK. However, syndecan-4 and syndecan-4 mutants did not influence cell apoptosis. They also had no effect on vinculin or paxillin-containing focal adhesion formation. These results suggested that the syndecan-4 cytoplasmic domain plays an important role in regulating FAK activity and β1 integrin cell membrane localization but not cell apoptosis and vinculin or paxillin-containing focal adhesion formation.  相似文献   

19.
The TNFR, TNF-R1, is localized to lipid raft and nonraft regions of the plasma membrane. Ligand binding sets in motion signaling cascades that promote the activation of p42(mapk/erk2) and NF-kappaB. However, the role of receptor localization in the activation of downstream signaling events is poorly understood. In this study, we investigated the dynamics of TNF-R1 localization to lipid rafts and the consequences of raft localization on the activation of p42(mapk/erk2) and NF-kappaB in primary cultures of mouse macrophages. Using sucrose density gradient ultracentrifugation and a sensitive ELISA to detect TNF-R1, we show that TNF-R1 is rapidly and transiently recruited to lipid rafts in response to TNF-alpha. Disruption of lipid rafts by cholesterol depletion prevented the TNF-alpha-dependent recruitment of TNF-R1 to lipid rafts and inhibited the activation of p42(mapk/erk2), while the activation of NF-kappaB was unaffected. In addition, phosphorylated p42(mapk/erk2), but not receptor interacting protein, I-kappaB kinase-gamma, or I-kappaBalpha was detected in raft-containing fractions following TNF-alpha stimulation. These findings suggest that TNF-R1 is localized to both lipid raft and nonraft regions of the plasma membrane and that each compartment is capable of initiating different signaling responses. We propose that segregation of TNF-R1 to raft and nonraft regions of the plasma membrane contributes to the diversity of signaling responses initiated by TNF-R1.  相似文献   

20.
Syndecan-4 is a transmembrane heparan sulfate proteoglycan that can regulate cell-matrix interactions and is enriched in focal adhesions. Its cytoplasmic domain contains a central region unlike that of any other vertebrate or invertebrate syndecan core protein with a cationic motif that binds inositol phospholipids. In turn, lipid binding stabilizes the syndecan in oligomeric form, with subsequent binding and activation of protein kinase C. The specificity of phospholipid binding and its potential regulation are investigated here. Highest affinity of the syndecan-4 cytoplasmic domain was seen with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5P)(2)) and phosphatidylinositol 4-phosphate, and both promoted syndecan-4 oligomerization. Affinity was much reduced for 3-phosphorylated inositides while no binding of diacylglycerol was detected. Syndecan-2 cytoplasmic domain had negligible affinity for any lipid examined. Inositol hexakisphosphate, but not inositol tetrakisphosphate, also had high affinity for the syndecan-4 cytoplasmic domain and could compete effectively with PtdIns(4,5)P(2). Since inositol hexaphosphate binding to syndecan-4 does not promote oligomer formation, it is a potential down-regulator of syndecan-4 signaling. Similarly, phosphorylation of serine 183 in syndecan-4 cytoplasmic domain reduced PtdIns(4,5)P(2) binding affinity by over 100-fold, although interaction could still be detected by nuclear magnetic resonance spectroscopy. Only protein kinase Calpha was up-regulated in activity by the combination of syndecan-4 and PtdIns(4,5)P(2), with all other isoforms tested showing minimal response. This is consistent with the codistribution of syndecan-4 with the alpha isoform of protein kinase C in focal adhesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号