共查询到20条相似文献,搜索用时 18 毫秒
1.
The absence of molybdenum cofactor sulfuration is the primary cause of the flacca phenotype in tomato plants 总被引:1,自引:0,他引:1
The molybdenum cofactor (MoCo)-containing enzymes aldehyde oxidase (AO; EC 1.2.3.1) and xanthine dehydrogenase (XDH; EC 1.2.1.37) require for activity a sulfuration step that inserts a terminal sulfur ligand into the MoCo. The tomato flacca mutation was originally isolated as a wilty phenotype due to a lack of abscisic acid (ABA) that is related to simultaneous loss of AO and XDH activities. An expressed sequence tag candidate from tomato was selected on the basis of homology to sulfurases from animals, fungi and the recently isolated Arabidopsis genes LOS5/ABA3. The tomato homologue maps as a single gene to the bottom of chromosome 7, consistent with the genetic location of the flacca mutation. The structure of FLACCA shows a multidomain protein with an N-terminal NifS-like sulfurase domain; a mammal-specific intermediate section; and a C-terminus containing conserved motifs. Prominent among these are molybdopterin oxidoreductases and thioredoxin redox-active centre/iron-sulfur-binding region signatures which may be relevant to the specific sulfuration of MoCo. Indeed, the molecular analysis of flacca identifies the mutation in a highly conserved motif located in the C-terminus. Activity gel assays show that FLACCA is expressed throughout the plant. Transient and stable complementation of flacca and the Arabidopsis aba3 mutants with Aspergillus nidulans hxB and FLACCA yielded full, partial and tissue-specific types of Mo-hydroxylase activities. Restoration of activity in the root alone is sufficient to augment plant ABA content and rectify the wild-type phenotype. Thus the pleiotropic flacca phenotype is due to the loss of activity of enzymes requiring a sulfurated MoCo. 相似文献
2.
Molybdenum Metabolism in Plants 总被引:1,自引:0,他引:1
Abstract: Among the micronutrients essential for plant growth and for microsymbionts, Mo is required in minute amounts. However, since Mo is often sequestered by Fe- or Al-oxihydrox-ides, especially in acidic soils, the concentration of the water-soluble molybdate anion available for uptake by plants may be limiting for the plant, even when the total Mo content of the soil is sufficient. In contrast to bacteria, no specific molybdenum uptake system is known for plants, but since molybdate and sulfate behave similarly and have similar structure, uptake of molybdate could be mediated unspecifically by one of the sulfate transporters. Transport into the different plant organs proceeds via xylem and phloem. A pterin-bound molybdenum is the cofactor of important plant enzymes involved in redox processes: nitrate reductase, xanthine dehydrogenase, aIdehyde oxidase, and probably sulfite oxidase. Biosynthesis of the molybdenum cofactor (Moco) starts with a guanosine-X-phos-phate. Subsequently, a sulfur-free pterin is synthesized, sulfur is added, and finally molybdenum is incorporated. In addition to the molybdopterin enzymes, small molybdopterin binding proteins without catalytic function are known and are probably involved in the storage of Moco. In symbiotic systems the nitrogen supply of the host plant is strongly influenced by the availability of Mo in soil, since both bacterial nitrogenase and NADPH-dependent nitrate reductase of mycorrhizal fungi are Mo enzymes. 相似文献
3.
4.
