首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The growth of four heathland species, two grasses (D. flexuosa,M. caerulea) and two dwarf shrubs (C. vulgaris, E. tetralix),was tested in solution culture at pH 4.0 with 2 mol m–3N, varying the N03/NH4+ ratio up to 40% nitrate. In addition,measurements of NRA, plant chemical composition, and biomassallocation were carried out on a complete N03/NH4+ replacementseries up to 100% nitrate. With the exception of M. caerulea, the partial replacement ofNH4+ by NO3 tended to enhance the plant's growth ratewhen compared to NH4+ only. In contrast to the other species,D. flexuosa showed a very flexible response in biomass allocation:a gradual increase in the root weight ratio (RWR) with NO3increasing from 0 to 100%. In the presence of NH4+, grassesreduced nitrate in the shoot only; roots did not become involvedin the reduction of nitrate until zero ambient NH4+. The dwarfshrubs, being species that assimilate N exclusively in theirroots, displayed an enhanced root NRA in the presence of nitrate;in contrast to the steady increase with increasing NO3in Calluna roots, enzyme activity in Erica roots followed arather irregular pattern. Free nitrate accumulated in the tissuesof grasses only, and particularly in D. flexuosa. The relative uptake ratio for NO3 [(proportion of nitratein N uptake)/(proportion of nitrate in N supply)] was lowestin M. caerulea and highest in D. flexuosa. Whereas M. caeruleaand the dwarf shrubs always absorbed ammonium highly preferentially(relative uptake ratio for NO3 <0.20), D. flexuosashowed a strong preference for NO3 at low external nitrate(the relative uptake ratio for N03 reaching a value of2.0 at 10% NO3). The ecological significance of thisprominent high preference for NO3 at low NO3/NH4+ratio by D. flexuosa and its consequences for soil acidificationare briefly discussed. Key words: Ammonium, heathland lants, N03/NH4+ ratio, nitrate, nitrate reductase activity, soil acidification, specific absorption rate  相似文献   

2.
The processes of NO3 uptake and transport and the effectsof NH4+ or L-glutamate on these processes were investigatedwith excised non-mycorrhizal beech (Fagus sylvatica L.) roots.NO3 net uptake followed uniphasic Michaelis-Menten kineticsin a concentration range of 10µM to 1 mM with an apparentKm of 9.2 µM and a Vmax of 366 nmol g–1 FW h–1.NH4+, when present in excess to NO3, or 10 mM L-glutamateinhibited the net uptake of NO3 Apparently, part of NO3taken up was loaded into the xylem. Relative xylem loading ofNO3 ranged from 3.21.6 to 6.45.1% of NO3 netuptake. It was not affected by treatment with NH4+ or L-glutamate.16N/13N double labelling experiments showed that NO3efflux from roots increased with increasing influx of NO3and, therefore, declined if influx was reduced by NH4+ or L-glutamateexposure. From these results it is concluded that NO3net uptake by non-mycorrhizal beech roots is reduced by NH4+or L-glutamate at the level of influx and not at the level ofefflux. Key words: Nitrate transport, net uptake, influx, efflux, ammonium, Fagus, Fagaceae  相似文献   

3.
Nodulated white clover plants (Trifolium repens L. cv. Huia)were grown for 71 d in flowing nutrient solutions containingN as 10 mmol m–3 NH4NO3, under artificial illumination,with shoots at 20/15°C day/night temperatures and root temperaturereduced decrementally from 20 to 5°C. Root temperatureswere then changed to 3, 7, 9, 11, 13, 17 or 25°C, and theacquisition of N by N2 fixation, NH4+ and NO3 uptakewas measured over 14 d. Shoot specific growth rates (d. wt)doubled with increasing temperature between 7 and 17°C,whilst root specific growth rates showed little response; shoot:root ratios increased with root temperature, and over time at11°C. Net uptake of total N per plant (N2 fixation + NH4++ NO3) over 14 d increased three-fold between 3 and 17°C.The proportion contributed by N2 fixation decreased with increasingtemperature from 51% at 5°C to 18% at 25°C. Uptake ofNH4+ as a proportion of NH4+ + NO3 uptake over 14 d variedlittle (55–62%) with root temperature between 3 and 25°C,although it increased with time at most temperatures. Mean ratesof total N uptake per unit shoot f. wt over 14 d changed littlebetween 9 and 25°C, but decreased progressively with temperaturebelow 9°C, due to the decline in the rates of NH4+ and NO3uptake, even though N2 fixation increased. The results suggestthat N2 fixation in the presence of sustained low concentrationsof NH4+ and NO4 is less sensitive to low root temperaturethan are either NH4+ or NO3 uptake systems. White clover, Trifolium repens L. cv. Huia, root temperature, nitrogen fixation, ammonium, nitrate  相似文献   

