首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
Regulator of G-protein signaling (RGS) proteins are GTPase activating proteins (GAPs) of heterotrimeric G-proteins that alter the amplitude and kinetics of receptor-promoted signaling. In this study we defined the G-protein alpha-subunit selectivity of purified Sf9 cell-derived R7 proteins, a subfamily of RGS proteins (RGS6, -7, -9, and -11) containing a Ggamma-like (GGL) domain that mediates dimeric interaction with Gbeta(5). Gbeta(5)/R7 dimers stimulated steady state GTPase activity of Galpha-subunits of the G(i) family, but not of Galpha(q) or Galpha(11), when added to proteoliposomes containing M2 or M1 muscarinic receptor-coupled G-protein heterotrimers. Concentration effect curves of the Gbeta(5)/R7 proteins revealed differences in potencies and efficacies toward Galpha-subunits of the G(i) family. Although all four Gbeta(5)/R7 proteins exhibited similar potencies toward Galpha(o), Gbeta(5)/RGS9 and Gbeta(5)/RGS11 were more potent GAPs of Galpha(i1), Galpha(i2), and Galpha(i3) than were Gbeta(5)/RGS6 and Gbeta(5)/RGS7. The maximal GAP activity exhibited by Gbeta(5)/RGS11 was 2- to 4-fold higher than that of Gbeta(5)/RGS7 and Gbeta(5)/RGS9, with Gbeta(5)/RGS6 exhibiting an intermediate maximal GAP activity. Moreover, the less efficacious Gbeta(5)/RGS7 and Gbeta(5)/RGS9 inhibited Gbeta(5)/RGS11-stimulated GTPase activity of Galpha(o). Therefore, R7 family RGS proteins are G(i) family-selective GAPs with potentially important differences in activities.  相似文献   

3.
A ligand-independent activator of heterotrimeric brain G-protein was partially purified from detergent-solubilized extracts of the neuroblastoma-glioma cell hybrid NG108-15. The G-protein activator (NG108-15 G-protein activator (NG-GPA)) increased [(35)S]guanosine 5'-O-(thiotriphosphate) ([(35)S]GTPgammaS) to purified brain G-protein in a magnesium-dependent manner and promoted GDP dissociation from Galpha(o). The NG-GPA also increased GTPgammaS binding to purified, recombinant Galpha(i2), Galpha(i3), and Galpha(o), but minimally altered nucleotide binding to purified transducin. The NG-GPA increased GTPgammaS binding to membrane-bound G-proteins and inhibited basal, forskolin- and hormone-stimulated adenylyl cyclase activity in DDT(1)-MF-2 cell membranes. In contrast to G-protein coupled receptor-mediated activation of heterotrimeric G-proteins in DDT(1)-MF-2 cell membrane preparations, the action of the NG-GPA was not altered by treatment of the cells with pertussis toxin. ADP-ribosylation of purified brain G-protein also failed to alter the increase in GTPgammaS binding elicited by the NG-GPA. Thus, the NG-GPA acts in a manner distinct from that of a G-protein coupled receptor and other recently described receptor-independent activators of G-protein signaling. These data indicate the presence of unexpected regulatory domains on G(i)/G(o) proteins and suggest the existence of pertussis toxin-insensitive modes of signal input to G(i)/G(o) signaling systems.  相似文献   