Biochemical characterization of nitrate and nitrite reduction in the wild-type and a nitrate reductase mutant of soybean 总被引:1,自引:0,他引:1
Enzyme activities involved in nitrate assimilation were analyzed from crude leaf extracts of wild-type (cv. Williams) and mutant ( nr1 ) soybean [ Glycine max (L.) Merr.] plants lacking constitutive nitrate reductase (NR) activity. The nr1 soybean mutant (formerly LNR-2), had decreased NADH-NR, FMNH2 -NR and cytochrome c reductase activities, all of which were associated with the loss of constitutive NR activity. Measurement of FMNH2 -NR activity, by nitrite determination, was accurate since nitrite reductase could not use FMNH2 as a reductant source. Nitrite reductase activity was normal in the nr1 plant type in the presence of reduced methyl viologen. Assuming that constitutive NR is similar in structure to nitrate reductases from other plants, presence of xanthine dehydrogenase activity and loss of cytochrome c reductase activity indicated that the apoprotein and not the molybdenum cofactor had been affected in the constitutive enzyme of the mutant. Constitutive NR from urea-grown wild-type plants had 1) greater ability to use FMNH2 as an electron donor, 2) a lower pH optimum, and 3) decreased ability to distinguish between NO3 − and HCO3 − , compared with inducible NR from NO3 − -grown nr1 plants. The presence in soybean leaves of a nitrate reductase with a pH optimum of 7.5 is contrary to previous reports and indicates that soybean is not an exception among higher plants for this activity. 相似文献
5.
Ralf R. Mendel 《Phytochemistry》1983,22(4):817-819
Heat treatment (90 sec at 70°) is shown to convert the bound molybdenum co-factor of tobacco cell-free extracts and bovine milk xanthine oxidase into a form capable of complementing the Neurospora crassa mutant nit-1.In the presence of 1 mM ascorbic acid, 25 mM molybdate and, for plant extracts, sulphydryl group protecting agents, the molybdenum co-factor can survive incubations up to 100° whilst maintaining its biological activity. Especially with plant extracts, the efficiency of heat treatment is considerably higher than that of the acidification procedure which is often utilized for releasing molybdenum co-factor. 相似文献
6.
Kurt Frunzke Bernd Heiss Ortwin Meyer Walter G. Zumft 《FEMS microbiology letters》1993,113(2):241-245
Abstract Respiratory nitrate reductase from the denitrifying bacterium Pseudomonas stutzeri is an iron-sulfur enzyme containing the molybdenum cofactor. Hydrolysis of native nitrate reductase with aqueous sulfuric acid revealed 0.92 mol of 5'-GMP per mol of enzyme. The pterin present in the molybdenum cofactor was liberated from the protein and reacted with iodoacetamide. The resulting di(carboxamidomethyl) (cam) derivative was purified on a C18 -cartridge and analyzed for its structural elements. Treatment of the cam derivative with nucleotide pyrophosphatase and subsequent HPLC analysis revealed the formation of di(cam)molybdopterin and 5'-GMP at a 1:1 molar ratio and with a yield of 79% with respect to the molybdenum content of the enzyme. Treatment of the cam derivative with nucleotide pyrophosphatase and alkaline phosphatase led to the liberation of 0.51 mol dephosphodi(cam)molybdopterin and of 0.59 mol guanosine per mol of enzyme, which is equal to a molar ratio of 1:2.2. The results indicate, that the organic moiety of the molybdenum cofactor of nitrate reductase from P. stutzeri is molybdopterin guanine dinucleotide of which one mol is contained per mol of nitrate reductase. 相似文献
7.
Strain 21gr from Chlamydomonas reinhardtii is a cryptic mutant defective in the Nit5 gene related to the biosynthesis of molybdenum cofactor (MoCo). In spite of this mutation, this strain has active MoCo and can grow on nitrate media. In genetic crosses, the Nit5 mutation cosegregated with a phenotype of resistance to high concentrations of molybdate and tungstate. Molybdate/tungstate toxicity was much higher in nitrate than in ammonium media. Strain 21gr showed lower amounts of MoCo activity than the wild type both when grown in nitrate and after growth in ammonium and nitrate induction. However, nitrate reductase (NR) specific activity was similar in wild type and 21gr cells. Tungstate, either at nanomolar concentrations in nitrate media or at micromolar concentrations during growth in ammonium and nitrate induction, strongly decreased MoCo and NR amounts in wild‐type cells but had a slight effect in 21gr cells. Molybdate uptake activity of ammonium‐grown cells from both the wild‐type and 21gr strains was small and blocked by sulphate 0·3 mM . However, cells from nitrate medium showed a molybdate uptake activity insensitive to sulphate. This uptake activity was much higher and more sensitive to inhibition by tungstate in the wild type than in strain 21gr. These results suggest that strain 21gr has a high affinity and low capacity molybdate transport system able to discriminate efficiently tungstate, and lacks a high capacity molybdate/tungstate transport system, which operates in wild‐type cells upon nitrate induction. This high capacity molybdate transport system would account for both the stimulating effect of molybdate on MoCo amounts and the toxic effects of tungstate and molybdate when present at high concentrations. 相似文献
8.