4.
Seedlings of Italian ryegrass (Lolium multiflorum Lam. cv. RVP)and clonal stolon cuttings of white clover (Trifolium repensL. cv. Blanca) were grown for 19 d in flowing solution culture,with N supplied as either 250 mmol m–3 NO3 or NH3+.Rates of net uptake, influx and translocation of NO3and NH4+ were then determined using 15N and 13N labelling techniques:between 3–5 h into the photoperiod following 8 h darknessfor white clover (CL), and for ryegrass plants that were eitherentire (IL) or with shoots excised 90 min prior to 13N influx(IC); and 75 min into the photoperiod following 37–39h darkness for ryegrass (ID). Rates of net uptake, influx andefflux of NH4+ exceeded those of NO3 in IL and IC ryegrassplants: the opposite occurred in white clover (CL). The decreasein net uptake following defoliation of ryegrass was greaterfor NH4+ (62%) than NO3 (40%). For NH4+ this was associatedwith a large decrease in influx from 110 to 6.0µmol h–1g–1 root fr. wt; but for NO3, influx only decreasedfrom 42 to 37 µmol h–1 g–1. Prolonged exposureto darkness (ID plants) also lowered net uptake of NO3and NH4+ by, respectively, 86% and 95% of IL levels. For NH4+this was characterized by a large decrease in influx and a smalldecrease in efflux; whilst for NO3 the effect of a largedecrease in influx was reinforced by a smaller increase in efflux. The data were used to estimate the translocatory fluxes of NO3(03–20µmol h–1 g–1) and NH4+ (003–0.4µmolh–1 g–1), assimilation in the roots of NO3(02–26µmol h–1 g–1) and NH+4 (05–89 µmolh–1 g–1), and the concentrations of NO3 (9–15mol m–3) in the cytoplasmic compartment of the roots.The relevance of variable influx and efflux to models for theregulation of N uptake is discussed. Key words: Lolium multiflorum, Trifolium repens, influx, efflux, nitrate, ammonium, 13N  相似文献   

5.
Diel patterns in the uptake of nitrogenous nutrients were observedin the coastal plume of the Chesapeake Bay system, but the specificpatterns varied with season. During the winter months, ratesof NH4+ and urea uptake were significantly higher at night thanduring the day, and rates of NO3 uptake were higher duringthe day. During the summer, rates of NH4+ and urea uptake weresignificantly higher at night only during half the studies conducted;during the remaining studies, there was either no significantdifference or rates of uptake of NH4+ were higher during theday. Rates of NO3 uptake during the summer months werealso higher during the day than at night. Seasonal differenceswere also apparent in the time of day at which maximum observeduptake rates of each nitrogen nutrient occurred. During thewinter-spring months, maximum observed rates of NO3 uptakeoccurred between first light and noon, whereas during the summermonths, maximum observed uptake rates of NO3 occurredboth morning and afternoon, and consistently 9–16 h afterthe maximum observed peak in the uptake of reduced nitrogen.We interpret these findings in terms of seasonal shifts in nitrogennutritional status of the assemblages, as well as species-specificdifferences in the effect of a given stimulus (e.g. a nitrogenpulse at the mouth of the Bay) to entrain an uptake response,and we suggest that the extent of this variability must be understoodbefore generalizations about the use of f-ratios as characteristicsof specific populations or water masses can be drawn.  相似文献   

