首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Relaxin, a 6-kDa polypeptide hormone, is a potent mediator of matrix turnover and contributes to the loss of collagen and glycosaminoglycans (GAGs) from reproductive tissues, including the fibrocartilaginous pubic symphysis of several species. This effect is often potentiated by beta-estradiol. We postulated that relaxin and beta-estradiol might similarly contribute to the enhanced degradation of matrices in fibrocartilaginous tissues from synovial joints, which may help explain the preponderance of diseases of specific fibrocartilaginous joints in women of reproductive age. The objective of this study was to compare the in vivo effects of relaxin, beta-estradiol, and progesterone alone or in various combinations on GAG and collagen content of the rabbit temporomandibular joint (TMJ) disc fibrocartilage, knee meniscus fibrocartilage, knee articular cartilage, and the pubic symphysis. Sham-operated or ovariectomized female rabbits were administered beta-estradiol (20 ng/kg body weight), progesterone (5 mg/kg), or saline intramuscularly. This was repeated 2 days later and followed by subcutaneous implantation of osmotic pumps containing relaxin (23.3 microg/kg) or saline. Tissues were retrieved 4 days later and analyzed for GAG and collagen. Serum relaxin levels were assayed using enzyme-linked immunosorbent assay. Relaxin administration resulted in a 30-fold significant (p < 0.0001) increase in median levels (range, approximately 38 to 58 pg/ml) of systemic relaxin. Beta-estradiol, relaxin, or beta-estradiol + relaxin caused a significant loss of GAGs and collagen from the pubic symphysis and TMJ disc and of collagen from articular cartilage but not from the knee meniscus. Progesterone prevented relaxin- or beta-estradiol-mediated loss of these molecules. The loss of GAGs and collagen caused by beta-estradiol, relaxin, or beta-estradiol + relaxin varied between tissues and was most prominent in pubic symphysis and TMJ disc fibrocartilages. The findings suggest that this targeted modulation of matrix loss by hormones may contribute selectively to degeneration of specific synovial joints.  相似文献   

2.
Relaxin, a 6-kDa polypeptide hormone, is a potent mediator of matrix turnover and contributes to the loss of collagen and glycosaminoglycans (GAGs) from reproductive tissues, including the fibrocartilaginous pubic symphysis of several species. This effect is often potentiated by β-estradiol. We postulated that relaxin and β-estradiol might similarly contribute to the enhanced degradation of matrices in fibrocartilaginous tissues from synovial joints, which may help explain the preponderance of diseases of specific fibrocartilaginous joints in women of reproductive age. The objective of this study was to compare the in vivo effects of relaxin, β-estradiol, and progesterone alone or in various combinations on GAG and collagen content of the rabbit temporomandibular joint (TMJ) disc fibrocartilage, knee meniscus fibrocartilage, knee articular cartilage, and the pubic symphysis. Sham-operated or ovariectomized female rabbits were administered β-estradiol (20 ng/kg body weight), progesterone (5 mg/kg), or saline intramuscularly. This was repeated 2 days later and followed by subcutaneous implantation of osmotic pumps containing relaxin (23.3 μg/kg) or saline. Tissues were retrieved 4 days later and analyzed for GAG and collagen. Serum relaxin levels were assayed using enzyme-linked immunosorbent assay. Relaxin administration resulted in a 30-fold significant (p < 0.0001) increase in median levels (range, approximately 38 to 58 pg/ml) of systemic relaxin. β-estradiol, relaxin, or β-estradiol + relaxin caused a significant loss of GAGs and collagen from the pubic symphysis and TMJ disc and of collagen from articular cartilage but not from the knee meniscus. Progesterone prevented relaxin- or β-estradiol-mediated loss of these molecules. The loss of GAGs and collagen caused by β-estradiol, relaxin, or β-estradiol + relaxin varied between tissues and was most prominent in pubic symphysis and TMJ disc fibrocartilages. The findings suggest that this targeted modulation of matrix loss by hormones may contribute selectively to degeneration of specific synovial joints.  相似文献   