4.
To identify novel regulators of Galpha(o), the most abundant G-protein in brain, we used yeast two-hybrid screening with constitutively active Galpha(o) as bait and identified a new regulator of G-protein signaling (RGS) protein, RGS17 (RGSZ2), as a novel human member of the RZ (or A) subfamily of RGS proteins. RGS17 contains an amino-terminal cysteine-rich motif and a carboxyl-terminal RGS domain with highest homology to hRGSZ1- and hRGS-Galpha-interacting protein. RGS17 RNA was strongly expressed as multiple species in cerebellum and other brain regions. The interactions between hRGS17 and active forms of Galpha(i1-3), Galpha(o), Galpha(z), or Galpha(q) but not Galpha(s) were detected by yeast two-hybrid assay, in vitro pull-down assay, and co-immunoprecipitation studies. Recombinant RGS17 acted as a GTPase-activating protein (GAP) on free Galpha(i2) and Galpha(o) under pre-steady-state conditions, and on M2-muscarinic receptor-activated Galpha(i1), Galpha(i2), Galpha(i3), Galpha(z), and Galpha(o) in steady-state GTPase assays in vitro. Unlike RGSZ1, which is highly selective for G(z), RGS17 exhibited limited selectivity for G(o) among G(i)/G(o) proteins. All RZ family members reduced dopamine-D2/Galpha(i)-mediated inhibition of cAMP formation and abolished thyrotropin-releasing hormone receptor/Galpha(q)-mediated calcium mobilization. RGS17 is a new RZ member that preferentially inhibits receptor signaling via G(i/o), G(z), and G(q) over G(s) to enhance cAMP-dependent signaling and inhibit calcium signaling. Differences observed between in vitro GAP assays and whole-cell signaling suggest additional determinants of the G-protein specificity of RGS GAP effects that could include receptors and effectors.  相似文献   

5.
6.
Park KS  Lee HY  Lee SY  Kim MK  Kim SD  Kim JM  Yun J  Im DS  Bae YS 《FEBS letters》2007,581(23):4411-4416
We investigated whether lysophosphatidylethanolamine (LPE) modulates cellular signaling in different cell types. SK-OV3 ovarian cancer cells and OVCAR-3 ovarian cancer cells were responsive to LPE. LPE-stimulated intracellular calcium concentration ([Ca(2+)](i)) increase was inhibited by U-73122, suggesting that LPE stimulates calcium signaling via phospholipase C activation. Moreover, pertussis toxin (PTX) almost completely inhibited [Ca(2+)](i) increase by LPE, indicating the involvement of PTX-sensitive G-proteins. Furthermore, we found that LPE stimulated chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells. We examined the role of lysophosphatidic acid receptors on LPE-stimulated cellular responses using HepG2 cells transfected with different LPA receptors, and found that LPE failed to stimulate nuclear factor kappa B-driven luciferase. We suggest that LPE stimulates a membrane bound receptor, different from well known LPA receptors, resulting in chemotactic migration and cellular invasion in SK-OV3 ovarian cancer cells.  相似文献   

7.
RGS proteins are GTPase-activating proteins (GAPs) for G protein alpha-subunits. This GAP activity is mediated by the interaction of conserved residues on regulator of G protein signaling (RGS) proteins and Galpha-subunits. We mutated the important contact sites Glu-89, Asn-90, and Asn-130 in RGS16 to lysine, aspartate, and alanine, respectively. The interaction of RGS16 and its mutants with Galpha(t) and Galpha(i1) was studied. The GAP activities of RGS16N90D and RGS16N130A were strongly attenuated. RGS16E89K increased GTP hydrolysis of Galpha(i1) by a similar extent, but with an about 100-fold reduced affinity compared with non-mutated RGS16. As Glu-89 in RGS16 is interacting with Lys-210 in Galpha(i1), this lysine was changed to glutamate for compensation. Galpha(i1)K210E was insensitive to RGS16 but interacted with RGS16E89K. In rat uterine smooth muscle cells, wild type RGS16 abolished G(i)-mediated alpha(2)-adrenoreceptor signaling, whereas RGS16E89K was without effect. Both Galpha(i1) and Galpha(i1)K210E mimicked the effect of alpha(2)-adrenoreceptor stimulation. Galpha(i1)K210E was sensitive to RGS16E89K and 10-fold more potent than Galpha(i1). Analogous mutants of Galpha(q) (Galpha(q)K215E) and RGS4 (RGS4E87K) were created and studied in COS-7 cells. The activity of wild type Galpha(q) was counteracted by wild type RGS4 but not by RGS4E87K. The activity of Galpha(q)K215E was inhibited by RGS4E87K, whereas non-mutated RGS4 was ineffective. We conclude that mutation of a conserved lysine residue to glutamate in Galpha(i) and Galpha(q) family members renders these proteins insensitive to wild type RGS proteins. Nevertheless, they are sensitive to glutamate to lysine mutants of RGS proteins. Such mutant pairs will be helpful tools in analyzing Galpha-RGS specificities in living cells.  相似文献   