6.
Growth of two actinorhizal species was studied in relation tothe form of N supply in water culture. Non-nodulated bog myrtle(Myrica gale) and grey alder (Alnus incana) were grown withNH4+, NH4NO3 or NO3 (4 mol m–3 N). A nodulatedseries of bog myrtle was also cultivated in N-free medium. Relative growth rate (RGR), utilization rate of N, and shoot/rootratio were highest for the two species with the N completelysupplied as NH4+. In both species, nitrate was largely reducedin the roots and the presence of NO3 in combined-N supplyalways affected the RGR and N utilization rate negatively. BothN2 fixation and complete NO3 nutrition represented conditionsof relative N-deficiency resulting in relatively low tissue-Nconcentrations and a greater allocation of dry mass to the roots.The physiological N status of nodulated M. gale plants was comparativelygood, as indicated by a normal nodule weight ratio and a relativelyhigh N2-fixing rate per unit nodule mass. However, whole-plantN2-fixing capacity remained relatively low in comparison withacquisition rates of N in combined-N plants. The anion charge from the nitrate reduction was largely directlyexcreted as an OH efflux. H + /N ratios generally agreedwith the theory. In comparison with NH4+ nutrition, carboxylateconcentrations were higher in N2-fixing M. gale plants and theH + /N ratio in nodulated plants was less than unity below thevalue for ammonium plants as previously found for other actinorhizalspecies. Therefore, NH4+ should be an energetically more attractiveN source for actinorhizal plants than N2. The results agree with commonly accepted views on energeticsof N uptake and assimilation in higher plants and support theconcept of a basically similar physiological behaviour betweennon-legumes and legumes. Key words: Actinorhizal symbioses, ammonium, H+/OH efflux, nitrate, N2 fixation, NRA  相似文献   

7.
Soybean [Glycine max (L.) Merrill] plants that had been subjectedto 15 d of nitrogen deprivation were resupplied for 10 d with1.0 mol m–3 nitrogen provided as NO3, NH4+, orNH4++NO3 in flowing hydroponic culture. Plants in a fourthhydroponic system received 1.0 mol m–3 NO3 duringboth stress and resupply periods. Concentrations of solublecarbohydrates and organic acids in roots increased 210 and 370%,respectively, during stress. For the first day of resupply,however, specific uptake rates of nitrogen, determined by ionchromatography as depletion from solution, were lower for stressedthan for non-stressed plants by 43% for NO3- resupply, by 32%for NH4+ + NO3 resupply, and 86% for NH4+ resupply. Whenspecific uptake of nitrogen for stressed plants recovered torates for non-stressed plants at 6 to 8 d after nitrogen resupply,carbohydrates and organic acids in their roots had declinedto concentrations lower than those of non-stressed plants. Recoveryof nitrogen uptake capacity of roots thus does not appear tobe regulated simply by the content of soluble carbon compoundswithin roots. Solution concentrations of NH4+ and NO3 were monitoredat 62.5 min intervals during the first 3 d of resupply. Intermittent‘hourly’ intervals of net influx and net effluxoccurred. Rates of uptake during influx intervals were greaterfor the NH4+ -resupplied than for the NO3 -resuppliedplants. For NH4+ -resupplied plants, however, the hourly intervalsof efflux were more numerous than for NO3 -resuppliedplants. It thus is possible that, instead of repressing NH4+influx, increased accumulation of amino acids and NH4+ in NH4+-resupplled plants inhibited net uptake by stimulation of effluxof NH4+ absorbed in excess of availability of carbon skeletonsfor assimilation. Entry of NH4+ into root cytoplasm appearedto be less restricted than translocation of amino acids fromthe cytoplasm into the xylem. Key words: Ammonium, nitrate, nitrogen-nutrition, nitrogen-stress, soybean  相似文献   

