首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The spontaneous and the stimulated extracellular generation of reactive oxygen species (ROS) by peripheral phagocytes, the blood antioxidant capacity and the degree of oxidative damage were evaluated in patients with severe ischemic and hemorrhagic stroke in the chronic phase of disease. It was found in patients compared to the control group that: (i) the spontaneous phagocyte oxidative activity was enhanced independently of the type of stroke and the time elapsed after stroke onset; (ii) there was no difference in the extracellular ROS generation stimulated by opsonin-dependent and independent receptor mechanisms; (iii) there was no change in the indices of blood antioxidant capacity; (iv) the concentration of plasma lipid peroxides was enhanced regardless of the type of stroke, but it significantly increased over time; and (v) the concentration of blood thiobarbituric acid-reactive material was also enhanced. It was independent of the type of stroke and remained elevated during the whole period studied. We have demonstrated an enhanced spontaneous phagocyte oxidative activity and oxidative damage to lipids in patients in the chronic phase after stroke. The elimination of generated ROS and products of lipid peroxidation from the circulation could prevent the aggravation of chronic vascular injury in patients and could reduce the possibility of a subsequent stroke. This suggests the need for complex therapy, including antioxidant treatment directed to exclude the effects of free radicals, after the oxidative stress of stroke.  相似文献   

2.
Role of oxygen free radicals in carcinogenesis and brain ischemia   总被引:39,自引:0,他引:39  
R A Floyd 《FASEB journal》1990,4(9):2587-2597
Even though oxygen is necessary for aerobic life, it can also participate in potentially toxic reactions involving oxygen free radicals and transition metals such as Fe that damage membranes, proteins, and nucleic acids. Oxygen free radical reactions and oxidative damage are in most cases held in check by antioxidant defense mechanisms, but where an excessive amount of oxygen free radicals are produced or defense mechanisms are impaired, oxidative damage may occur and this appears to be important in contributing to several pathological conditions including aging, carcinogenesis, and stroke. Several newer methods, such as in vivo spin-trapping, have become available to monitor oxygen free radical flux and quantitate oxidative damage. Using a combination of these newer methods collectively focused on one model, recent results show that oxidative damage plays a key role in brain injury that occurs in stroke. Subtle changes, such as oxidative damage-induced loss of glutamine synthetase activity, may be a key event in stroke-induced brain injury. Oxygen free radicals may play a key role in carcinogenesis by mediating formation of base adducts, such as 8-hydroxyguanine, which can now be quantitated to very low levels. Evidence is presented that a new class of free radical blocking agents, nitrone spin-traps, may help not only to clarify if free radical events are involved, but may help prevent the development of injury in certain pathological conditions.  相似文献   

3.
The literary data and own results concerning the stages of free radical lipid oxidation inhibition during the adaptation of animals to stress are reviewed. Using the chronic stress models such as immobilization, experimental neurosis, it has been shown, that in general adaptation syndrome the stage of permanent adaptation to stress corresponds to a permanent inhibition of free radical processes in animal tissues. This stage is accompanied by the activation of superoxide radical scavenging and corresponding changes of lipid composition. similar results are obtained on the model of the development of permanent compensation processes after brain injury. Studying the acute stress it has been found, that during first minutes the inhibition of lipid peroxidation which precedes its further activation takes place. This stage corresponds to the realization of urgent adaptation phase to stress. The role of inhibition of free radical processes in mechanisms of urgent and permanent adaptation to stress is under discussion.  相似文献   

4.
J J Gille  H Joenje 《Mutation research》1992,275(3-6):405-414
According to the free radical theory of aging, loss of cellular function during aging is a consequence of accumulating subcellular damage inflicted by activated oxygen species. In cells, the deleterious effects of activated oxygen species may become manifest when the balance between radical formation and destruction (removal) is disturbed creating a situation denoted as 'oxidative stress'. Cell culture systems are especially useful to study the effects of oxidative stress, in terms of both toxicity and cellular adaptive responses. A better understanding of such processes may be pertinent to fully comprehend the cellular aging process. This article reviews three model systems for oxidative stress: extracellular sources of O2-. and H2O2, and normobaric hyperoxia (elevated ambient oxygen). Methodological and practical aspects of these exposure models are discussed, as well as their prominent effects as observed in cultures of Chinese hamster cell lines. Since chronic exposure models are to be preferred, it is argued that normobaric hyperoxia is a particularly relevant oxidative stress model for in vitro cellular aging studies.  相似文献   

