共查询到20条相似文献,搜索用时 0 毫秒
1.
The principle that the small subunit ribosomal RNA (ssu rRNA) is generally accessible to oligonucleotide probes designed to have high thermodynamic affinity was tested with Stenotrophomonas maltophilia, Rhodobacter sphaeroides, Bacillus subtilis, and Saccharomyces cerevisiae. Fluorescein-labeled probes, designed to have ΔGoverall° = −14 ± 1 and to avoid the potential of nucleobase-specific quenching, were used to target 20 randomly selected sites in each organism. A site was considered accessible if probe brightness was at least 10 times the background signal. With 30-h hybridizations, 71 out of 80 target sites passed the accessibility criterion. Three additional sites were demonstrated to be accessible with either longer hybridizations, which seemed to have a negative effect on some probes, or the addition of formamide to the hybridization buffer. The remaining 6 sites were demonstrated to be accessible by changing the fluorophore to Cy5, slightly modifying probe lengths, using dual-labeled fluorescein probes, or a combination of these approaches. Probe elongations were only needed in 4 probes, indicating a 95% success in correctly predicting ΔGoverall°, the key parameter for the design of high affinity probes. In addition, 94% of the fluorescein labeled probes yielded bright signals, demonstrating that nucleobase-specific quenching of fluorescein is an important factor affecting probe brightness that can be predicted during probe design. Overall, the results support the principle that with a rational design of probes, it is possible to make most target sites in the ssu rRNA accessible. 相似文献
2.
Behrens S Rühland C Inácio J Huber H Fonseca A Spencer-Martins I Fuchs BM Amann R 《Applied and environmental microbiology》2003,69(3):1748-1758
Low accessibility of the rRNA is together with cell wall impermeability and low cellular ribosome content a frequent reason for failure of whole-cell fluorescence hybridization with fluorescently labeled oligonucleotide probes. In this study we compare accessibility data for the 16S rRNA of Escherichia coli (gamma Proteobacteria, Bacteria) with the phylogenetically distantly related organisms Pirellula sp. strain 1 (Planctomycetes, Bacteria) and Metallosphaera sedula (Crenarchaeota, Archaea) and the 18S rRNA accessibility of Saccharomyces cerevisiae (Eucarya). For a total of 537 Cy3-labeled probes, the signal intensities of hybridized cells were quantified under standardized conditions by flow cytometry. The relative probe-conferred fluorescence intensities are shown on color-coded small-subunit rRNA secondary-structure models. For Pirellula sp., most of the probes belong to class II and III (72% of the whole data set), whereas most of the probes targeting sites on M. sedula were grouped into class V and VI (46% of the whole data set). For E. coli, 45% of all probes of the data set belong to class III and IV. A consensus model for the accessibility of the small-subunit rRNA to oligonucleotide probes is proposed which uses 60 homolog target sites of the three prokaryotic 16S rRNA molecules. In general, open regions were localized around helices 13 and 14 including target positions 285 to 338, whereas helix 22 (positions 585 to 656) and the 3' half of helix 47 (positions 1320 to 1345) were generally inaccessible. Finally, the 16S rRNA consensus model was compared to data on the in situ accessibility of the 18S rRNA of S. cerevisiae. 相似文献
3.
A discontinuous small subunit ribosomal RNA in Tetrahymena pyriformis mitochondria 总被引:10,自引:0,他引:10
M N Schnare T Y Heinonen P G Young M W Gray 《The Journal of biological chemistry》1986,261(11):5187-5193
We show here that in the mitochondria of Tetrahymena pyriformis, the small subunit (SSU) rRNA is discontinuous, being comprised of two separate components which we term "alpha" (a novel low molecular weight RNA, approximately equal to 200 nucleotides long) and "beta" (a previously described 14 S RNA). The SSU alpha rRNA has been sequenced in its entirety; it represents the immediate 5'-terminal domain of conventional SSU rRNA. The sequences at the ends of the SSU beta rRNA have also been determined; they show that this molecule corresponds to the 3'-terminal 7/8 of conventional SSU rRNA. A 2.5-kilobase pair XbaI restriction fragment of T. pyriformis mitochondrial DNA which contains the SSU alpha and SSU beta rRNA genes was cloned and its complete nucleotide sequence was determined. This revealed that the genes encoding the two segments of SSU rRNA are separated by a 54-base pair (A + T)-rich spacer. The alpha and beta sequences can be fitted to a generalized secondary structure model for eubacterial 16 S rRNA, with the two RNA species associating through long range interactions to form base-paired regions characteristic of SSU rRNA. In this model, the spacer is situated in a region of pronounced primary and secondary structural variation among SSU rRNAs. The significance of these findings with respect to rRNA biosynthesis and processing and the possible evolutionary relationship between spacers and variable regions in rRNA genes is discussed. 相似文献
4.