8.
Heterotrimeric G-protein signaling systems are activated via cell surface receptors possessing the seven-membrane span motif. Several observations suggest the existence of other modes of stimulus input to heterotrimeric G-proteins. As part of an overall effort to identify such proteins we developed a functional screen based upon the pheromone response pathway in Saccharomyces cerevisiae. We identified two mammalian proteins, AGS2 and AGS3 (activators of G-protein signaling), that activated the pheromone response pathway at the level of heterotrimeric G-proteins in the absence of a typical receptor. beta-galactosidase reporter assays in yeast strains expressing different Galpha subunits (Gpa1, G(s)alpha, G(i)alpha(2(Gpa1(1-41))), G(i)alpha(3(Gpa1(1-41))), Galpha(16(Gpa1(1-41)))) indicated that AGS proteins selectively activated G-protein heterotrimers. AGS3 was only active in the G(i)alpha(2) and G(i)alpha(3) genetic backgrounds, whereas AGS2 was active in each of the genetic backgrounds except Gpa1. In protein interaction studies, AGS2 selectively associated with Gbetagamma, whereas AGS3 bound Galpha and exhibited a preference for GalphaGDP versus GalphaGTPgammaS. Subsequent studies indicated that the mechanisms of G-protein activation by AGS2 and AGS3 were distinct from that of a typical G-protein-coupled receptor. AGS proteins provide unexpected mechanisms for input to heterotrimeric G-protein signaling pathways. AGS2 and AGS3 may also serve as novel binding partners for Galpha and Gbetagamma that allow the subunits to subserve functions that do not require initial heterotrimer formation.  相似文献   

9.
RGS (regulators of G protein signaling) proteins are GTPase-activating proteins for the Galpha subunits of heterotrimeric G proteins and act to regulate signaling by rapidly cycling G protein. RGS proteins may integrate receptors and signaling pathways by physical or kinetic scaffolding mechanisms. To determine whether this results in enhancement and/or selectivity of agonist signaling, we have prepared C6 cells stably expressing the mu-opioid receptor and either pertussis toxin-insensitive or RGS- and pertussis toxin-insensitive Galpha(o). We have compared the activation of G protein, inhibition of adenylyl cyclase, stimulation of intracellular calcium release, and activation of the ERK1/2 MAPK pathway between cells expressing mutant Galpha(o) that is either RGS-insensitive or RGS-sensitive. The mu-receptor agonist [d-Ala(2),MePhe(4),Gly(5)-ol]enkephalin and partial agonist morphine were much more potent and/or had an increased maximal effect in inhibiting adenylyl cyclase and in activating MAPK in cells expressing RGS-insensitive Galpha(o). In contrast, mu-opioid agonist increases in intracellular calcium were less affected. The results are consistent with the hypothesis that the GTPase-activating protein activity of RGS proteins provides a control that limits agonist action through effector pathways and may contribute to selectivity of activation of intracellular signaling pathways.  相似文献   

10.
Regulator of G-protein signaling 3 (RGS3) enhances the intrinsic rate at which Galpha(i) and Galpha(q) hydrolyze GTP to GDP, thereby limiting the duration in which GTP-Galpha(i) and GTP-Galpha(q) can activate effectors. Since GDP-Galpha subunits rapidly combine with free Gbetagamma subunits to reform inactive heterotrimeric G-proteins, RGS3 and other RGS proteins may also reduce the amount of Gbetagamma subunits available for effector interactions. Although RGS6, RGS7, and RGS11 bind Gbeta(5) in the absence of a Ggamma subunit, RGS proteins are not known to directly influence Gbetagamma signaling. Here we show that RGS3 binds Gbeta(1)gamma(2) subunits and limits their ability to trigger the production of inositol phosphates and the activation of Akt and mitogen-activated protein kinase. Co-expression of RGS3 with Gbeta(1)gamma(2) inhibits Gbeta(1)gamma(2)-induced inositol phosphate production and Akt activation in COS-7 cells and mitogen-activated protein kinase activation in HEK 293 cells. The inhibition of Gbeta(1)gamma(2) signaling does not require an intact RGS domain but depends upon two regions in RGS3 located between acids 313 and 390 and between 391 and 458. Several other RGS proteins do not affect Gbeta(1)gamma(2) signaling in these assays. Consistent with the in vivo results, RGS3 inhibits Gbetagamma-mediated activation of phospholipase Cbeta in vitro. Thus, RGS3 may limit Gbetagamma signaling not only by virtue of its GTPase-activating protein activity for Galpha subunits, but also by directly interfering with the activation of effectors.  相似文献   