5.
Malignant mesothelioma (MM) is a relatively rare cancer that occurs almost exclusively following respiratory exposure to asbestos in humans. Its pathogenesis is closely associated with iron overload and oxidative stress in mesothelial cells. On fiber exposure, mesothelial cells accumulate fibers simultaneously with iron, which either performs physical scissor function or catalyzes free radical generation, leading to oxidative DNA damage such as strand breaks and base modifications, followed by activation of intracellular signaling pathways. Chrysotile, per se without iron, causes massive hemolysis and further adsorbs hemoglobin. Exposure to indigestible foreign materials also induces chronic inflammation, involving consistent generation of free radicals and subsequent activation of NALP3 inflammasomes in macrophages. All of these contribute to mesothelial carcinogenesis. Genomic alterations most frequently involve homozygous deletion of INK4A/4B, and other pathways such as Hippo and TGF-β pathways are also affected in MM. Recently, analyses of familial MM sorted out BAP1 as a novel responsible tumor suppressor gene, whose function is not fully elucidated. Five-year survival of mesothelioma is still ~8%, and this cancer is increasing worldwide. Connective tissue growth factor, a secretory protein creating a vicious cycle mediated by β-catenin, has been recognized as a hopeful target for therapy, especially in sarcomatoid subtype. Recent research outcomes related to microRNAs and cancer stem cells also offer additional novel targets for the treatment of MM. Iron reduction as chemoprevention of mesothelioma is helpful at least in an animal preclinical study. Integrated approaches to fiber-induced oxidative stress would be necessary to overcome this currently fatal disease.  相似文献   

6.
In this review, we summarize the role of hyperglycemia during cerebral ischemia. Hyperglycemia occurring during experimental and clinical stroke has been associated with increased cerebral damage. Increased oxidative stress resulting from hyperglycemia is believed to contribute to the exacerbated damage. More specifically, superoxide, nitric oxide and peroxynitrite are believed to play an important role in cerebral damage. This also involves increased recruitment of various blood cells to the ischemic zone that contribute to inflammation. We present data from our group and others that demonstrate that free radical production is increased during hyperglycemic stroke in rodents. Recent data suggest that inflammation is an important component of ischemic damage under both normo- and hyperglycemic conditions. We summarize numerous studies that indicate that a variety of antioxidant (inhibition of free radical production, scavenging of free radicals and increasing free radical degradation) and anti-inflammatory strategies decrease cerebral infarction. Finally, we compare the success of some of these strategies in clinical trials compared to the animal models.  相似文献   

7.
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones, including alpha-phenyl-tert-butylnitrone (PBN), have been shown to have potent biological activity in many experimental animal models. Many diseases of aging, including stroke, cancer development, Parkinson disease, and Alzheimer disease, are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development for stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also, in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic-noise-induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes cannot readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our studies and others in which the use of selected nitrones as novel therapeutics has been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases.  相似文献   

8.
A growing body of epidemiologic and experimental data point to chronic bacterial and viral infections as possible risk factors for neurodegenerative diseases, including Alzheimer??s disease, Parkinson??s disease and amyotrophic lateral sclerosis. Infections of the central nervous system, especially those characterized by a chronic progressive course, may produce multiple damage in infected and neighbouring cells. The activation of inflammatory processes and host immune responses cause chronic damage resulting in alterations of neuronal function and viability, but different pathogens can also directly trigger neurotoxic pathways. Indeed, viral and microbial agents have been reported to produce molecular hallmarks of neurodegeneration, such as the production and deposit of misfolded protein aggregates, oxidative stress, deficient autophagic processes, synaptopathies and neuronal death. These effects may act in synergy with other recognized risk factors, such as aging, concomitant metabolic diseases and the host??s specific genetic signature. This review will focus on the contribution given to neurodegeneration by herpes simplex type-1, human immunodeficiency and influenza viruses, and by Chlamydia pneumoniae.  相似文献   

