首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cation-binding properties of the vitamin D-dependent Ca2+-binding protein from pig duodenum were investigated, mainly by flow dialysis. The protein bound two Ca2+ ions with high affinity, and Mg2+, Mn2+ and K+ were all bound competitively with Ca2+ at both sites. The sites were distinguished by their different affinities for Mn2+, the one with the higher affinity being designated A (Kd 0.61 +/- 0.02 microM) and the other B (Kd 50 +/- 6 microM). Competitive binding studies allied to fluorimetric titration with Mg2+ showed that site A bound Ca2+, Mg2+ and K+ with Kd values of 4.7 +/- 0.8 nM, 94 +/- 18 microM and 1.6 +/- 0.3 mM respectively, and site B bound the same three cations with Kd values of 6.3 +/- 1.8 nM, 127 +/- 38 microM and 2.1 +/- 0.6 mM. For the binding of these cations, therefore, there was no significant difference between the two sites. In the presence of 1 mM-Mg2+ and 150 mM-K+, both sites bound Ca2+ with an apparent Kd of 0.5 microM. The cation-binding properties were discussed relative to those of parvalbumin, troponin C and the vitamin D-dependent Ca2+-binding protein from chick duodenum.  相似文献   

2.
The fluorescent Ca2+ indicator, quin 2, has been used in isolated striated muscle fibres. There is a distinct quin 2 fluorescence peak at lambda 500 nm upon excitation at lambda 339 nm after axial injection of the potassium salt of quin 2, pH 7.1. Single voltage-clamp or current clamp electrical stimulation resulted in a distinct transient change in the fluorescence at lambda 500 nm which was not observed at lambda 400 nm, the peak of the fibre autofluorescence. Ca2+ buffering is marked at high quin 2 concentrations (greater than or equal to 400 microM) producing a slow decay of force and fluorescence. At lower concentrations (8-30 microM) of quin, the decay of force is within the range observed in non-injected control fibres. A Kd of 457 nM at 5 mM free Mg2+ suggests an upper resting free Ca2+ concentration of 310 nM at 12 degrees C.  相似文献   

3.
Vitamin D-dependent Ca2+-binding protein from pig duodenum was hydrolysed with trypsin in the presence of Ca2+ and two products were obtained: T1, which differed from the native protein by loss of Ac-Ser-Ala-Gln-Lys from the N-terminus and Ile-Ser-Gln-OH from the C-terminus, and T2, which differed from T1 by loss of a C-terminal lysine. The hydrolysis inactivated one of the two high-affinity Ca2+-binding sites on the native protein, and the remaining site was stable in T1 but labile in T2 when the proteins were Ca2+-free. Binding studies showed that T1 had Kd values of 2.8 +/- 0.1 nM, 57 +/- 13 microM and 0.8 +/- 0.3 microM for Ca2+, Mg2+ and Mn2+ respectively, and T2 had Kd 2.2 +/- 0.3 nM for Ca2+. The affinity for Mn2+, together with the other Kd values, identified the site on T1 as the site on the native protein previously found to have Kd 0.6 microM for Mn2+, rather than one with Kd 50 microM for Mn2+. In contrast with both the native protein and another form of the protein with a single Ca2+-binding site, the intrinsic fluorescence of T1 and T2 was little affected by the addition of Ca2+. It was concluded that the active binding site in T1 and T2, and also the site in the native protein with the higher affinity for Mn2+, was probably in the C-terminal half of the molecule.  相似文献   

4.
Literature values for the Kd for Ca2+ in bovine alpha-lactalbumin range over 3 orders of magnitude. There is a difference between two results obtained with EGTA as a metal-ion buffer, partly because different values for the Kd of Ca2+-EGTA were used in the calculations, and a much wider difference between results obtained in the presence and absence of EGTA, which has been attributed to an interaction between EGTA and the protein. Titrations in a flow-dialysis cell showed that Mn2+ competed with Ca2+ for the high-affinity site on the protein, and the results, combined with a Kd for Mn2+ of 2.1 +/- 0.1 microM, which was determined fluorimetrically, gave a Kd for Ca2+ of 1.3 +/- 0.1 nM. When alpha-lactalbumin containing 45Ca2+ was titrated with EGTA in a flow-dialysis cell, and widely accepted metal-chelation data for EGTA were used in the calculations, a Kd for Ca2+ of 1.10 +/- 0.03 nM was obtained. The results from the two methods are so similar as to indicate that the affinity for Ca2+ was unaffected by the presence of EGTA.  相似文献   