8.
Plants of Lolium perenne L. cv. S23 were grown in sand culturesupplied with either ammonium (NH4+) or nitrate (NO3)in an otherwise complete nutrient solution at 12°C or 20°C.Three weeks after germination, plants were clipped weekly tosimulate grazing. After 10 weeks growth all nitrogen (N) wassupplied enriched with 15N to quantify the effects of form ofN supply and temperature on the relative ability of currentroot uptake and remobilization to supply N for laminae regrowth. The form of N supply had no effect on the dry matter partitioning,while at 20°C more dry weight was allocated to laminae regrowthand less to the remaining plant material. The current root uptakeof N, which subsequently appeared in the laminae regrowth, wassimilar for plants supplied with NH4+ or NO3, and bothwere equally reduced at the lower temperature of growth. Remobilizationof N to laminae regrowth was greater for plants receiving NH4+than NO3; remobilization with either form of N supplywas reduced at the lower temperature of growth. Remobilizationwas reduced to a lesser extent at 12°C than current rootuptake. It was concluded that remobilization became relativelymore important in supplying N for regrowth of laminae at lowertemperatures. Key words: Lolium perenne, ammonium, nitrate, temperature, remobilization  相似文献   

9.
Relationships between nitrate (NO-3) supply, uptake and assimilation,water uptake and the rate of mobilization of seed reserves wereexamined for the five main temperate cereals prior to emergencefrom the substrate. For all species, 21 d after sowing (DAS),residual seed dry weight (d.wt) decreased while shoot plus rootd.wt increased (15–30%) with increased applied NO-3concentrationfrom 0 to 5–20 mM . Nitrogen (N) uptake and assimilationwere as great with addition of 5 mM ammonium (NH+4) or 5 mMNO-3but NH+4did not affect the rate of mobilization of seedreserves. Chloride (Cl-) was similar to NO-3in its effect onmobilization of seed reserves of barley (Hordeum vulgare L.).Increased rate of mobilization of seed reserves with additionalNO-3or Cl-was associated with increases in shoot, root and residualseed anion content, total seedling water and residual seed watercontent (% water) 21 DAS. Addition of NH+4did not affect totalseedling water or residual seed water content. For barley suppliedwith different concentrations of NO-3or mannitol, the rate ofmobilization of seed reserves was positively correlated (r >0.95)with total seedling water and residual seed water content. Therate of mobilization of seed reserves of barley was greaterfor high N content seed than for low N content seed. Seed watercontent was greater for high N seed than for low N seed, 2 DAS.Additional NO-3did not affect total seedling water or residualseed water content until 10–14 DAS. The effects of seedN and NO-3on mobilization of seed reserves were detected 10and 14 DAS, respectively. It is proposed that the increasedrate of mobilization of seed reserves of temperate cereals withadditional NO-3is due to increased water uptake by the seedlingwhile the seed N effect is due to increased water uptake bythe seed directly. Avena sativa L.; oat; Hordeum vulgare L.; barley; Secale cereale L.; rye; xTriticosecale Wittm.; triticale; Triticum aestivum L.; wheat; nitrate; seed; germination; seed reserve mobilization  相似文献   

10.
Uptake capabilities for ammonium (NH4+) and urea by diatoms(Thalassiosira pseudonana and Skeletonema costatum) growingon oxidized forms of nitrogen were studied in short-term uptakeexperiments. Even when nutrient-saturated, an enhanced uptakecapability not coupled with the growth rate was present forNH4+ and urea. No such enhanced uptake ability was seen forNO2 or NO3 under either nutrient-saturated ornutrient-depleted conditions. The presence of NH4+ decreasedthe enhanced ability to take up urea, but the urea uptake ratein 5 min incubations remained greater than the growth rate evenwhen NH4+ was present.  相似文献   