9.
Potential markers of oxidative stress in stroke   总被引:8,自引:0,他引:8  
Free radical production is increased in ischemic and hemorrhagic stroke, leading to oxidative stress that contributes to brain damage. The measurement of oxidative stress in stroke would be extremely important for a better understanding of its pathophysiology and for identifying subgroups of patients that might receive targeted therapeutic intervention. Since direct measurement of free radicals and oxidized molecules in the brain is difficult in humans, several biological substances have been investigated as potential peripheral markers. Among lipid peroxidation products, malondialdehyde, despite its relevant methodological limitations, is correlated with the size of ischemic stroke and clinical outcome, while F2-isoprostanes appear to be promising, but they have not been adequately evaluated. 8-Hydroxy-2-deoxyguanosine has been extensively investigated as markers of oxidative DNA damage but no study has been done in stroke patients. Also enzymatic and nonenzymatic antioxidants have been proposed as indirect markers. Among them ascorbic acid, alpha-tocopherol, uric acid, and superoxide dismutase are related to brain damage and clinical outcome. After a critical evaluation of the literature, we conclude that, while an ideal biomarker is not yet available, the balance between antioxidants and by-products of oxidative stress in the organism might be the best approach for the evaluation of oxidative stress in stroke patients.  相似文献   

10.
11.
Oxidative stress plays an important role in the pathogenesis of numerous chronic age-related free radical-induced diseases. Improved antioxidant status minimizes oxidative damage to DNA, proteins, lipids and other biomolecules. Diet-derived antioxidants such as vitamin C, vitamin E, carotenoids and related plant pigments are important in antioxidative defense and maintaining health. The results of long-term epidemiological and clinical studies suggest that protective vitamin C plasma concentration for minimum risk of free radical disease is higher than 50 micromol/l. Products of oxidative damage to DNA (DNA strand breaks with oxidized purines and pyrimidines), proteins (carbonyls) and lipids (conjugated dienes of fatty acids, malondialdehyde) were estimated in a group of apparently healthy adult non-smoking population in dependence on different vitamin C plasma concentrations. Under conditions of protective plasma vitamin C concentrations (>50 micromol/l) significantly lower values of DNA, protein and lipid oxidative damage were found in comparison with the vitamin C-deficient group (<50 micromol/l). The inhibitory effect of higher fruit and vegetable consumption (leading to higher vitamin C intake and higher vitamin C plasma concentrations) on oxidation of DNA, proteins and lipids is also expressed by an inverse significant correlation between plasma vitamin C and products of oxidative damage. The results suggest an important role of higher and frequent consumption of protective food (fruit, vegetables, vegetable oils, nuts, seeds and cereal grains) in prevention of free radical disease.  相似文献   

12.
We previously found that ginsenoside Rd (Rd), one of the main active ingredients in Panax ginseng, attenuates neuronal oxidative damage in vitro induced by hydrogen peroxide and oxygen-glucose deprivation. In this study, we sought to investigate the potential protective effects and associated mechanisms of Rd in a rat model of focal cerebral ischemia. Rats administered with Rd (0.1-200mg/kg) or vehicle was subjected to transient middle cerebral artery occlusion. Rd at the dose of 10-50mg/kg significantly reduced the infarct volume and improved the long-term neurological outcome up to 6 weeks after ischemia. To evaluate the underlying mechanisms, in vivo free radical generation was monitored using microdialysis, oxidative DNA damage was identified by 8-hydroxy-deoxyguanosine immunostaining, oxidative protein damage was identified by the assessment of protein carbonyl and advanced glycosylation end products, and lipid peroxidation was estimated by determining the malondialdehyde and 4-hydroxynonenal formations. Microdialysis results displayed a prominent inhibitory effect of Rd on the hydroxy radical formation trapped as 2,3- and 2,5-DHBA. Early accumulations of DNA, protein and lipid peroxidation products were also suppressed by Rd treatment. Although Rd partly preserved endogenous antioxidant activities in the ischemic penumbra, in sham rats without stroke, endogenous antioxidant activities were not affected by Rd. Furthermore, we assayed sequential inflammatory response in a later phase after ischemia. Rd significantly eliminated inflammatory injury as indicated by the suppression of microglial activation, inducible nitric oxide synthase and cyclooxygenase-2 expression. Collectively, these findings demonstrated that Rd exerts neuroprotection in transient focal ischemia, which may involve early free radicals scavenging pathway and a late anti-inflammatory effect.  相似文献   