5.
The existence of multiple affinity states for the opiate receptor in neuroblastoma x glioma NG108-15 hybrid cells has been demonstrated by competition binding studies with tritiated diprenorphine and [D-Ala2, D-Leu5]enkephalin (DADLE). In the presence of 10 mM Mg2+, all receptors exist in a high affinity state with Kd = 1.88 +/- 0.16 nM. Addition of 10 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) decreased the affinity of DADLE to Kd = 8.08 +/- 0.93 nM. However, in the presence of 100 mM Na+, which is required for opiate inhibition of adenylate cyclase activity, analysis of competition binding data revealed three sites: the first, consisting of 17.5% of total receptor population has a Kd = 0.38 +/- 0.18 nM; the second, 50.6% of the population, has a Kd = 6.8 +/- 2.2 nM; and the third, 31.9% of the population, has a Kd of 410 +/- 110 nM. Thus, in the presence of sodium, a high affinity complex between receptor (R), GTP binding component (Ni), and ligand (L) was formed which was different from that formed in the absence of sodium. These multiple affinity states of receptor in the hybrid cells are agonist-specific, and the percentage of total opiate receptor in high affinity state is relatively constant in various concentrations of Na+. Multiple affinity states of opiate receptor can be demonstrated further by Scatchard analysis of saturation binding studies with [3H]DADLE. In the presence of Mg2+, or Gpp(NH)p, analysis of [3H]DADLE binding demonstrates that opiate receptor can exist in a single affinity state, with apparent Kd values of [3H]DADLE in 10 mM Mg2+ = 1.75 +/- 0.28 nM and in 10 microM Gpp(NH)p = 0.85 +/- 0.12 nM. There is a reduction of Bmax value from 0.19 +/- 0.02 nM in the presence of Mg2+ to 0.14 +/- 0.03 nM in the presence of Gpp(NH)p. In the presence of 100 mM Na+, Scatchard analysis of saturation binding of [3H]DADLE reveals nonlinear plots; two-site analysis of the curves yields Kd = 0.43 +/- 0.09 and 7.9 +/- 3.2 nM. These Kd values are analogous to that obtained with competition binding studies. Again, this conversion of single site binding Scatchard plots to multiple sites binding plots in the presence of Na+ is restricted to 3H-agonist binding only.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
A Uto  H Arai  Y Ogawa 《Cell calcium》1991,12(1):29-37
To determine intracellular Ca2+ concentrations more accurately, we examined Kd of Fura-2 for Ca2+ in conditions which were systemically changed. In a solution comprising of 150 mM KCI, 20 mM MOPS-KOH, pH 6.94, 60-100 microM EGTA and 1 microM Fura-2, Kd at 20 degrees C was 0.266 +/- 0.016 microM (mean +/- SEM) (21 determinations). The ionic strength (I) of the solution strongly affected Kd: the relation of -log Kd versus 2 square root of I/(1 + square root of I) - 0.4.I was 3.6 times as steep as that of EGTA. Kd was moderately changed by pH higher than 7.1, while it was very slightly changed by pH between 6.7 and 7.1. Kd was minimally affected by temperature. The apparent Kd values for Ca2+ in the presence of various concentrations of Mg2+ gave an estimate of the Kd for Mg2+ of about 100 mM, which is about 10 times as great as the estimated value by Grynkiewicz et al. [1]. This estimation assumes competitive binding between Ca2+ and Mg2+ for Fura-2. However, the possibility that Mg2+ may bind Fura-2 in a more complicated way is also suggested. Co-existing proteins in the solution dose-dependently increased an apparent Kd, independent of the type of proteins used, up to a limiting value of about 1.0 microM. With the ratio method, the Ca2+ concentration which gives (Rmin + Rmax)/2 is Kd.beta. The range of Ca2+ concentrations on which R values show steep dependence is determined not only by Kd but also by beta. This means that the excitation spectra and pair of excitation wavelengths selected as well as Kd are critical factors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The mechanisms by which glyburide and tolbutamide signal insulin secretion were examined using a beta cell line (Hamster insulin-secreting tumor (HIT) cells). Insulin secretion was measured in static incubations, free cytosolic Ca2+ concentration ([Ca2+]i) was monitored in quin 2-loaded cells, and cAMP quantitated by radioimmunoassay. Insulin secretory dose-response curves utilizing static incubations fit a single binding site model and established that glyburide (ED50 = 112 +/- 18 nM) is a more potent secretagogue than tolbutamide (ED50 = 15 +/- 3 microM). Basal HIT cell [Ca2+]i was 76 +/- 7 nM (mean +/- S.E., n = 141) and increased in a dose-dependent manner with both glyburide and tolbutamide with ED50 values of 525 +/- 75 nM and 67 +/- 9 microM, respectively. The less active tolbutamide metabolite, carboxytolbutamide, had no effect on [Ca2+]i or insulin secretion. Chelation of extracellular Ca2+ with 4 mM EGTA completely inhibited the sulfonylurea-induced changes in [Ca2+]i and insulin release and established that the rise in [Ca2+]i came from an extracellular Ca2+ pool. The Ca2+ channel blocker, verapamil, inhibited glyburide- or tolbutamide-stimulated insulin release and the rise in [Ca2+]i at similar concentrations with IC50 values of 3 and 2.5 microM, respectively. At all concentrations tested, the sulfonylureas did not alter HIT cell cAMP content. These findings provide direct experimental evidence that glyburide and tolbutamide allow extracellular Ca2+ to enter the beta cell through verapamil-sensitive, voltage-dependent Ca2+ channels, causing a rise in [Ca2+]i which is the second messenger that stimulates insulin release.  相似文献   