11.
Macduff, J. H., Hopper, M. J. and Wild, A. 1987. The effectof root temperature on growth and uptake of ammonium and nitrateby Brassica napus L. CV. Bien venu in flowing solution culture.II. Uptake from solutions containing NH4NO3.—J. exp. Bot.38: 53–66 The effects of root temperature on uptake and assimilation ofNH4+ and NO3 by oilseed rape (Brassica napus L. CV. Bienvenu) were examined. Plants were grown for 49 d in flowing nutrientsolution at pH 6?0 with root temperature decrementally reducedfrom 20?C to 5?C; and then exposed to different root temperatures(3, 5, 7, 9, 11, 13, 17 or 25?C) held constant for 14 d. Theair temperature was 20/15?C day/night and nitrogen was suppliedautomatically to maintain 10 mmol m–3 NH4NO3 in solution.Total uptake of nitrogen over 14 d increased threefold between3–13?C but was constant above 13?C. Net uptake of NH4+exceeded that of NO3 at all temperatures except 17?C,and represented 47–65% of the total uptake of nitrogen.Unit absorption rates of NH4+ and of 1?5–2?7 for NO3suggested that NO3 absorption was more sensitive thanNH4+ absorption to temperature. Rates of absorption were relativelystable at 3?C and 5?C compared with those at 17?C and 25?C whichincreased sharply after 10 d. Tissue concentration of N in theshoot, expressed on a fresh weight basis, was independent ofroot temperature throughout, but doubled between 3–25?Cwhen expressed on a dry weight basis. The apparent proportionof net uptake of NO3 that was assimilated was inverselyrelated to root temperature. The results are used to examinethe relation between unit absorption rate adn shoot:root ratioin the context of short and long term responses to change ofroot temperature Key words: Brassica napus, oilseed rape, root temperature, nitrogen uptake  相似文献   

12.
In non-nodulated soybean [Glycine max (L.) Merrill cv. Ransom]plants that were subjected to 15 d of nitrogen deprivation inflowing hydroponic culture, concentrations of nitrogen declinedto 1.0 and 1.4mmol Ng–1 dry weight in shoots and roots,respectively, and the concentration of soluble amino acids (determinedas primary amines) declined to 40µmol g–1 dry weightin both shoots and roots. In one experiment, nitrogen was resuppliedfor 10 d to one set of nitrogen-depleted plants as 1.0 mol m–3NH4+ to the whole root system, to a second set as 0.5 mol m–3NH4+ plus 0.5 mol m–3 NO3 to the whole root system,and to a third set as 1.0 mol m–3 NH4+ to one-half ofa split-root system and 1.0 mol m–3 NO3 to theother half. In a second experiment, 1.0 mol m–3 of nitrogenwas resupplied for 4 d to whole root systems in NH4+ : NO3ratios of 1:0, 9:1, and 1:1. Nutrient solutions were maintainedat pH 6.0. When NH4+ was resupplied in combination with NO3 to thewhole root system in Experiment I, cumulative uptake of NH4+for the 10 d of resupply was about twice as great as when NH4+was resupplied alone. Also, about twice as much NH4+ as NO3was taken up when both ions were resupplied to the whole rootsystem. When NH4+ and NO3 were resupplied to separatehalves of a split-root system, however, cumulative uptake ofNH4+ was about half that of NO3. The uptake of NH4+,which is inhibited in nitrogen-depleted plants, thus is facilitatedby the presence of exogenous NO3, and the stimulatingeffect of NO3 on uptake of NH4+ appears to be confinedto processes within root tissues. In Experiment II, resupplyof nitrogen as both NH4+ and NO3 in a ratio of either1:1 or 9:1 enhanced the uptake of NH4+. The enhancement of NH4+uptake was 1.8-fold greater when the NH4+: NO3-resupplyratio was 1:1 than when it was 9:1; however, only 1.3 timesas much NO3 was taken up by plants resupplied with the1 :1 exogenous ratio. The effect of NO3 on enhancementof uptake of NH4+ apparently involves more than net uptake ofNO3 itself and perhaps entails an effect of NO3uptake on maintenance of K+ availability within the plant. Theconcentration of K+ in plants declined slightly during nitrogendeprivation and continued to decline following resupply of nitrogen.The greatest decline in K+ concentration occurred when nitrogenwas resupplied as NH4+ alone. It is proposed that decreasedavailability of K+ within the NH4+-resup-plied plants inhibitedNH4+ uptake through restricted transfer of amino acids fromthe root symplasm into the xylem. Key words: Ammonium, Glycine max, nitrate, nitrogen-nutrition, nitrogen stress, split-root cultures  相似文献   