13.
Behl C  Moosmann B 《Biological chemistry》2002,383(3-4):521-536
Many neurodegenerative disorders and syndromes are associated with an excessive generation of reactive oxygen species (ROS) and oxidative stress. The pathways to nerve cell death induced by diverse potential neurotoxins such as peptides, excitatory amino acids, cytokines or synthetic drugs commonly share oxidative downstream processes, which can cause either an acute oxidative destruction or activate secondary events leading to apoptosis. The pathophysiological role of ROS has been intensively studied in in vitro and in vivo models of chronic neurodegenerative diseases such as Alzheimer's disease (AD) and of syndromes associated with rapid nerve cell loss as occuring in stroke. In AD, oxidative neuronal cell dysfunction and cell death caused by protofibrils and aggregates of the AD-associated amyloid beta protein (Abeta) may causally contribute to pathogenesis and progression. ROS and reactive nitrogen species also take part in the complex cascade of events and the detrimental effects occuring during ischemia and reperfusion in stroke. Direct antioxidants such as chain-breaking free radical scavengers can prevent oxidative nerve cell death. Although there is ample experimental evidence demonstrating neuroprotective activities of direct antioxidants in vitro, the clinical evidence for antioxidant compounds to act as protective drugs is relatively scarce. Here, the neuroprotective potential of antioxidant phenolic structures including alpha-tocopherol (vitamin E) and 17beta-estradiol (estrogen) in vitro is summarized. In addition, the antioxidant and cytoprotective activities of lipophilic tyrosine- and tryptophan-containing structures are discussed. Finally, an outlook is given on the neuroprotective potential of aromatic amines and imines, which may comprise novel lead structures for antioxidant drug design.  相似文献   

14.
15.
Oxidative damage to proteins is known to occur via conversion of side chain amino groups to corresponding carbonyl derivatives. Such damage to enzymes and purified proteins has been quantified previously by reduction with sodium boro[3H]hydride and subsequent measurement of the incorporation of 3H into amino acid fractions. In this study, the NaB3H4 reduction assay was modified to permit the quantitation of free radical-mediated oxidative damage to proteins obtained from animals. Modifications included additional extractions of protein isolates with organic solvents to remove lipids and with nitric acid to remove metal ions. The modified assay has first been validated in vitro by measuring changes in levels of oxidative damage to bovine serum albumin exposed to xanthine plus xanthine oxidase (2-fold increase), to hydrogen peroxide and iron(II) sulfate (5-fold increase), or to gamma radiation (30-fold increase over controls, respectively). gamma radiation of isolated hamster kidney protein also raised the carbonyl content in a dose-dependent manner. The modified assay has then been validated in vivo by measuring the changes in oxidative damage to lung tissue in animals exposed to approximately 85% oxygen (2-fold increase) or to different doses of paraquat (5-fold increase with the high dose over controls, respectively). The assay was then used to examine free radical-mediated oxidation introduced by acute or chronic treatment of hamsters with estrogens, since both synthetic and natural estrogens induce kidney tumors in this species. Priming of hamsters for 3 days with 20 mg/kg/day diethylstilbestrol and treatment with 100 mg/kg of this drug on the 4th day resulted in a 160% increase in free radical modification of renal proteins. Oxidative damage to kidney proteins was also assayed in hamsters treated with estradiol implants for up to 7 months, a regimen known to induce kidney tumors. Significant increases in covalent oxidative modification to renal proteins over values in age-matched controls were detected after 1, 2, and 7 months of continuous estradiol exposure. It is concluded that the modification of the NaB3H4 reduction assay is a useful postlabeling method for monitoring free radical action in vivo. Furthermore, it is postulated that free radical damage in estrogen-treated hamster kidney plays a role in estrogen-induced carcinogenesis.  相似文献   

16.
Cigarette smoke is widely believed to increase free radical concentrations causing subsequent oxidative processes that lead to DNA damage and hence, to several diseases including lung cancer and atherosclerosis. Vitamin C is a reducing agent that can terminate free-radical-driven oxidation by being converted to a resonance-stabilized free radical. To investigate whether short-term supplementation with the antioxidants vitamin C and E decreases free-radical-driven oxidation and thus decreases DNA damage in smokers, we determined the frequency of micronuclei in lymphocytes in 24 subjects and monitored the electron paramagnetic resonance signal of ascorbate free radical formation in plasma. Further parameters comprised sister-chromatid exchanges and thiobarbituric acid-reactive substances. Twelve smokers and twelve non-smokers took 1000 mg ascorbic acid daily for 7 days and then 1000 mg ascorbic acid and 335.5 mg RRR-α-tocopherol daily for the next 7 days. Baseline concentrations of both vitamins C and E were lower and baseline numbers of micronuclei were higher (p < 0.0001) in smokers than in non-smokers. After 7 days of vitamins C and E, DNA damage as monitored by the number of micronulei was decreased in both, smokers and non-smokers, but it was more decreased in smokers as indicated by fewer micronuclei in peripheral lymphocytes (p < 0.05). Concomitantly, the plasma concentrations of vitamin C (p < 0.001) as well as the ascorbate free radical (p < 0.05) were increased. The corresponding values in non-smokers, however, did not change. Our findings show that increased ascorbate free radical formation in plasma after short-term supplementation with vitamins C and E can decrease the number of micronuclei in blood lymphocytes and thus DNA damage in smokers.  相似文献   