8.
Quantitative measurement of [Ca2+]i with the fluorescent Ca(2+)-indicators Indo-1 and Fura-2 is complicated by the possibility that the value of the dissociation constant (Kd) may be influenced by binding to intracellular proteins. We investigated this question in cultured chick ventricular myocytes by use of two different Indo-1 calibration methods. First, the Indo-1 fluorescence ratio (R) (400/500 nm) was measured in beating myocytes loaded by exposure to Indo-1/AM. Then, cells were exposed to the Ca2+ ionophore Br A-23187 and fluorescence ratio was measured in the presence of 500 nM Ca2+ (EGTA-Ca2+ buffer). Subsequently cells were permeabilized to Ca2+ by a 1 min exposure to 25 microM digitonin in the presence of 'zero' Ca2+ (10 mM EGTA) and saturating 1 mM Ca2+ to obtain Rmin, Rmax and beta. We then calculated [Ca2+]i from the formula ([Ca2+]i = Kd [( R - Rmin)/(Rmax - R)]beta). With Kd = 250 nM, calculated systolic [Ca2+]i was 750 +/- 44 nM and diastolic 269 +/- 19 nM (means +/- SEM, n = 16). The R value calculated for an assumed [Ca2+]i = 500 nM using the above formula and digitonin derived constants was very similar to the value measured using Br A-23187 (digitonin, 0.67 +/- 0.03: Br A-23187, 0.66 +/- 0.03, ns). As the Br A-23187 method is independent of the value chosen for Kd, we conclude that the Kd of 250 nM for Indo-1 measured in free solutions closely approximates the Kd for intracellular Indo-1 in these cells, and that therefore the Kd of Indo-1 for Ca2+ does not appear to be markedly affected by binding to proteins or other intracellular molecules.  相似文献   