9.
Els J. M. Van Damme Irwin J. Goldstein Guy Vercammen Joan Vuylsteke Willy J. Peumans 《Physiologia plantarum》1992,86(2):245-252
Nitrate uptake and reduction are highly regulated processes. In many plant species, nitrate uptake is induced by nitrate, Little, however, is known about the genetic and molecular aspects of nitrate transport. Reduction of nitrate to ammonia is carried out by nitrate and nitrite reductases. Nitrate and light enhance expression of the nitrate and nitrite reductase genes in most species. Mutants have been selected and characterized to identify genes controlling nitrate reductase in several higher plant species. Six loci are known to control the synthesis or assembly of the molybdenum cofactor of nitrate reductase, xanthine dehydrogenase and aldehyde oxidase. The nitrate reductase apoenzyme is encoded by a single gene, except in allopolyploid species and in those species possessing both NADH-specific and NAD(P)H-bispecific nitrate reductases. Comparison of NADH-specific nitrate reductase amino acid sequences deduced from cloned genes reveals considerable sequence conservation in regions believed to encode the functional domains of nitrate reductase, but less conservation in the N-terminal and hinge regions of the enzyme. For both nitrate and nitrite reductases, sequence identity is greater among species of the same subclass than between Monocotyledoneae and Dicotyledoneae subclass species. 相似文献
10.
Molybdenum cofactor (Mo-co) was determined in seeds of wheat and barley by its ability to restore nitrate reductase (NR) activity in extracts of nitrate reductase-deficient mutants. Its activity was compared with that of wheat roots and leaves. Conditions for assay of Mo-co from different sources in the presence of molybdate and reduced glutathione (GSH) were optimised. The effect of heat-treatment of cell-free extracts from seeds, roots and leaves was also investigated. Mutant extracts of Neurospora crassa nit-1 and Nicotiana tabacum CnxA68, used as apoprotein source for in vitro complementation, were shown to give comparable results. The Mo-co activity, extracted from wheat and barley seeds, could be separated into two peaks by gel chromatography. 相似文献
11.
Two nitrate reductase (NaR)-deficient mutants of pea (Pisum sativum L.), E1 and A300, both disturbed in the molybdenum cofactor function and isolated, respectively, from cv Rondo and cv Juneau, were tested for allelism and were compared in biochemical and growth characteristics. The F1 plants of the cross E1 × A300 possessed NaR and xanthine dehydrogenase (XDH) activities comparable to those of the wild types, indicating that these mutants belong to different complementation groups, representing two different loci. Therefore, mutant E1 represents, besides mutant A300 and the allelic mutants A317 and A334, a third locus governing NaR and is assigned the gene destignation nar 3. In comparison with the wild types, cytochrome c reductase activity was increased in both mutants. The mutants had different cytochrome c reductase distribution patterns, indicating that mutant A300 could be disturbed in the ability to dimerize NaR apoprotein monomers, and mutant E1 in the catalytic function of the molybdenum cofactor. In growth characteristics studied, A300 did not differ from the wild types, whereas fully grown leaves of mutant E1 became necrotic in soil and in liquid media containing nitrate. 相似文献
12.