11.
Regulators of G protein signaling (RGS proteins) modulate Galpha-directed signals because of the GTPase activating protein (GAP) activity of their conserved RGS domain. RGS14 and RGS12 are unique among RGS proteins in that they also regulate Galpha(i) signals because of the guanine nucleotide dissociation inhibitor (GDI) activity of a GoLoco motif near their carboxy-termini. Little is known about cellular regulation of RGS proteins, although several are phosphorylated in response to G-protein directed signals. Here we show for the first time the phosphorylation of native and recombinant RGS14 in host cells. Direct stimulation of adenylyl cyclase or introduction of dibutyryl-cAMP induces phosphorylation of RGS14 in cells. This phosphorylation occurs through activation of cAMP-dependent protein kinase (PKA) since phosphate incorporation is completely blocked by a selective inhibitor of PKA but only partially or not at all blocked by inhibitors of other G-protein regulated kinases. We show that purified PKA phosphorylates two specific sites on recombinant RGS14, one of which, threonine 494 (Thr494), is immediately adjacent to the GoLoco motif. Because of this proximity, we focused on the possible effects of PKA phosphorylation on the GDI activity of RGS14. We found that mimicking phosphorylation on Thr494 enhanced the GDI activity of RGS14 toward Galpha(i) nearly 3-fold, with no associated effect on the GAP activity toward either Galpha(i) or Galpha(o). These findings implicate cAMP-induced phosphorylation as an important modulator of RGS14 function since phosphorylation could enhance RGS14 binding to Galpha(i)-GDP, thereby limiting Galpha(i) interactions with downstream effector(s) and/or enhancing Gbetagamma-dependent signals.  相似文献   

12.
Agonist-stimulated high affinity GTPase activity of fusion proteins between the alpha(2A)-adrenoreceptor and the alpha subunits of forms of the G proteins G(i1), G(i2), G(i3), and G(o1), modified to render them insensitive to the action of pertussis toxin, was measured following transient expression in COS-7 cells. Addition of a recombinant regulator of G protein signaling protein, RGS4, did not significantly affect basal GTPase activity nor agonist stimulation of the fusion proteins containing Galpha(i1) and Galpha(i3) but markedly enhanced agonist-stimulation of the proteins containing Galpha(i2) and Galpha(o1.) The effect of RGS4 on the alpha(2A)-adrenoreceptor-Galpha(o1) fusion protein was concentration-dependent with EC(50) of 30 +/- 3 nm and the potency of the receptor agonist UK14304 was reduced 3-fold by 100 nm RGS4. Equivalent reconstitution with Asn(88)-Ser RGS4 failed to enhance agonist function on the alpha(2A)-adrenoreceptor-Galpha(o1) or alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins. Enzyme kinetic analysis of the GTPase activity of the alpha(2A)-adrenoreceptor-Galpha(o1) and alpha(2A)-adrenoreceptor-Galpha(i2) fusion proteins demonstrated that RGS4 both substantially increased GTPase V(max) and significantly increased K(m) of the fusion proteins for GTP. The increase in K(m) for GTP was dependent upon RGS4 amount and is consistent with previously proposed mechanisms of RGS function. Agonist-stimulated GTPase turnover number in the presence of 100 nm RGS4 was substantially higher for alpha(2A)-adrenoreceptor-Galpha(o1) than for alpha(2A)-adrenoreceptor-Galpha(i2). These studies demonstrate that although RGS4 has been described as a generic stimulator of the GTPase activity of G(i)-family G proteins, selectivity of this interaction and quantitative variation in its function can be monitored in the presence of receptor activation of the G proteins.  相似文献   