9.
The recently synthesized calcium indicator quin -2 was incorporated into synaptosomes from guinea-pig cerebral cortex following uptake and internal hydrolysis of quin -2 tetra-acetoxymethyl ester. Incubation in physiological media containing 1 mM- or 2 mM-CaCl2 led to equilibrium cytosolic ionized calcium concentrations of 85 +/- 10 nM and 205 +/- 5 nM respectively (mean +/- S.E.M. from eight and eighteen preparations respectively). Cytosolic Ca2+ was elevated following increases in external Ca2+ concentration, plasma membrane depolarization, mitochondrial inhibition, calcium ionophore addition or replacement of external sodium by lithium. Preliminary experiments were performed to assess changes in cytosolic Ca2+ accompanying the release of the neurotransmitter acetylcholine.  相似文献   

10.
To examine the role of divalent cations in the generation of superoxide anion (O2-) by the NADPH oxidase system of phagocytic cells, membrane-rich fractions were prepared from human neutrophils and monocytes. O2- generation by the fractions in sucrose was enhanced by addition of Ca2+ or Mg2+. EDTA inhibited most of the O2- generation; Ca2+ or Mg2+ reversed the inhibition. Zn2+, Mn2+, or Cu2+ completely inhibited O2- production. Neutrophil membrane fraction solubilized with Triton X-100, then passed through a chelating column, lost 80% of its oxidase activity; the loss could be reversed by addition of Ca2+ or Mg2+. Addition of 0.3 mM Ca2+ or Mg2+ protected against thermal instability of the enzyme. Kinetic analysis of the neutrophil oxidase activity as a function of NADPH and Ca2+ or Mg2+ concentrations showed that cation did not interact with NADPH in solution or affect the binding of NADPH to the oxidase; rather, cation bound directly to the oxidase, or to some associated regulatory component, to activate the enzyme. For the neutrophil oxidase, the Km for NADPH was 51 +/- 6 (S.D.) microM. Hyperbolic saturation was observed with Ca2+ and Mg2+, and the Kd values were 1.9 +/- 0.3 and 2.9 +/- 0.3 microM, respectively, suggesting that the oxidase, or some associated component, has a relatively high-affinity binding site for Ca2+ and Mg2+.  相似文献   

11.
Elevation of intracellular cAMP is shown to increase the rate (V) and maximal extent of Ca2+ uptake by the dense tubules in intact human platelets. Elevation of [cAMP] was accomplished by preincubation with the adenylate cyclase activator forskolin or with dibutyryl-cAMP (Bt2-cAMP). The free concentration of Ca2+ in the dense tubular lumen ([Ca2+]dt) was monitored using the fluorescence of chlorotetracycline (CTC) according to protocols developed in this laboratory. The free cytoplasmic Ca2+ concentration ([Ca2+]cyt) was monitored in parallel experiments with quin2. Both [Ca2+]cyt and [Ca2+]dt were analyzed in terms of competition between pump and leak mechanisms in the plasma membrane (PM) and dense tubular membrane (DT). When platelets are incubated in media with approx. 1 microM external Ca2+, [Ca2+]cyt is approx. 50 nM and [Ca2+]dt is very low. When 2 mM external Ca2+ is added, [Ca2+]cyt rises to approx. 100 nM and the process of dense tubular Ca2+ uptake can be resolved. Forskolin (10 microM) and Bt2-cAMP increase the rate of dense tubular Ca2+ uptake (V) to 2.1 +/- 0.60 and 1.70 +/- 40 times control values (respectively). The agents also increase the final [Ca2+]dt to 1.70 +/- 0.21 and 1.72 +/- 0.60 times control values (respectively). Titrations with ionomycin (Iono) showed that the increase was due to an increase in the Vm of the dense tubular Ca2+ pump. With [Iono] = 500 nM, [Ca2+]cyt was raised to greater than or equal to 1.0 microM and Vm of the dense tubular pump was elicited. (At [Iono] = 1.0 microM, the final [Ca2+]dt values were degraded 15% due to shunting of Ca2+ uptake.) Analysis showed that forskolin (10 microM) and Bt2-cAMP (1 mM) increase the Vm by a factors of 1.56 +/- 40 and 1.56 +/- 40, respectively. Analysis showed that neither agent changed the Km of the pump significantly from its control value of 180 nM. Neither agent changed the rate constant for passive leakage of Ca2+ across the DT membrane (1.7 min-1).  相似文献   