3.
Two variant forms of porcine relaxin (B and C) are active in producing relaxation of the guinea pig pubic symphysis and in effecting uterine growth in rats. Only relaxin B, however, is active in the mouse pubic ligament assay. These two hormones were compared in mice for their effects upon uterine growth and incorporation of radioactively labeled proline into soluble protein and collagen in vitro and in vivo. Both relaxin B and relaxin C produced an early (3-hr) elevation in in vitro protein synthesis and a later (6-hr) increase in collagen incorporation of proline at the time when the uterotrophic effect was maximal. In vivo effects of relaxin C on the uterus were in some cases greater than relaxin B in contrast to the complete inactivity of the former upon the pubic ligament of the mouse. These findings suggest a high degree of tissue specificity for relaxin stimulation, a variability in responsiveness among tissues in the same animal, and perhaps a primary role of relaxin in uterine function with pelvic relaxation representing a secondary function which has developed in certain species.  相似文献   

4.
Collagen studies in late pregnant relaxin null mice   总被引:8,自引:0,他引:8  
The relaxin knockout (rlx -/-) mouse was used to assess the effect, during pregnancy, of relaxin with regard to water, collagen content, growth, and morphology of the nipple (N), vagina (V), uterus, cervix (C), pubic symphysis (PS), and mammary gland (MG). The results presented here indicate that during pregnancy, relaxin increases the growth of the N, C, V, and PS. Large increases in water content in the PS (20%) occurred in pregnant (Day 18.5) wild-type (rlx +/+) mice but not in rlx -/- animals. This indicates that in the PS, relaxin might increase the concentration of a water-retaining extracellular matrix component (hyaluronate). In the pregnant rlx +/+ mouse, collagen content decreased significantly in the N and V but not in other tissues. There were no significant changes in the rlx -/- mouse. This contrasts with findings in the rat, in which relaxin has been found to cause decreases in collagen concentrations in the V, C, and PS. Histological analysis showed that the collagen stain was more condensed in the tissues (V, C, PS, N, and MG) of rlx -/- mice than in those of rlx +/+ mice. This phenomenon indicates that the failure of collagen degradation and lack of growth in the N underlie the inability of the rlx -/- mice to feed their young, as reported previously. Vaginal and cervical luminal epithelia, which proliferated markedly in the rlx +/+ pregnant mice, remained relatively atrophic in the rlx -/- mice. As proliferation and differentiation of uterine and vaginal epithelia are thought to be induced by a paracrine stromal factor that acts upon estrogen stimulation, our results indicate that relaxin may be this paracrine factor.  相似文献   

5.
Diseases of specific fibrocartilaginous joints are especially common in women of reproductive age, suggesting that female hormones contribute to their etiopathogenesis. Previously, we showed that relaxin dose-dependently induces matrix metalloproteinase (MMP) expression in isolated joint fibrocartilaginous cells. Here we determined the effects of relaxin with or without beta-estradiol on the modulation of MMPs in joint fibrocartilaginous explants, and assessed the contribution of these proteinases to the loss of collagen and glycosaminoglycan (GAG) in this tissue. Fibrocartilaginous discs from temporomandibular joints of female rabbits were cultured in medium alone or in medium containing relaxin (0.1 ng/ml) or beta-estradiol (20 ng/ml) or relaxin plus beta-estradiol. Additional experiments were done in the presence of the MMP inhibitor GM6001 or its control analog. After 48 hours of culture, the medium was assayed for MMPs and the discs were analyzed for collagen and GAG concentrations. Relaxin and beta-estradiol plus relaxin induced the MMPs collagenase-1 and stromelysin-1 in fibrocartilaginous explants--a finding similar to that which we observed in pubic symphysis fibrocartilage, but not in articular cartilage explants. The induction of these proteinases by relaxin or beta-estradiol plus relaxin was accompanied by a loss of GAGs and collagen in joint fibrocartilage. None of the hormone treatments altered the synthesis of GAGs, suggesting that the loss of this matrix molecule probably resulted from increased matrix degradation. Indeed, fibrocartilaginous explants cultured in the presence of GM6001 showed an inhibition of relaxin-induced and beta-estradiol plus relaxin-induced collagenase and stromelysin activities to control baseline levels that were accompanied by the maintenance of collagen or GAG content at control levels. These findings show for the first time that relaxin has degradative effects on non-reproductive synovial joint fibrocartilaginous tissue and provide evidence for a link between relaxin, MMPs, and matrix degradation.  相似文献   