13.
Barley plants (Hordewn vulgare L. cv. Atem) were grown fromseed for 28 d in flowing solution culture, during which timeroot temperature was lowered decrementally to 5?C. Plants werethen subjected to root temperatures of 3, 5, 7, 9, 11, 13, 17or 25 ?C, with common air temperature of 25/15 ?C (day/night).Changes in growth, plant total N, and NO3 levels, andnet uptake of NH4+ and NO3 from a maintained concentrationof 10 mmol m–3 NH4NO3 were measured over 14 d. Dry matterproduction increased 6-fold with increasing root temperaturebetween 3–25 ?C. The growth response was biphasic followingan increase in root temperature. Phase I, lasting about 5 d,was characterized by high root specific growth rates relativeto those of the shoot, particularly on a fresh weight basis.During Phase I the shoot dry weight specific growth rates wereinversely related to root temperature between 3–13 ?C.Phase 2, from 5–14 d, was characterized by the approachtowards, and/or attainment of, balanced exponential growth betweenshoots and roots. Concentrations of total N in plant dry matterincreased with root temperature between 3–25 ?C, moreso in the shoots than roots and most acutely in the youngestfully expanded leaf (2?l–6?9% N). When N contents wereexpressed on a tissue fresh weight basis the variation withtemperature lessened and the highest concentration in the shootwas at 11 ?C. Uptake of N increased with root temperature, andat all temperatures uptake of NH4+, exceeded that of NO3,irrespective of time. The proportions of total N uptake over14 d absorbed in the form of NH4+ were (%): 86, 91, 75, 77,76, 73, 77, and 80, respectively, at 3, 5, 7, 9, Il, 13, 17,and 25 ?C. At all temperatures the preference for NH4+ overNO3 uptake increased with time. An inverse relationshipbetween root temperature (3–11 ?C) and the uptake of NH4+as a proportion of total N uptake was apparent during PhaseI. The possible mechanisms by which root temperature limitsgrowth and influences N uptake are discussed. Key words: Hordeum vulgare, root temperature, ammonium, nitrate, ion uptake, growth rate  相似文献   

14.
Potassium-Ammonium Uptake Interactions in Tobacco Seedlings   总被引:6,自引:0,他引:6  
Short-term (< 12 h) uptake experiments were conducted with6–7-week-old tobacco (Nicotiana tabacum L. cv. Ky 14)seedlings to determine absorption interactions between K+ andNH4+. At equal solution concentrations (0.5 mol m–3) netK+ uptake was inhibited 30–35% by NH4+ and NH4+ uptakewas decreased 9–24%. Removal of NH4+ resulted in completerecovery in K+ uptake rate, but NH4+ uptake rate did not recoverwhen K+ was removed. In both cases, inhibition of the uptakerate of one cation saturated as the concentration of the othercation was increased up to 0.5 mol m–3. The relative effectof K+-NH4+ interactions was not altered when Cl- was replacedwith SO42–, but the magnitudes of the uptake rates wereless in the absence of Cl-. The Vmax for NH4+ uptake was reducedfrom 128 to 105 µmol g–1 dry wt. h–1 in thepresence of 0.5 mol m–3 K+ and the Km for NH4+ doubledfrom 12 to 27 mmol m–3 in the presence of K+. The resultsof these K+-NH4+ experiments are interpreted as mixed-noncompetitiveinteractions. However, an enhanced efflux of K+ coupled to NH4+influx via an antiporter cannot be ruled out as contributingto the decrease in net K+ uptake. Key words: Nicotiana tabacum, K+, NH4+, Uptake interactions  相似文献   