12.
The effect of cAMP on active Ca2+ extrusion across the plasma membrane of intact human platelets was studied using quin2, a fluorimetric indicator of free Ca2+ in the cytoplasmic compartment ([Ca2+]cyt). Elevations of cAMP were achieved by incubation with dibutyryl-cAMP or by forskolin, which was found to selectively elevate cAMP without affecting cGMP levels. Progress curves of Ca2+ extrusion from quin2-overloaded platelets were measured. The rate vs. [Ca2+]cyt characteristic was calculated as previously described (Johansson, J.S. and Haynes, D.H. (1988) J. Membr. Biol. 104, 147-163). Forskolin, at a maximally effective concentration of 10 microM, was shown to stimulate Ca2+ extrusion by increasing by a factor of 1.6 +/- 0.5 the Vm of a saturable component, previously identified with a Ca(2+)-Mg(2+)-ATPase located in the plasma membrane. Neither the Km (80 nM) or Hill coefficient (1.7 +/- 0.3) of the Ca(2+)-ATPase was affected. Forskolin had no effect on the linear, non-saturable component of extrusion (previously identified with a Na+/Ca2+ exchanger) over the [Ca2+]cyt range examined (50-1500 nM). Dibutyryl-cAMP (Bt2-cAMP, 1 mM) stimulated the Ca(2+)-Mg(2+)-ATPase component of Ca2+ extrusion by a factor of 2.0 +/- 0.6. Separate experiments showed that 10 microM forskolin reduces the resting [Ca2+]cyt from 112 nM to 96 nM. Mathematical analysis showed that this can be accounted for by the above-mentioned increase in Vm of the pump, countered by a 37-74% increase in the rate constant for passive Ca2+ leakage across the plasma membrane. The results suggest two mechanisms by which prostacyclin-induced elevation of cAMP inhibits platelet aggregation: (a) lowering of resting [Ca2+]cyt and (b) increasing the rate of Ca2+ extrusion after the initial influx or triggered release event.  相似文献   

13.
Black DJ  Leonard J  Persechini A 《Biochemistry》2006,45(22):6987-6995
The relationship between the free Ca2+ concentration and the apparent dissociation constant for the complex between calmodulin (CaM) and the neuromodulin IQ domain consists of two phases. In the first phase, Ca2+ bound to the C-ter EF hand pair in CaM increases the Kd for the complex from the Ca2+-free value of 2.3 +/- 0.1 microM to a value of 14.4 +/- 1.3 microM. In the second phase, Ca2+ bound to the N-ter EF hand pair reduces the Kd for the complex to a value of 2.5 +/- 0.1 microM, reversing the effect of the first phase. Due to energy coupling effects associated with these phases, the mean dissociation constant for binding of Ca2+ to the C-ter EF hand pair is increased approximately 3-fold, from 1.8 +/- 0.1 to 5.1 +/- 0.7 microM, and the mean dissociation constant for binding of Ca2+ to the N-ter EF hand pair is decreased by the same factor, from 11.2 +/- 1.0 to 3.5 +/- 0.6 microM. These characteristics produce a bell-shaped relationship between the apparent dissociation constant for the complex and the free Ca2+ concentration, with a distance of 5-6 microM between the midpoints of the rising and falling phases. Release of CaM from the neuromodulin IQ domain therefore appears to be promoted over a relatively narrow range of free Ca2+ concentrations. Our results demonstrate that CaM-IQ domain complexes can function as biphasic Ca2+ switches through opposing effects of Ca2+ bound sequentially to the two EF hand pairs in CaM.  相似文献   