There were significant differences in the contents of molybdenum cofactor (Mo-co), both in a low-molecular-mass form (free Mo-co) and in a protein-bound form, in seeds of sevenVicia faba genotypes. Low-molecular-mass Mo-co species present in the extracts were detected by their ability to reactivate, through a dialysis membrane, aponitrate reductase from theNeurospora crassa nit-1 mutant. In extracts of all genotypes tested, the amount of Mo-co capable of directly reactivating nitrate reductase of theN. crassa nit-1 mutant was always much higher than that of low-molecular-mass Moco. These data cannot be explained by considering, as traditionally, that Mo-co detected directly, i.e. without any previous treatment for its release from Mo-coproteins, corresponds to free low-molecular mass Mo-co. A protein which bound Mo-co was purified to electrophoretic homogeneity. This protein consisted of a single 70-kDa polypeptide chain and carried a Mo-co that could be efficiently released when in contact with aponitrate reductase.Abbreviations CP
carrier protein
- Mo-co
molybdenum cofactor
- NR
nitrate reductase
- XO
xanthine oxidase 相似文献
13.
Complex protein interaction networks constitute plant metabolic and signaling systems. Bimolecular fluorescence complementation (BiFC) is a suitable technique to investigate the formation of protein complexes and the localization of protein-protein interactions in planta. However, the generation of large plasmid collections to facilitate the exploration of complex interaction networks is often limited by the need for conventional cloning techniques. Here, we report the implementation of a GATEWAY vector system enabling large-scale combination and investigation of candidate proteins in BiFC studies. We describe a set of 12 GATEWAY-compatible BiFC vectors that efficiently permit the combination of candidate protein pairs with every possible N-or C-terminal sub-fragment of S(CFP)3A or Venus, respectively, and enable the performance of multicolor BiFC (mcBiFC). We used proteins of the plant molybdenum metabolism, in that more than 20 potentially interacting proteins are assumed to form the cellular molybdenum network, as a case study to establish the functionality of the new vectors. Using these vectors, we report the formation of the molybdopterin synthase complex by interaction of Arabidopsis proteins Cnx6 and Cnx7 detected by BiFC as well as the simultaneous formation of Cnx6/Cnx6 and Cnx6/Cnx7 complexes revealed by mcBiFC. Consequently, these GATEWAY-based BiFC vector systems should significantly facilitate the large-scale investigation of complex regulatory networks in plant cells. 相似文献
14.
The trace element molybdenum (Mo) is utilized in many life forms, and it is a key component of several enzymes involved in nitrogen, sulfur, and carbon metabolism. With the exception of nitrogenase, Mo is bound in proteins to a pterin, thus forming the molybdenum cofactor (Moco) at the catalytic sites of molybdoenzymes. Although a number of molybdoenzymes are well characterized structurally and functionally, evolutionary analyses of Mo utilization are limited. Here, we carried out comparative genomic and phylogenetic analyses to examine the occurrence and evolution of Mo utilization in bacteria, archaea and eukaryotes at the level of (i) Mo transport and Moco utilization trait, and (ii) Mo-dependent enzymes. Our results revealed that most prokaryotes and all higher eukaryotes utilize Mo whereas many unicellular eukaryotes including parasites and most yeasts lost the ability to use this metal. In addition, eukaryotes have fewer molybdoenzyme families than prokaryotes. Dimethylsulfoxide reductase (DMSOR) and sulfite oxidase (SO) families were the most widespread molybdoenzymes in prokaryotes and eukaryotes, respectively. A distant group of the ModABC transport system, was predicted in the hyperthermophilic archaeon Pyrobaculum. ModE-type regulation of Mo uptake occurred in less than 30% of Moco-utilizing organisms. A link between Mo and selenocysteine utilization in prokaryotes was also identified wherein the selenocysteine trait was largely a subset of the Mo trait, presumably due to formate dehydrogenase, a Mo- and selenium-containing protein. Finally, analysis of environmental conditions and organisms that do or do not depend on Mo revealed that host-associated organisms and organisms with low G + C content tend to reduce their Mo utilization. Overall, our data provide new insights into Mo utilization and show its wide occurrence, yet limited use of this metal in individual organisms in all three domains of life. 相似文献
15.
16.