15.
Seven heathland species, four herbaceous plants and three dwarfshrubs, were tested for their capacity to utilize NH4+ or NO3. When cultured in solution at pH 4.0 with 2mol m–3 N,all species showed similar growth responses with respect toN source. Nitrate was assimilated almost equally well as ammonium,with relative growth rate generally averaging 5–8% lowerfor NO3 grown plants, albeit not always significantly.However, N source was significantly and consistently correlatedwith biomass partitioning, as NH4+-fed plants allocated moredry matter to shoots and less to roots when compared to NO3-fed plants. The strong difference in biomass partitioning mayrelate to the relative surplus of carbon per unit plant N (or,alternatively, the relatively suboptimal rate of N assimilationper unit plantC) in NO3-fed plants Inherently slow-growing dwarf shrubs accumulated virtually nofree nitrate in their tissues and reduction of nitrate was strictlyroot-based. Faster-growing herbaceous plants, however, partitionedthe assimilation of nitrate over both shoots and roots, therebyaccumulating relatively high tissue NO3 levels. Ion uptakerates depended clearly on the ‘relative shoot demand’.At similar shoot demands, especially in the herbaceous species,specific uptake rates for N and total inorganic (non-N) anionswere higher in NH4+ -fed plants, whereas the uptake rate fortotal (non-N) cations was higher in NO3-fed plants. Rateof P uptake was enhanced with increasing plant demand, but wasindependent of the N source. Net H+ extrusions ranged from 1.00to 1.34 H+ per NH4+, and from –0.48 to –0.77 H+per NO3 taken up. Key words: Ammonium, biomass partitioning, heathland plants, low pH, nitrate, nitrate reductase activity, relative shoot demand, specific absorption rate  相似文献   

16.
It has been hypothesized that nitrogen-replete diatoms, butnot flagellates, may release NO2, NH4+ or dissolved organicnitrogen (DON) following rapid increases in irradiance (andconsequently an increase in cellular electron energy), as mightbe expected to occur in a vertically well mixed estuarine system.Just as the increase in irradiance leads to an increase in cellularenergy, so too would a decrease in temperature, due to the temperaturedependency of biosynthetic enzymes. This hypothesis was testedby comparing the response of nitrogen-replete diatoms (Skeletomenacostatum, Thalassiosira weissflogii and Chaetoceros sp.) andflagellates (Dunaliella tertiolecta, Pavlova lutheri and Prorocentrumminimum) to rapid increases in irradiance and decreases in temperature.Short-term (<3 h) changes in extracellular NO2 andNH4+ concentrations were measured in cultures following theseexperimental shifts, as well as in cultures retained at thegrowth irradiance. Net rates of NO2 and NH4+ releasewere calculated from the time course of extracellular nitrogenconcentrations. As a fraction of NO3 uptake, NO2release rates under the increased irradiance increased marginallyrelative to NO2 release rates under the growth irradiance.Release rates of NH4+ under the increased irradiance increasednearly fivefold over release rates at the growth irradiance,and accounted for 84% of the NO3 uptake rate. In directcontrast to the diatom species, the flagellate species releasedNO2 under the higher experimental irradiance at ratesone half those of the release rates under the growth irradiance,and continued to take up NH4+ under both irradiance conditions.Within the experimental boundaries, these findings have importantphysiological and ecological implications. The magnitude ofthe observed nitrogen release represents a significant physiologicalsink for electrons and, in fact, calculations suggest that upto 62% of the total electrons harvested could be consumed. Froman ecological perspective, these findings add to the body ofliterature which suggests that a significant fraction of thenitrogen that is taken up is ultimately released in dissolvedform. More importantly, these data suggest that DON is not theonly compound that phytoplankton may release in the aquaticenvironment.  相似文献   

17.
Nitrate provision has been found to regulate the capacity forChara corallina cells to take up nitrate. When nitrate was suppliedto N sufficient cells maximum nitrate uptake was reached after8 h. Prolonged treatment of the cells in the absence of N alsoresulted in the apparent ability of these cells to take up nitrate.Chlorate was found to substitute partially for nitrate in the‘induction’ step. The effects on nitrate reductionwere separated from those on nitrate uptake by experiments usingtungstate. Tungstate pretreatment had no effect on NO3uptake ‘induced’ by N starvation, but inhibitedNO3 uptake associated with NO3 pretreatment. Chloridepretreatment similarly had no effect on NO3 uptake ‘induced’by N deprivation, but inhibited NO3 uptake followingNO3 pretreatment. The data suggest that there are atleast two mechanisms responsible for the ‘induction’of nitrate uptake by Chara cells, one associated with NO3reduction and ‘induced’ by CIO3 or NO3and one associated with N deprivation. Key words: Nitrate, Chlorate, Chara corallina, Induction  相似文献   