14.
1. The binding of Ca2+ ions to purified pig heart NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase, freed of contaminating Ca2+ by parvalbumin/polyacrylamide chromatography, has been studied by flow dialysis and by the use of fura-2. 2. For the 2-oxoglutarate dehydrogenase complex, 3.5 mol of Ca2+-binding sites/mol of complex were apparent, with an apparent dissociation constant (Kd value) for Ca2+ of 2.0 microM. These values were little affected by Mg2+ ions, ADP or 2-oxoglutarate. 3. By contrast, binding of Ca2+ to NAD+-isocitrate dehydrogenase (Kd = 14 microM) required ADP, isocitrate and Mg2+ ions. The number of Ca2+-binding sites associated with NAD+-isocitrate dehydrogenase was then 0.9 mol/mol of tetrameric enzyme. 4. The 2-oxoglutarate dehydrogenase complex bound ADP (as ADP3-) to a group of tight-binding sites (Kd = 3.1 microM) with a stoichiometry, 3.3 mol/mol of complex, similar to that for the binding of Ca2+; a variable number of much weaker sites (Kd = 100 microM) for ADP3- was also apparent.  相似文献   

15.
Longitudinal tubules and junctional sarcoplasmic reticulum (SR) were prepared from heart muscle microsomes by Ca2+-phosphate loading followed by sucrose density gradient centrifugation. The longitudinal SR had a high Ca2+ loading rate (0.93 +/- 0.08 mumol.mg-1.min) which was unchanged by addition of ruthenium red. Junctional SR had a low Ca2+ loading rate (0.16 +/- 0.02 mumol.mg-1.min) which was enhanced about 5-fold by ruthenium red. Junctional SR had feet structures observed by electron microscopy and a high molecular weight protein with Mr of 340,000, whereas longitudinal SR was essentially devoid of both. Thus, these subfractions have similar characteristics to longitudinal and junctional terminal cisternae of SR from fast twitch skeletal muscle. Ryanodine binding was localized to junctional cardiac SR as determined by [3H]ryanodine binding. Scatchard analysis of the binding data showed two types of binding (high affinity, Kd approximately 7.9 nM; low affinity, Kd approximately 1 microM), contrasting with skeletal junctional terminal cisternae where only one site with Kd of approximately 50 nM was observed. The ruthenium red enhancement of Ca2+ loading rate in junctional cardiac SR was blocked by pretreatment with low concentrations of ryanodine as reported for junctional terminal cisternae of skeletal muscle SR. The Ca2+ loading rate of junctional cardiac SR was enhanced by preincubation with high concentrations of ryanodine. The apparent inhibition constant (Ki approximately 7 nM) and stimulation constant (Km approximately 1.1 microM) for ryanodine on junctional SR corresponded to the Kd for high affinity binding (Kd approximately 7.9 nM) and low affinity binding (Kd approximately 1.1 microM), respectively. These results suggest that high affinity ryanodine binding locks the Ca2+ release channels in the open state and that low affinity binding closes the Ca2+ release channels of the junctional cardiac SR. The characteristics of the Ca2+ release channels of junctional cardiac SR appear to be similar to that of skeletal muscle SR, but the Ca2+ release channels of cardiac SR are more sensitive to ryanodine.  相似文献   