J M Neefs Y Van de Peer P De Rijk S Chapelle R De Wachter 《Nucleic acids research》1993,21(13):3025-3049
The database on small ribosomal subunit RNA structure contained 1804 nucleotide sequences on April 23, 1993. This number comprises 365 eukaryotic, 65 archaeal, 1260 bacterial, 30 plastidial, and 84 mitochondrial sequences. These are stored in the form of an alignment in order to facilitate the use of the database as input for comparative studies on higher-order structure and for reconstruction of phylogenetic trees. The elements of the postulated secondary structure for each molecule are indicated by special symbols. The database is available on-line directly from the authors by ftp and can also be obtained from the EMBL nucleotide sequence library by electronic mail, ftp, and on CD ROM disk. 相似文献
5.
The Antwerp database on small ribosomal subunit RNA now offers more than 6000 nucleotide sequences (August 1996). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. For ease of use, the complete database is made available to the scientific community via World Wide Web at URL http://rrna.uia.ac.be/ssu/ . 相似文献
6.
Y Van de Peer E Robbrecht S de Hoog A Caers P De Rijk R De Wachter 《Nucleic acids research》1999,27(1):179-183
Over 11 500 complete or nearly complete sequences are now available from the Antwerp database on small subunit ribosomal RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ 相似文献
7.
About 8600 complete or nearly complete sequences are now available from the Antwerp database on small ribosomal subunit RNA. All these sequences are aligned with one another on the basis of the adopted secondary structure model, which is corroborated by the observation of compensating substitutions in the alignment. Literature references, accession numbers and detailed taxonomic information are also compiled. The database can be consulted via the World Wide Web at URL http://rrna.uia.ac.be/ssu/ 相似文献
8.
The Antwerp database on small ribosomal subunit RNA offers over 4300 nucleotide sequences (August 1995). All these sequences are stored in the form of an alignment based on the adopted secondary structure model, which in turn is corroborated by the observation of compensating substitutions in the alignment. Besides the primary and secondary structure information, literature references, accession numbers and detailed taxonomic information are also compiled. The complete database is made available to the scientific community through anonymous ftp and World Wide Web(WWW). 相似文献
9.
The human RNA 3''-terminal phosphate cyclase is a member of a new family of proteins conserved in Eucarya, Bacteria and Archaea. 总被引:1,自引:0,他引:1
下载免费PDF全文

RNA 3'-terminal phosphate cyclase catalyses the ATP-dependent conversion of the 3'-phosphate to a 2',3'-cyclic phosphodiester at the end of RNA. The physiological function of the cyclase is not known, but the enzyme could be involved in the maintenance of cyclic ends in tRNA splicing intermediates or in the cyclization of the 3' end of U6 snRNA. In this work, we describe cloning of the human cyclase cDNA. The purified bacterially overexpressed protein underwent adenylylation in the presence of [alpha-32P]ATP and catalysed cyclization of the 3'-terminal phosphate in different RNA substrates, consistent with previous findings. Comparison of oligoribonucleotides and oligodeoxyribonucleotides of identical sequence demonstrated that the latter are approximately 500-fold poorer substrates for the enzyme. In Northern analysis, the cyclase was expressed in all analysed mammalian tissues and cell lines. Indirect immunofluorescence, performed with different transfected mammalian cell lines, showed that this protein is nuclear, with a diffuse nucleoplasmic localization. The sequence of the human cyclase has no apparent motifs in common with any proteins of known function. However, inspection of the databases identified proteins showing strong similarity to the enzyme, originating from as evolutionarily distant organisms as yeast, plants, the bacterium Escherichia coli and the archaeon Methanococcus jannaschii. The overexpressed E. coli protein has cyclase activity similar to that of the human enzyme. The conservation of the RNA 3'-terminal phosphate cyclase among Eucarya, Bacteria and Archaea argues that the enzyme performs an important function in RNA metabolism. 相似文献
10.
The published small subunit rRNA (ssrRNA) gene sequences for Strongyloides ratti and Strongyloides stercoralis are remarkably divergent, particularly in the 5' 400 bases of the approximately 1700 base pair (bp) sequences. This level of divergence between species nominally in the same genus was unprecedented. We have redetermined the ssrRNA sequence of S. stercoralis and find that the published sequence is a chimaera of parasite and fungal segments. The true sequence for S. stercoralis ssrRNA is very similar to that of S. ratti. 相似文献
11.
Uwe -G. Maier Claudia J. B. Hofmann Stefan Eschbach Jörn Wolters Gabor L. Igloi 《Molecular & general genetics : MGG》1991,230(1-2):155-160
Summary In cryptomonads, unicellular phototrophic flagellates, the plastid(s) is (are) located in a special narrow compartment which is bordered by two membranes; it harbours neither mitochondria nor Golgi dictyosomes but comprises eukaryotic ribosomes and starch grains together with a small organelle called the nucleomorph. The nucleomorph contains DNA and is surrounded by a double membrane with pores. It is thought to be the vestigial nucleus of a phototrophic eukaryotic endosymbiont. Cryptomonads are therefore supposed to represent an intermediate state in the evolution of complex plastids from endosymbionts. We have succeeded in isolating pure nucleomorph fractions, and can thus provide, using pulsed field gel electrophoresis, polymerase chain reaction and sequence analysis, definitive proof for the eukaryotic nature of the symbiont and its phylogenetic origin. 相似文献
12.