The nucleotide sequence of the nitrate reductase (NR) molybdenum cofactor (MoCo) domain was determined in four Nicotiana plumbaginifolia mutants affected in the NR apoenzyme gene. In each case, missense mutations were found in the MoCo domain which affected amino acids that were conserved not only among eukaryotic NRs but also in animal sulfite oxidase sequences. Moreover an abnormal NR molecular mass was observed in three mutants, suggesting that the integrity of the MoCo domain is essential for a proper assembly of holo-NR. These data allowed to pinpoint critical residues in the NR MoCo domain necessary for the enzyme activity but also important for its quaternary structure. 相似文献
17.
The transition element molybdenum is essential for (nearly) all organisms and occurs in more than 30 enzymes catalyzing diverse redox reactions; however, only three Mo-enzymes have been found in plants so far. (1) Nitrate reductase catalyzes the key step in inorganic nitrogen assimilation, (2) aldehyde oxidase(s) recently have been shown to catalyze the last step in the biosynthesis of the phytohormones indole acetic acid and abscisic acid, respectively, and (3) xanthine dehydrogenase is involved in purine catabolism. These enzymes are homodimeric proteins harboring an electron transport chain that involves different prosthetic groups (FAD, heme, or Fe-S, Mo). Among different Mo-enzymes, the alignment of amino acid sequences helps to define regions that are well conserved (domains) and other regions that are highly variable in sequence (interdomain hinge regions). The existence of additional plant Mo-enzymes (like sulfite oxidase) also has to be considered. In this review we focus on structure-function relationships and stress the functional importance of the enzymes for the plant. With the exception of bacterial nitrogenase, Mo-enzymes share a similar pterin compound at their catalytic sites, the molybdenum cofactor. Molybdenum itself seems to be biologically inactive unless it is complexed by the cofactor. This molybdenum cofactor combines with diverse apoproteins where it is responsible for the correct anchoring and positioning of the Mo-center within the holo-enzyme so that the Mo-center can interact with other components of the enzyme's electron transport chain. The organic moiety of the molybdenum cofactor is a unique pterin named molybdopterin. The core structure of molybdopterin is conserved in all organisms. Accordingly, its biosynthetic pathway seems to be conserved because a similar set of cofactor genes has been found in bacteria and higher plants. We describe a model for the biosynthesis of the plant molybdenum cofactor involving the complex interaction of seven proteins. 相似文献
18.
Plant molybdoenzymes and their response to stress 总被引:3,自引:0,他引:3
Molybdenum-containing enzymes catalyse basic reactions in the nitrogen, sulphur and carbon metabolism. Mo-enzymes contain
at their catalytic sites an organometallic structure termed the molybdenum cofactor or Moco. In higher plants, Moco is incorporated
into the apoproteins of four enzymes: nitrate reductase (EC 1.6.6.1-3; NR), xanthine dehydrogenase (EC 1.1.1.204; XDH), aldehyde
oxidase (EC 1.2.3.1; AO) and sulphite oxidase (EC1.8.3.1; SO). Molybdoenzymes in plants are key enzymes in nitrate assimilation,
purine metabolism, hormone biosynthesis, and most probably in sulphite detoxification. They are considered to be involved
in stress acclimation processes and, therefore, elucidation of the mechanisms of their response to environmental stress conditions
is of agricultural importance for the improvement of plant stress tolerance. Here we would like to give a brief functional
and biochemical characteristic of the four plant molybdoenzymes and to focus mainly on their sensitivity to environmental
stress factors. 相似文献
19.