16.
The binding and conformational properties of the divalent cation site required for H+,K(+)-ATPase catalysis have been explored by using Ca2+ as a substitute for Mg2+. 45Ca2+ binding was measured with either a filtration assay or by passage over Dowex cation exchange columns on ice. In the absence of ATP, Ca2+ was bound in a saturating fashion with a stoichiometry of 0.9 mol of Ca2+ per active site and an apparent Kd for free Ca2+ of 332 +/- 39 microM. At ATP concentrations sufficient for maximal phosphorylation (10 microM), 1.2 mol of Ca2+ was bound per active site with an apparent Kd for free Ca2+ of 110 +/- 22 microM. At ATP concentrations greater than or equal to 100 microM, 2.2 mol of Ca2+ were bound per active site, suggesting that an additional mole of Ca2+ bound in association with low affinity nucleotide binding. At concentrations sufficient for maximal phosphorylation by ATP (less than or equal to 10 microM), APD, ADP + Pi, beta,gamma-methylene-ATP, CTP, and GTP were unable to substitute for ATP. Active site ligands such as acetyl phosphate, phosphate, and p-nitrophenyl phosphate were also ineffective at increasing the Ca2+ affinity. However, vanadate, a transition state analog of the phosphoenzyme, gave a binding capacity of 1.0 mol/active site and the apparent Kd for free Ca2+ was less than or equal to 18 microM. Mg2+ displaced bound Ca2+ in the absence and presence of ATP but Ca2+ was bound about 10-20 times more tightly than Mg2+. The free Mg2+ affinity, like Ca2+, increased in the presence of ATP. Monovalent cations had no effect on Ca2+ binding in the absence of ATP but dit reduce Ca2+ binding in the presence of ATP (K+ = Rb+ = NH4 + greater than Na+ greater than Li+ greater than Cs+ greater than TMA+, where TMA is tetramethylammonium chloride) by reducing phosphorylation. These results indicate that the Ca2+ and Mg2+ bound more tightly to the phosphoenzyme conformation. Eosin fluorescence changes showed that both Ca2+ and Mg2+ stabilized E1 conformations (i.e. cytosolic conformations of the monovalent cation site(s)) (Ca.E1 and Mg.E1). Addition of the substrate acetyl phosphate to either Ca.E1 or Mg.E1 produced identical eosin fluorescence showing that Ca2+ and Mg2+ gave similar E2 (extracytosolic) conformations at the eosin (nucleotide) site. In the presence of acetyl phosphate and K+, the conformations with Ca2+ or Mg2+ were also similar. Comparison of the kinetics of the phosphoenzyme and Ca2+ binding showed that Ca2+ bound prior to phosphorylation and dissociated after dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Low concentrations of free Ca2+ stimulated the hydrolysis of ATP by plasma membrane vesicles purified from guinea pig neutrophils and incubated in 100 mM HEPES/triethanolamine, pH 7.25. In the absence of exogenous magnesium, apparent values obtained were 320 nM (EC50 for free Ca2+), 17.7 nmol of Pi/mg X min (Vmax), and 26 microM (Km for total ATP). Studies using trans- 1,2-diaminocyclohexane- N,N,N',N',-tetraacetic acid as a chelator showed this activity was dependent on 13 microM magnesium, endogenous to the medium plus membranes. Without added Mg2+, Ca2+ stimulated the hydrolysis of several other nucleotides: ATP congruent to GTP congruent to CTP congruent to ITP greater than UTP, but Ca2+-stimulated ATPase was not coupled to uptake of Ca2+, even in the presence of 5 mM oxalate. When 1 mM MgCl2 was added, the vesicles demonstrated oxalate and ATP-dependent calcium uptake at approximately 8 nmol of Ca2+/mg X min (based on total membrane protein). Ca2+ uptake increased to a maximum of approximately 17-20 nmol of Ca2+/mg X min when KCl replaced HEPES/triethanolamine in the buffer. In the presence of both KCl and MgCl2, Ca2+ stimulated the hydrolysis of ATP selectively over other nucleotides. Apparent values obtained for the Ca2+-stimulated ATPase were 440 nM (EC50 for free Ca2+), 17.5 nmol Pi/mg X min (Vmax) and 100 microM (Km for total ATP). Similar values were found for Ca2+ uptake which was coupled efficiently to Ca2+-stimulated ATPase with a molar ratio of 2.1 +/- 0.1. Exogenous calmodulin had no effect on the Vmax or EC50 for free Ca2+ of the Ca2+-stimulated ATPase, either in the presence or absence of added Mg2+, with or without an ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N',-tetraacetic acid pretreatment of the vesicles. The data demonstrate that calcium stimulates ATP hydrolysis by neutrophil plasma membranes that is coupled optimally to transport of Ca2+ in the presence of concentrations of K+ and Mg2+ that appear to mimic intracellular levels.  相似文献   