Secondary structure of the Dictyostelium discoideum small subunit ribosomal RNA. 总被引:5,自引:7,他引:5
下载免费PDF全文

We have used comparative analyses of prokaryotic and eukaryotic small subunit ribosomal RNAs to deduce a secondary structure for the Dictyostelium discoideum 18S rRNA. Most of the duplex regions are evolutionarily conserved in all organisms. We have taken advantage of the variation to the D. discoideum sequence (relative to the yeast and frog 19S rRNAs) to identify additional helical regions which are common to the eukaryotic 18S rRNAs. 相似文献
13.
Background
Candida albicans is a polymorphic fungus causing serious infections in immunocompromised patients. It is capable of shifting from yeast to germinating forms such as hypha and pseudohypha in response to a variety of signals, including mammalian serum. We have previously shown that some of the large 25S components of ribosomal RNA in Candida albicans get polyadenylated, and this process is transiently intensified shortly after serum exposure just prior to the appearance of germination changes. 相似文献14.
15.
16.
17.
Complementary oligodeoxynucleotide probes of RNA conformation within the Escherichia coli small ribosomal subunit 总被引:2,自引:0,他引:2
The large RNA molecule within each ribosomal subunit is folded in a specific and compact form. The availability of specific 16S RNA sequences on the surface of the small ribosomal subunit has been probed by using complementary oligodeoxynucleotides. The hybridization of 8-15-nucleotide-long oligomers to their RNA complements within the subunit was quantitated by using a nitrocellulose membrane filter binding assay. The probes have been grouped into classes on the basis of sequence-specific binding ability under different conditions of ionic environment, incubation temperature, and subunit activation state [as defined by the ability to bind phenylalanyl-tRNA in response to a poly(uridylic acid) message]. Oligodeoxynucleotides complementary to nucleotides flanking 7-methylguanosine residue 527 and to the 3'-terminal sequence bound 30S subunits regardless of the activation state. Oligodeoxynucleotides that complement 16S ribosomal RNA residues 1-16, 60-70, 685-696, and 1330-1339 and the sequence adjacent to the colicin E3 cleavage site at residue 1502 all bound efficiently only to subunits in an inactivated conformation. Probes complementary to residues 1-11 and 446-455 bound only inactivated subunits, and then with low efficiency. Sequences complementary to nucleotides 6-16, 99-109, 1273-1281, and 1373-1383 bound 30S subunits poorly regardless of the activation state. With one exception, each probe was bound by native or heat-denatured 16S ribosomal RNA (as determined by size-exclusion chromatography). We conclude that complementary oligodeoxynucleotide binding efficiency is a sensitive measure of the availability of specific RNA sequences under easily definable conditions. 相似文献
18.
19.
Discrimination of Porphyra species based on small subunit ribosomal RNA gene sequence 总被引:2,自引:0,他引:2
M. Kunimoto H. Kito Y. Yamamoto D.P. Cheney Y. Kaminishi Y. Mizukami 《Journal of applied phycology》1999,11(2):203-209
The complete nucleotide sequences of ssu rRNA genes were determined for nine species of Porphyra. Ssu rRNA gene structure
was classified into four types by the presence and absence of intron(s). Gene structure even differed within the same species.
Exon nucleotide sequences were identical within the same species, but differed among species. Seventeen species of Porphyra
were discriminated by comparing the sequences of these diversified regions, using the results of this study and previous studies.
This revised version was published online in July 2006 with corrections to the Cover Date. 相似文献
20.
Size comparisons among integral membrane transport protein homologues in bacteria, Archaea, and Eucarya 总被引:1,自引:0,他引:1
下载免费PDF全文

Integral membrane proteins from over 20 ubiquitous families of channels, secondary carriers, and primary active transporters were analyzed for average size differences between homologues from the three domains of life: Bacteria, Archaea, and Eucarya. The results showed that while eucaryotic homologues are consistently larger than their bacterial counterparts, archaeal homologues are significantly smaller. These size differences proved to be due primarily to variations in the sizes of hydrophilic domains localized to the N termini, the C termini, or specific loops between transmembrane alpha-helical spanners, depending on the family. Within the Eucarya domain, plant homologues proved to be substantially smaller than their animal and fungal counterparts. By contrast, extracytoplasmic receptors of ABC-type uptake systems in Archaea proved to be larger on average than those of their bacterial homologues, while cytoplasmic enzymes from different organisms exhibited little or no significant size differences. These observations presumably reflect evolutionary pressure and molecular mechanisms that must have been operative since these groups of organisms diverged from each other. 相似文献