Barbara J. Steven Dennis W. Kirk Simon W.J. Bright John L. Wray 《Molecular & general genetics : MGG》1989,219(3):421-428
Summary Three plants, R9201 and R11301 (from cv. Maris Mink) and R12202 (from cv. Golden Promise), were selected by screening M2 populations of barley (Hordeum vulgare L.) seedlings (mutagenised with azide in the M1) for resistance to 10 mM potassium chlorate. Selections R9201 and R11301 were crossed with the wild-type cv. Maris Mink and analysis of the F2 progeny showed that one quarter lacked shoot nitrate reductase activity. These F2 plants also withered and died in the continuous presence of nitrate as sole nitrogen source. Loss of nitrate reductase activity and withering and death were due in each case to a recessive mutation in a single nuclear gene. All F1 progeny derived from selfing selection R12202 lacked shoot nitrate reductase activity and also withered and subsequently died when maintained in the continuous presence of nitrate as sole nitrogen source. All homozygous mutant plants lacked not only shoot nitrate reductase activity but also shoot xanthine dehydrogenase activity. The plants took up nitrate, and possessed wild-type or higher levels of shoot nitrite reductase activity and NADH-cytochrome c reductase activity when treated with nitrate for 18 h. We conclude that loss of shoot nitrate reductase activity, xanthine dehydrogenase activity and withering and death, in the three mutants R9201, R11301 and R12202 is due to a mutation affecting the formation of a functional molybdenum cofactor. The mutants possessed wild-type levels of molybdenum and growth in the presence of unphysiologically high levels of molybdate did not restore shoot nitrate reductase or xanthine dehydrogenase activity. The shoot molybdenum cofactor of R9201 and of R12202 is unable to reconstitute NADPH nitrate reductase activity from extracts of the Neurospora crassa nit-1 mutant and dimerise the nitrate reductase subunits present in the respective barley mutant. The shoot molybdenum cofactor of R11301 is able to effect dimerisation of the R11301 nitrate reductase subunits and can reconstitute NADPH-nitrate reductase activity up to 40% of the wild-type molybdenum cofactor levels. The molybdenum cofactor of the roots of R9201 and R11301 is also defective. Genetic analysis demonstrated that R9201, but not R11301, is allelic to R9401 and Az34 (nar-2a), two mutants previously shown to be defective in synthesis of molybdenum cofactor. The mutations in R9401 and R9201 gave partial complementation of the nar-2a gene such that heterozygotes had higher levels of extractable nitrate reductase activity than the homozygous mutants.We conclude that: (a) the nar-2 gene locus encodes a step in molybdopterin biosynthesis; (b) the mutant R11301 represents a further locus involved in the synthesis of a functional molybdenum cofactor; (c) mutant Rl2202 is also defective in molybdopterin biosynthesis; and (d) the nar-2 gene locus and the gene locus defined by R11301 govern molybdenum cofactor biosynthesis in both shoot and root. 相似文献
20.
Nitrate reductase and molybdenum cofactor in annual ryegrass as affected by salinity and nitrogen source 总被引:2,自引:0,他引:2
The influence of salinity on the activity of nitrate reductase (NR, EC 1.6.6.1) and the level of the molybdenum cofactor (MoCo) as affected by the source and concentration of nitrogen was studied in annual ryegrass ( Lolium multiflorum cv. Westerwoldicum). Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS m−1 , containing nitrogen (0.5 or 4.5 m M ) in the form of NH4 NO3 or NaNO3 Salinity-treated (11.2 dS m−1 ) plants produced less biomass and more organic nitrogen while accumulating more NO− 3 than control plants. Increased nitrogen concentration in the irrigation solutions enhanced biomass and organic nitrogen production as well as NO− 3 accumulation irrespective of the electrical conductivity. Salinity inhibited shoot growth and increased shoot NR activity of plants receiving 4.5 m M NH4 NO3 or NaNO3 . Similar effects were observed in roots of plants grown in 4.5 m M NaNO3 . Nitrate added to a complementation medium containing ryegrass MoCo and the NR apoprotein of Neurospora crassa mutant nit-1 stimulated the activity of the reconstituted NR (NADPH-nitrate reductase, EC 1.6.6.3). Increased salinity and nitrogen in the nutrient solutions caused an increase of MoCo content in roots and shoots. Similar results were observed for NR activity in the shoots. The increase of MoCo in response to salinity was more pronounced than that of NR, especially in the roots. We conclude that the pool size of MoCo in ryegrass is not constant, but varies in response to nutritional and environmental factors. 相似文献