6.
Diseases of specific fibrocartilaginous joints are especially common in women of reproductive age, suggesting that female hormones contribute to their etiopathogenesis. Previously, we showed that relaxin dose-dependently induces matrix metalloproteinase (MMP) expression in isolated joint fibrocartilaginous cells. Here we determined the effects of relaxin with or without β-estradiol on the modulation of MMPs in joint fibrocartilaginous explants, and assessed the contribution of these proteinases to the loss of collagen and glycosaminoglycan (GAG) in this tissue. Fibrocartilaginous discs from temporomandibular joints of female rabbits were cultured in medium alone or in medium containing relaxin (0.1 ng/ml) or β-estradiol (20 ng/ml) or relaxin plus β-estradiol. Additional experiments were done in the presence of the MMP inhibitor GM6001 or its control analog. After 48 hours of culture, the medium was assayed for MMPs and the discs were analyzed for collagen and GAG concentrations. Relaxin and β-estradiol plus relaxin induced the MMPs collagenase-1 and stromelysin-1 in fibrocartilaginous explants – a finding similar to that which we observed in pubic symphysis fibrocartilage, but not in articular cartilage explants. The induction of these proteinases by relaxin or β-estradiol plus relaxin was accompanied by a loss of GAGs and collagen in joint fibrocartilage. None of the hormone treatments altered the synthesis of GAGs, suggesting that the loss of this matrix molecule probably resulted from increased matrix degradation. Indeed, fibrocartilaginous explants cultured in the presence of GM6001 showed an inhibition of relaxin-induced and β-estradiol plus relaxin-induced collagenase and stromelysin activities to control baseline levels that were accompanied by the maintenance of collagen or GAG content at control levels. These findings show for the first time that relaxin has degradative effects on non-reproductive synovial joint fibrocartilaginous tissue and provide evidence for a link between relaxin, MMPs, and matrix degradation.  相似文献   

7.
Various tissues from the mouse, rat and guinea-pig were used to examine the binding of a biologically active, esterified and 125I-labelled porcine relaxin. Binding to mouse symphysial homogenates was time- and temperature-dependent. Other peptide hormones did not complete with relaxin for binding. Mouse uterine tissue displayed similar binding characteristics. Fractionated mammary tissue from 15- and 20-day-pregnant rats exhibited significant relaxin binding activity, as did homogenates of the guinea-pig public symphysis and cervix. Under the conditions used, no relaxin receptors were noted in the liver, spleen or heart from any of the species investigated.  相似文献   

8.
Injection of progesterone for 3 days before treatment with relaxin inhibited the trophic effect of the peptide in both estrogen-primed and unprimed uteri. The depression in collagen concentration and increase in apparent rate of proline incorporation into collagen induced by relaxin alone were also eliminated, indicating a fundamental blockade of the effect of relaxin in this experimental design as well as a close association of changes in collagen concentration with tissue hypertrophy. The effect of relaxin on incorporation of proline into soluble protein was not blocked by progesterone, however, suggesting a separate mechanism for this anabolic effect of relaxin.  相似文献   

9.
The effect of porcine relaxin on rabbit articular and growth plate chondrocytes in primary culture was investigated by measurement of total collagen production and analysis of the phenotypes of newly synthesized collagen chains. A 24-h treatment of monolayer articular and multilayer growth plate chondrocytes with 2 micrograms per ml relaxin had no effect on total DNA and did not significantly modify the amount of [3H]proline-labelled collagen chains secreted by the cells. However, polyacrylamide gel electrophoresis demonstrated relevant modifications in relaxin treated chondrocytes. A significant increase was observed in the proportion of type III collagen and in the intensity of the band corresponding to alpha 2I chains. Two-dimensional peptide mapping of CNBr-cleaved molecules indicated that the band that was identified as alpha 1II on monodimensional gels contained a significant proportion of alpha 1I collagen chains, as demonstrated by the presence of alpha 1I cyanogen bromide-digested peptides. The intensity of this band was increased by relaxin treatment. Furthermore, total RNA analysis by slot blot and Northern blot techniques showed a dose-dependent stimulation of alpha 1I and alpha 1III mRNA levels after incubation with increased relaxin concentrations, but no change in the amount of alpha 1II mRNA. These results suggested that when added to cartilage cells in vitro, relaxin modulated the expression of type I, type II and type III collagen genes by amplifying the dedifferentiation process.  相似文献   