13.
To examine the contribution of different G-protein pathways to lysophosphatidic acid (LPA)-induced protein kinase D (PKD) activation, we tested the effect of LPA on PKD activity in murine embryonic cell lines deficient in Galpha(q/11) (Galpha(q/11) KO cells) or Galpha(12/13) (Galpha(12/13) KO cells) and used cells lacking rhodopsin kinase (RK cells) as a control. In RK and Galpha(12/13) KO cells, LPA induced PKD activation through a phospholipase C/protein kinase C pathway in a concentration-dependent fashion with maximal stimulation (6-fold for RK cells and 4-fold for Galpha(12/13) KO cells in autophosphorylation activity) achieved at 3 microm. In contrast, LPA did not induce any significant increase in PKD activity in Galpha(q/11) KO cells. However, LPA induced a significantly increased PKD activity when Galpha(q/11) KO cells were transfected with Galpha(q). LPA-induced PKD activation was modestly attenuated by prior exposure of RK cells to pertussis toxin (PTx) but abolished by the combination treatments of PTx and Clostridium difficile toxin B. Surprisingly, PTx alone strikingly inhibited LPA-induced PKD activation in a concentration-dependent fashion in Galpha(12/13) KO cells. Similar results were obtained when activation loop phosphorylation at Ser-744 was determined using an antibody that detects the phosphorylated state of this residue. Our results indicate that G(q) is necessary but not sufficient to mediate LPA-induced PKD activation. In addition to G(q), LPA requires additional G-protein pathways to elicit a maximal response with G(i) playing a critical role in Galpha(12/13) KO cells. We conclude that LPA induces PKD activation through G(q), G(i), and G(12) and propose that PKD activation is a point of convergence in the action of multiple G-protein pathways.  相似文献   

14.
RGS (regulators of G-protein signaling) proteins comprise a large family that modulates heterotrimeric G-protein signaling. This protein family has a common RGS domain and functions as GTPase-activating proteins for the alpha-subunits of heterotrimeric G-proteins located at the plasma membrane. RGS8 was identified as a neuron-specific RGS protein, which belongs to the B/R4 subfamily. We previously showed that RGS8 protein was translocated to the plasma membrane from the nucleus on coexpression of GTPase-deficient Galphao (GalphaoQL). Here, we first examined which subtypes of Galpha can induce the translocation of RGS8. When the Galphai family was expressed, the translocation of RGS8 did occur. To investigate the mechanism of this translocation, we generated a mutant RGS8 with reduced affinity to Galphao and an RGS-insensitive (RGS-i) mutant of GalphaoQL. Co-expression experiments with both mutants revealed that disruption of the Galpha-RGS8 interaction abolished the membrane-translocation of RGS8 despite the apparent membrane localization of RGS-i GalphaoQL. These results demonstrated that RGS8 is recruited to the plasma membrane where G-proteins are activated mainly by direct association with Galpha.  相似文献   

15.
Regulators of G protein signaling (RGS) proteins compose a highly diverse protein family best known for inhibition of G protein signaling by enhancing GTP hydrolysis by Galpha subunits. Little is known about the function of endogenous RGS proteins. In this study, we used synthetic ribozymes targeted to RGS2, RGS3, RGS5, and RGS7 to assess their function. After demonstrating the specificity of in vitro cleavage by the RGS ribozymes, rat aorta smooth muscle cells were used for transient transfection with the RGS-specific ribozymes. RGS3 and RGS5 ribozymes differentially enhanced carbachol- and angiotensin II-induced MAP kinase activity, respectively, whereas RGS2 and RGS7 ribozymes had no effect. This enhancement was pertussis toxin-insensitive. Thus RGS3 is a negative modulator of muscarinic m3 receptor signaling, and RGS5 is a negative modulator of angiotensin AT1a receptor signaling through G(q/11). Also, RGS5 ribozyme enhanced angiotensin-stimulated inositol phosphate release. These results indicate the feasibility of using the ribozyme technology to determine the functional role of endogenous RGS proteins in signaling pathways and to define novel receptor-selective roles of endogenous RGS3 and RGS5 in modulating MAP kinase responses to either carbachol or angiotensin.  相似文献   