18.
Specific components of ion translocation systems were studied in excitable plasma membranes isolated from normal human muscle. Na+-K+ ATPase and ouabain-sensitive K+ phosphatase activities were 8.9 +/- 1 mumol Pi/h per mg protein and 96 +/- 9 nmol/min per mg protein, respectively. Scatchard analysis of equilibrium binding assays with [3H]ouabain showed non-linear curves consistent with high- and low-affinity sites (estimated Kd 3 nM and 0.22 microM). Two families of receptors with different affinities for a tritiated TTX derivative (estimated Kd 0.4 and 4 nM) were also identified suggesting the existence in human muscle of at least two classes of voltage-dependent Na+ channels. In addition (+)-[methyl-3H]PN200-110, a potent Ca2+ antagonist used for labeling voltage-dependent Ca2+ channels, was observed to bind to a homogeneous population of receptors in the plasma membrane (Kd = 0.2 nM).  相似文献   

19.
We report efficient two-photon and UV-laser flash photolysis of dimethoxynitrophenyl-EGTA-4 (DMNPE-4), a newly-developed photolabile Ca(2+)-specific chelator. This compound exhibits good two-photon absorption at 705 nm, has a low Mg2+ affinity (approximately 7 mM), a Kd for Ca2+ of 19 nM, a quantum yield of 0.20 and changes its Ca2+ affinity by 21,000-fold upon photolysis. Two-photon excitation photolysis (TPP) experiments were performed with a Ti:Sapphire laser in solutions containing DMNPE-4 with either 0 or 10 mM Mg2+ and compared to that of the widely used Ca2+ cage, DM-nitrophen (Kd for Ca2+ 5 nM, Kd for Mg2+ 2.5 microM, quantum yield 0.18, affinity change 600,000-fold). The resulting Ca2+ signals were recorded with the fluorescent Ca2+ indicator fluo-3 and a laser-scanning confocal microscope in the line-scan mode. In vitro, photolysis of DMNPE-4:Ca2+ produced Ca(2+)-release signals that had comparable amplitudes and time courses in the presence and absence of Mg2+. However, photorelease of Ca2+ from DM-nitrophen was obviated by the presence of Mg2+. In patch-clamped isolated cardiac myocytes, equivalent TPP results were obtained in analogous experiments. Single-photon excitation of DMNPE-4 by Nd:YAG laser flashes produced Na-Ca exchange currents of comparable amplitude in the absence and presence of Mg2+. However, only very small currents were observed in DM-nitrophen solution containing 10 mM Mg2+. In conclusion, both DMNPE-4 and DM-nitrophen undergo TPP, however, only DMNPE-4 exhibits efficient release of Ca2+ in the presence of Mg2+.  相似文献   

20.
Characterization of the cation-binding properties of porcine neurofilaments   总被引:5,自引:0,他引:5  
S Lefebvre  W E Mushynski 《Biochemistry》1988,27(22):8503-8508
In the presence of physiological levels of Na+ (10 mM), K+ (150 mM), and Mg2+ (2 mM), dephosphorylated neurofilaments contained two Ca2+ specific binding sites with Kd = 11 microM per unit consisting of eight low, three middle, and three high molecular subunits, as well as 46 sites with Kd = 620 microM. Only one class of 126 sites with Kd = 740 microM was detected per unit of untreated neurofilaments. A chymotryptic fraction enriched in the alpha-helical domains of neurofilament subunits contained one high-affinity Ca2+-binding site (Kd = 3.6 microM) per domain fragment of approximately 32 kDa. This site may correspond to a region in coil 2b of the alpha-helical domain, which resembles the I-II Ca2+-binding site in intestinal Ca2+-binding protein. Homopolymeric filaments composed of the low or middle molecular weight subunits contained low-affinity Ca2+-binding sites with Kd = 37 microM and 24 microM, respectively, while the Kd values for the low-affinity sites in heteropolymeric filaments were 8-10-fold higher. Competitive binding studies, using the chymotryptic fraction to assay the high-affinity Ca2+-binding sites and 22Na+ to monitor binding to the phosphate-containing low-affinity sites, yielded Kd values for Al3+ of 0.01 microM and 4 microM, respectively. This suggests that the accumulation of Al3+ in neurons may be due in part to its binding to neurofilaments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号