10.
The role of relaxin in stimulating growth of the mammary gland was assessed in ovariectomized and intact male rats for a period of 20 days. In addition to relaxin alone, the ovarian mammogenic hormones estradiol and progesterone were used in combination with relaxin and with each other to evaluate responses of mammae. Indices for mammary growth included wet weight, dry fat-free tissue, DNA, RNA, total protein, and collagen. Quantitative estimates of DNA and collagen represented the best indicators of parenchymal and stromal growth, respectively. Because changes in body weights were significantly different among hormonally administered groups, these were included as well. In Ovariectomized young rats, relaxin alone and in combination with estradiol and progesterone increased all indices significantly (P less than 0.01). The collagenous portion of total protein was high for the group receiving relaxin alone (62%) compared with the control group (46%). Relaxin administered along with estradiol and progesterone increased collagen accumulation to 73%, compared with 54% in the estradiol + progesterone group. Relaxin did not significantly increase growth indices when administered to male rats at 10 and 20 micrograms/day, while 30 micrograms stimulated a significant increase in total protein (P less than 0.05), suggesting that 30 micrograms of relaxin/day may be considered the basal concentration needed to induce a physiologic response in males. Relaxin induced a growth effect on mammae by synergizing with progesterone and estradiol in order to stimulate parenchymal proliferation, as noted by a DNA increase, and to increase stromal distensibility of the mammary pad by invoking accumulation of collagen and total protein in substituting for mammary adipose tissue.  相似文献   

11.
A relaxin-like molecule has been isolated from the ovaries of the spiny dogfish (Squalus acanthias) which consists, like porcine relaxin, of two chains linked by the insulin-type disulfide bonds. The total number of amino acids is 54 of which 24 are in the A chain and 30 in the B chain. The molecular masses, calculated from the amino acid compositions, are 2510 Da for the A chain and 3370 Da for the B chain, making a total of 5880 Da. The N-terminus of the B chain is protected by a 5-oxoproline (pyrrolidone carboxylic acid) residue which is also found in the same position in the relaxins of sand tiger shark, pig, and man, whereas the relaxin of the rat has its 5-oxoproline residue at the N-terminal of the A chain. By all available criteria, S. acanthias relaxin is a typical member of the relaxin family although the sequence homology to mammalian relaxins is limited to about 45% of its amino acid residues. In contrast, the dogfish relaxin shows about 80% homology with sand tiger shark relaxin (the first such interspecies similarity to be observed) and has about twice the biological activity (mouse pubic symphysis test) when compared to sand tiger relaxin.  相似文献   

12.
Relaxin from an oviparous species, the skate (Raja erinacea)   总被引:1,自引:0,他引:1  
An acid-acetone extract prepared from ovaries of the skate, Raja erinacea, contained a weakly crossreacting molecule when tested in a pig relaxin radioimmunoassay. The material was isolated and purified to homogeneity by ion exchange chromatography, molecular exclusion chromatography, and HPLC. Analytical tests proved the molecule to consist of two chains and to have a molecular weight of 7,500. Sequence analyses of the A and B chains yielded the following sequence: Glu-Glu-Lys-Met-Gly-Phe-Ala-Lys-Lys-Cys-Cys-Ala-Ile-Gly-Cys-Ser-Thr-Glu- Asp-Phe-Arg-Met-Val-Cys and Arg-Pro-Asn-Trp-Glu-Glu-Arg-Ser-Arg-Leu-Cys-Gly-Arg-Asp-Leu-Ile-Arg-Ala- Phe- Ile-Tyr-Leu-Cys-Gly-Gly-Thr-Arg-Trp-Thr-Arg-Leu-Pro-Asn-Phe-Gly-Asn-Tyr- Pro-Ile-Met respectively. Skate relaxin has 0.2% of the activity of B29 pig relaxin in the symphysis pubis assay and 0.5% in the mouse uterine muscle strip contraction inhibition assay.  相似文献   

13.
Relaxin is believed to play a role in connective tissue remodeling during pregnancy (Bell, R.J., Eddie, L. W., Lester, A. R., Wood, E. C., Johnston, P.D., and Niall, H. D. (1987) Obstet. Gynecol. 69, 585-589; MacLennan, A. H. (1983) Clin. Reprod. Fertil. 2, 77-95). In the present study, normal human fibroblasts exposed to concentrations of a synthetic bioactive relaxin peptide from 0.1 to 10 ng/ml synthesized and secreted the metalloproteinase procollagenase, which was immunoprecipitable as a doublet of 52 and 57 kDa by a monoclonal antibody to human collagenase. The stimulation in procollagenase protein expression was reflected in an elevation in procollagenase mRNA levels. Media conditioned for 48 h by relaxin-treated fibroblasts (0.1 ng/ml) contained 1.7 units/ml activatable collagenase compared with 0.2 units/ml by untreated fibroblasts. In addition, relaxin caused a modest decrease in the levels of tissue inhibitor of metalloproteinases, as detected by reverse zymography and Northern analysis. Relaxin was also a potent modulator of the collagen secretory phenotype of these fibroblasts. Relaxin at 100 ng/ml down-regulated collagen secretion by 40%. When fibroblasts were treated simultaneously with cytokines such as transforming growth factor beta or interleukin 1 beta, which stimulated collagen synthesis to at least 9-fold of basal levels, relaxin at 100 ng/ml was able to down-regulate collagen expression by up to 88%. This decrease was reflected by changes at the mRNA level. These results indicate that relaxin can cause significant collagen turnover both by stimulating collagenase expression and by down-modulating collagen synthesis and secretion.  相似文献   