16.
The M(3) muscarinic acetylcholine receptor (mAChR) expressed in HEK-293 cells couples to G(q) and G(12) proteins and stimulates phospholipase C (PLC) and phospholipase D (PLD) in a pertussis toxin-insensitive manner. To determine the type of G protein mediating M(3) mAChR-PLD coupling in comparison to M(3) mAChR-PLC coupling, we expressed various Galpha proteins and regulators of the G protein signaling (RGS), which act as GTPase-activating proteins for G(q)- or G(12)-type G proteins. PLD stimulation by the M(3) mAChR was enhanced by the overexpression of Galpha(12) and Galpha(13), whereas the overexpression of Galpha(q) strongly increased PLC activity without affecting PLD activity. Expression of the RGS homology domain of Lsc, which acts specifically on Galpha(12) and Galpha(13), blunted the M(3) mAChR-induced PLD stimulation without affecting PLC stimulation. On the other hand, overexpression of RGS4, which acts on Galpha(q)- but not Galpha(12)-type G proteins, suppressed the M(3) mAChR-induced PLC stimulation without altering PLD stimulation. We conclude that the M(3) mAChR in HEK-293 cells apparently signals to PLD via G(12)- but not G(q)-type G proteins and that G protein subtype-selective RGS proteins can be used as powerful tools to dissect the pertussis toxin-resistant G proteins and their role in receptor-effector coupling.  相似文献   

17.
Regulator of G protein signaling (RGS) proteins constitute a family of over 20 proteins that negatively regulate heterotrimeric G protein-coupled receptor signaling pathways by enhancing endogenous GTPase activities of G protein alpha subunits. RGSZ1, one of the RGS proteins specifically localized to the brain, has been cloned previously and described as a selective GTPase accelerating protein for Galpha(z) subunit. Here, we employed several methods to provide new evidence that RGSZ1 interacts not only with Galpha(z,) but also with Galpha(i), as supported by in vitro binding assays and functional studies. Using glutathione S-transferase fusion protein pull-down assays, glutathione S-transferase-RGSZ1 protein was shown to bind (35)S-labeled Galpha(i1) protein in an AlF(4)(-)dependent manner. The interaction between RGSZ1 and Galpha(i) was confirmed further by co-immunoprecipitation studies and yeast two-hybrid experiments using a quantitative luciferase reporter gene. Extending these observations to functional studies, RGSZ1 accelerated endogenous GTPase activity of Galpha(i1) in single-turnover GTPase assays. Human RGSZ1 functionally regulated GPA1 (a yeast Galpha(i)-like protein)-mediated yeast pheromone response when expressed in a SST2 (yeast RGS protein) knockout strain. In PC12 cells, transfected RGSZ1 blocked mitogen-activated protein kinase activity induced by UK14304, an alpha(2)-adrenergic receptor agonist. Furthermore, RGSZ1 attenuated D2 dopamine receptor agonist-induced serum response element reporter gene activity in Chinese hamster ovary cells. In summary, these data suggest that RGSZ1 serves as a GTPase accelerating protein for Galpha(i) and regulates Galpha(i)-mediated signaling, thus expanding the potential role of RGSZ1 in G protein-mediated cellular activities.  相似文献   