18.
The growth rates of four saline-lake diatom taxa were measuredunder varying conditions of salinity (5, 8 and 11), brine type(sulfate- versus bicarbonate-dominated) and nitrogen form (NH4+versus NO3), using a full factorial design. With NO3as the nitrogen source, Cyclotella quillensis, Cymbella pusillaand Anomoeoneis costata exhibited lower growth rates in thesulfate versus bicarbonate media. The strain of Chaetoceroselmorei used in these experiments, isolated from a sulfate-dominatedlake, was unable to grow on NO3 alone. In the NH4+ treatments,neither salinity nor brine type affected the growth rates ofC.quillensis or C.elmorei. When supplied with NH4+, C.pusillaand A.costata had higher growth rates in the bicarbonate versussulfate media, although for C.pusilla the difference on NH4+was not as great as on NO3. The impact of brine typeon NO3 use is consistent with the theory that sulfateinhibits molybdate uptake, as molybdenum is required for NO3use but not NH4+. Cymbella pusilla was the only taxon affectedby changes in salinity. The four taxa used in these experimentsare frequently found in saline lakes and saline-lake sediments,hence they are used in paleoclimate reconstructions; the resultspresented here provide additional information that may enhancethese diatom-based reconstructions.  相似文献   

19.
Concentrations of inorganic cations are often lower in plantssupplied with NH4+ as compared with NO3. To examine whetherthis is attributable to impaired root uptake of cations or lowerinternal demand, the rates of uptake and translocation of K,Mg, and Ca were compared in maize plants (Zea mays L.) withdifferent growth-related nutrient demands. Plants were grownin nutrient solution with either 1·0 mol m–3 NO3or NH4+ and the shoot growth rate per unit weight of roots wasmodified by varying the temperature of the shoot base (SBT)including the apical shoot meristem. The shoot growth rate per unit weight of roots, which was takenas the parameter for the nutrient demand imposed on the rootsystem, was markedly lower at 12°C than at 24°C SBT.As a consequence of the lower nutrient demand at 12°C SBT,uptake rates of NO3 and NH4+ declined by more than 50%Compared with NO3 supply, NH4+ nutrition depressed theconcentrations of K and particularly of Ca in the shoot, bothin plants with high and with low nutrient demand. This indicatesa control of cation concentration by internal demand ratherthan by uptake capacity of the roots. Translocation rates of K, Mg and Ca in the xylem exudate werelower in NH4+- than in NO3-fed plants. Net accumulationrates of Ca in the shoot were also decreased, whereas net accumulationrates of K in the shoot were even higher in NH4+-fed plants.It is concluded that reduced cation concentrations in the xylemsap of plants supplied with NH4+ are due to the lower demandof cations for charge balance. The lower K translocation tothe shoot is compensated by reduced retranslocation to the roots.For Ca, in contrast, decreased translocation rates in NH4+-fedplants result in lower shoot concentration. Key words: Nitrogen form, cation nutrition, charge balance, xylem exudate, recirculation  相似文献   

20.
We examined the NO3 and NH4+ uptake capabilities of thedinoflagellate Peridinium cinctum and of the accompanying nanoplanktonduring the spring P. cinctum bloom in Lake Kin-neret. Throughoutthe Peridinium season, the smaller algae had greater affinitiesand faster specific uptake rates for both NO3and NH4+It appears that P. cinctum cannot directly compete with nanoplanktonfor nitrogen nutrients. Other factors such as the ability ofdinoflagellates to swim freely in the water column and low grazingpressures may explain their dominance in the lake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号