14.
Relaxin, a protein hormone of pregnancy, stimulated ornithine decarboxylase activity (EC 4.1.1.17) in two of its target tissues. Both the mouse public symphysis and uterus respond to a single injection of relaxin; within 2–4 hours after hormonal treatment of the mice, ornithine decarboxylase activity was observed to increase 2–8 fold over control levels. This increase in enzymatic activity may represent one step in the mechanism by which relaxin exerts its effects.  相似文献   

15.
The possible contribution of relaxin to the support of uterine accommodation during late gestation by retarding tissue lysis was examined using the involuting postpartum uteri of unilaterally pregnant rats. In otherwise intact animals, twice-daily administration of 0.1 mg of relaxin (porcine fraction B) significantly retarded the regression of both gravid and, to a greater extent, nongravid tissue during the first 4 days postpartum, and collagenolysis was similarly delayed. Immediate postpartum ovariectomy had little effect on the uterus, although 5 micrograms estradiol benzoate daily suppressed uterine involution in the gravid tissue to about 50% and was even more effective in the nongravid uterus. Relaxin alone had little effect on the gravid uterus following ovariectomy, but augmented estrogen to the extent that less than half of the tissue and its collagen were lost during 4 days. The effect on nongravid tissue was even more striking in that the combination of estrogen and relaxin prevented any degradation of tissue in general or of collagen. Although we have reported that relaxin can stimulate uterine collagen synthesis as well as uterine growth, the magnitude of its postpartum effect in the presence of estrogen suggests a stabilizing or anticatabolic effect upon the uterus.  相似文献   

16.
Immature, ovariectomized, estrogen-primed rats respond to the administration of porcine relaxin by an increase in the incorporation of labeled amino acids ([14C]leucine, [14C]phenylalanine, [3H]proline) into uterine proteins in vitro. The maximum response occurs about 12 hr after a single injection of 0.1 mg relaxin in benzopurpurine 4B solution; subsequently, the relaxin effect declines but is still apparent after 24 hr. Smaller, but still significant increases in incorporation rates can be induced by relaxin in the absence of estrogen priming. Uterine collagen synthesis, as indicated by the incorporation of [3H]proline and its conversion to hydroxyproline, appears to be a primary target of the relaxin stimulus, since the effect of relaxin upon proline incorporation into uterine collagen is significantly greater than its effect upon labeling of noncollagen protein.  相似文献   

17.
The hormone relaxin has been implicated in the regulation of several processes in the reproductive tract during pregnancy and parturition. This study investigated the uterine effects of relaxin in immature and mature ovariectomized, estrogen-primed rats using morphometric and histochemical analysis. Rats were sprayed at 30 or 70 days of age and given estrogen (5 micrograms) 7 days later. After a week, they received an injection of porcine relaxin (100 micrograms) and were killed 6 h later; controls received vehicle alone. Histological sections were obtained from 7 levels of each uterine horn, and the volumes of endometrium and myometrium were calculated by use of a Zeiss Videoplan Computer Image Analyzer. In immature animals, relaxin treatment doubled uterine weights during the treatment period, and cross sections from relaxin-treated animals exhibited significant increases in the areas of both the myometrium and endometrium, 150% and 130% respectively. Mature animals were less responsive to relaxin although they also exhibited significant increases in uterine weight (31%), myometrial volume (29%), and endometrial volume (22%). With the use of Masson's Trichrome stain for collagen, we observed that relaxin alters the connective tissue framework of both endometrium and myometrium; control uterine collagen appears highly organized and dense with compact collagen fibers, whereas the collagen of relaxin-treated uteri is loosely arranged and disorganized with widely separated collagen fibers. Relaxin-stimulated uteri exhibited significantly greater vascularization, as evidenced by the size of arteries and veins in the vascular region between the circular and longitudinal muscle layers. Increased vascularization and uterine blood flow may be one mechanism involved in relaxin's uterotropic effect and is being investigated further.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The influence of the peptide hormone relaxin on the glycosaminoglycan (GAG) metabolism was investigated in the pubic ligament of the symphysis pubis and in serum of the virgin mouse. Fresh weight DNA and GAG content per 1 ligament is significantly increased, the level of water soluble protein is not affected. A shift in the electrophoretic GAG pattern by an increasing amount of hyaluronic acid and a decreasing amount of chondroitin sulfate and dermatan sulfate can be observed. Concerning GAG-splitting enzymes (N-acetylglucosaminidase, arylsulfatase, beta-glucuronidase) the N-acetylglucosaminidase reveals a significant increase of its activity in the interpubic ligament and in the serum. The data demonstrate that relaxin treatment induces some changes in the GAG metabolism.  相似文献   