18.
Regulators of G-protein signaling (RGS) proteins modulate signaling through heterotrimeric G-proteins. They act to enhance the intrinsic GTPase activity of the Galpha subunit but paradoxically have also been shown to enhance receptor-stimulated activation. To study this paradox, we used a G-protein gated K+ channel to report the dynamics of the G-protein cycle and fluorescence resonance energy transfer techniques with cyan and yellow fluorescent protein-tagged proteins to report physical interaction. Our data show that the acceleration of the activation kinetics is dissociated from deactivation kinetics and dependent on receptor and RGS type, G-protein isoform, and RGS expression levels. By using fluorescently tagged proteins, fluorescence resonance energy transfer microscopy showed a stable physical interaction between the G-protein alpha subunit and RGS (RGS8 and RGS7) that is independent of the functional state of the G-protein. RGS8 does not directly interact with G-protein-coupled receptors. Our data show participation of the RGS in the ternary complex between agonist-receptor and G-protein to form a "quaternary complex." Thus we propose a novel model for the action of RGS proteins in the G-protein cycle in which the RGS protein appears to enhance the "kinetic efficacy" of the ternary complex, by direct association with the G-protein alpha subunit.  相似文献   

19.
Estrogen causes rapid endothelial nitric oxide (NO) production because of the activation of plasma membrane-associated estrogen receptors (ER) coupled to endothelial NO synthase (eNOS). In the present study, we determined the role of G proteins in eNOS activation by estrogen. Estradiol-17beta (E(2), 10(-8) m) and acetylcholine (10(-5) m) caused comparable increases in NOS activity (15 min) in intact endothelial cells that were fully blocked by pertussis toxin (Ptox). In addition, exogenous guanosine 5'-O-(2- thiodiphosphate) inhibited E(2)-mediated eNOS stimulation in isolated endothelial plasma membranes, and Ptox prevented enzyme activation by E(2) in COS-7 cells expressing ERalpha and eNOS. Coimmunoprecipitation studies of plasma membranes from COS-7 cells transfected with ERalpha and specific Galpha proteins demonstrated E(2)-stimulated interaction between ERalpha and Galpha(i) but not between ERalpha and either Galpha(q) or Galpha(s); the observed ERalpha-Galpha(i) interaction was blocked by the ER antagonist ICI 182,780 and by Ptox. E(2)-stimulated ERalpha-Galpha(i) interaction was also demonstrable in endothelial cell plasma membranes. Cotransfection of Galpha(i) into COS-7 cells expressing ERalpha and eNOS yielded a 3-fold increase in E(2)-mediated eNOS stimulation, whereas cotransfection with a protein regulator of G protein signaling, RGS4, inhibited the E(2) response. These findings indicate that eNOS stimulation by E(2) requires plasma membrane ERalpha coupling to Galpha(i) and that activated Galpha(i) mediates the requisite downstream signaling events. Thus, novel G protein coupling enables a subpopulation of ERalpha to initiate signal transduction at the cell surface. Similar mechanisms may underly the nongenomic actions of other steroid hormones.  相似文献   

20.
The frizzled gene family of putative Wnt receptors encodes proteins that have a seven transmembrane-spanning motif characteristic of G-protein-linked receptors, although no loss-of-function studies have demonstrated a requirement for G-proteins for Wnt signaling by the gene product of frizzled-1. Medium conditioned by mouse F9 teratocarcinoma stem cells stably transfected to express either Xenopus Wnt-5a or Wnt-8 was used to test primitive endoderm formation of F9 stem cells. F9 stem cells expressing the rat Frizzled-1 receptors demonstrated endoderm formation in response to conditioned medium containing Wnt-8 but not to medium containing Wnt-5a. Primitive endoderm formation stimulated by Wnt-8 acting on the rat Frizzled-1 receptor was blocked by treatment with pertussis toxin by depletion of either Galpha(o) or Galpha(q) via antisense oligodeoxynucleotides, as well as by inhibitors of protein kinase C (bisindoylmaleimide) and of mitogen-activated protein kinase kinase (PD98059). Our results demonstrate the requirement for G-protein subunits Galpha(o) (a pertussis toxin substrate) and Galpha(q) for signaling by Frizzled-1, and an obligate role for the protein kinase C (likely mediated through stimulation of Galpha(q)) and mitogen-activated protein kinase network at the level of mitogen-activated protein kinase kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号