19.
The primary stored and circulating form of relaxin in humans, human gene-2 (H2) relaxin, has potent antifibrotic properties with rapidly occurring efficacy. However, when administered to experimental models of fibrosis, H2 relaxin can only be applied over short-term (2-4 week) periods, due to rodents mounting an antibody response to the exogenous human relaxin, resulting in delayed clearance and, hence, increased and variable circulating levels. To overcome this problem, the current study investigated the therapeutic potential of mouse relaxin over long-term exposure in vivo. Mouse relaxin is unique among the known relaxins in that it possesses an extra residue within the C-terminal region of its A-chain. To enable a detailed assessment of its receptor interaction and biological properties, it was chemically synthesized in good overall yield by the separate preparation of each of its A- and B-chains followed by regioselective formation of each of the intramolecular and two intermolecular disulfide bonds. Murine relaxin was shown to bind with high affinity to the human, mouse, and rat RXFP1 (primary relaxin) receptor but with a slightly lower affinity to that of H2 relaxin. When administered to relaxin-deficient mice (which undergo an age-dependent progression of organ fibrosis) over a 4 month treatment period, mouse relaxin was able to significantly inhibit the progression of collagen accumulation in several organs including the lung, kidney, testis, and skin (all p < 0.05 vs untreated group), consistent with the actions of H2 relaxin. These combined data demonstrate that mouse relaxin can effectively inhibit collagen deposition and accumulation (fibrosis) over long-term treatment periods.  相似文献   

20.
Hossain MA  Man BC  Zhao C  Xu Q  Du XJ  Wade JD  Samuel CS 《Biochemistry》2011,50(8):1368-1375
Human gene 3 (H3) relaxin is the most recently discovered member of the relaxin peptide family and can potentially bind all of the defined relaxin family peptide receptors (RXFP1-4). While its effects as a neuromodulator are being increasingly studied through its primary receptor, RXFP3, its actions via other RXFPs are poorly understood. Hence, we specifically determined the antifibrotic effects and mechanisms of action of H3 relaxin via the RXFP1 receptor using primary rat ventricular fibroblasts in vitro, which naturally express RXFP1, but not RXFP3, and a mouse model of fibrotic cardiomyopathy in vivo. Transforming growth factor β1 (TGF-β1) administration to ventricular fibroblasts significantly increased Smad2 phosphorylation, myofibroblast differentiation, and collagen deposition (all p < 0.05 vs untreated controls), while having no marked effect on matrix metalloproteinase (MMP) 9, MMP-13, tissue inhibitor of metalloproteinase (TIMP) 1, or TIMP-2 expression over 72 h. H3 relaxin (at 100 and 250 ng/mL) almost completely abrogated the TGF-β1-stimulated collagen deposition over 72 h, and its effects at 100 ng/mL were equivalent to that of the same dose of H2 relaxin. Furthermore, H3 relaxin (100 ng/mL) significantly inhibited TGF-β1-stimulated cardiac myofibroblast differentiation and TIMP-1 and TIMP-2 expression to an equivalent extent as H2 relaxin (100 ng/mL), while also inhibiting Smad2 phosphorylation to approximately half the extent of H2 relaxin (all p < 0.05 vs TGF-β1). Lower doses of H3 (50 ng/mL) and H2 (50 ng/mL) relaxin additively inhibited TGF-β1-stimulated collagen deposition in vitro, while H3 relaxin was also found to reverse left ventricular collagen overexpression in the model of fibrotic cardiomyopathy in vivo. These combined findings demonstrate that H3 relaxin exerts antifibrotic actions via RXFP1 and may enhance the collagen-inhibitory effects of H2 relaxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号