17.
Cigarette smoke is widely believed to increase free radical concentrations causing subsequent oxidative processes that lead to DNA damage and hence, to several diseases including lung cancer and atherosclerosis. Vitamin C is a reducing agent that can terminate free-radical-driven oxidation by being converted to a resonance-stabilized free radical. To investigate whether short-term supplementation with the antioxidants vitamin C and E decreases free-radical-driven oxidation and thus decreases DNA damage in smokers, we determined the frequency of micronuclei in lymphocytes in 24 subjects and monitored the electron paramagnetic resonance signal of ascorbate free radical formation in plasma. Further parameters comprised sister-chromatid exchanges and thiobarbituric acid-reactive substances. Twelve smokers and twelve non-smokers took 1000 mg ascorbic acid daily for 7 days and then 1000 mg ascorbic acid and 335.5 mg RRR-alpha-tocopherol daily for the next 7 days. Baseline concentrations of both vitamins C and E were lower and baseline numbers of micronuclei were higher (p < 0.0001) in smokers than in non-smokers. After 7 days of vitamins C and E, DNA damage as monitored by the number of micronulei was decreased in both, smokers and non-smokers, but it was more decreased in smokers as indicated by fewer micronuclei in peripheral lymphocytes (p < 0.05). Concomitantly, the plasma concentrations of vitamin C (p < 0.001) as well as the ascorbate free radical (p < 0.05) were increased. The corresponding values in non-smokers, however, did not change. Our findings show that increased ascorbate free radical formation in plasma after short-term supplementation with vitamins C and E can decrease the number of micronuclei in blood lymphocytes and thus DNA damage in smokers.  相似文献   

18.
Alzheimer's disease, the major dementing disorder of the elderly that affects over 4 million Americans, is related to amyloid beta-peptide, the principal component of senile plaques in Alzheimer's disease brain. Oxidative stress, manifested by protein oxidation and lipid peroxidation, among other alterations, is a characteristic of Alzheimer's disease brain. Our laboratory united these two observations in a model to account for neurodegeneration in Alzheimer's disease brain, the amyloid beta-peptide-associated oxidative stress model for neurotoxicity in Alzheimer's disease. Under this model, the aggregated peptide, perhaps in concert with bound redox metal ions, initiates free radical processes resulting in protein oxidation, lipid peroxidation, reactive oxygen species formation, cellular dysfunction leading to calcium ion accumulation, and subsequent neuronal death. Free radical antioxidants abrogate these findings. This review outlines the substantial evidence from multiidisciplinary approaches for amyloid beta-peptide-associated free radical oxidative stress and neurotoxicity and protection against these oxidative processes and cell death by free radical scavengers. In addition, we review the strong evidence supporting the notion that the single methionine residue of amyloid beta-peptide is vital to the oxidative stress and neurotoxicological properties of this peptide. Further, we discuss studies that support the hypothesis that aggregated soluble amyloid beta-peptide and not fibrils per se are necessary for oxidative stress and neurotoxicity associated with amyloid beta-peptide.  相似文献   

19.
Responses to oxidative stress contribute to damage caused by chronic cerebral hypoperfusion, which is characteristic of certain neurodegenerative diseases. We used a rat model of chronic cerebral hypoperfusion to determine whether green tea polyphenols, which are potent antioxidants and free radical scavengers, can reduce vascular cognitive impairment and to investigate their underlying mechanisms of action. Different doses of green tea polyphenols were administered orally to model rats from 4 to 8 weeks after experimentally induced cerebral hypoperfusion, and spatial learning and memory were assessed using the Morris water maze. Following behavioral testing, oxygen free radical levels and antioxidative capability in the cortex and hippocampus were measured biochemically. The levels of lipid peroxidation and oxidative DNA damage were assessed by immunohistochemical staining for 4-hydroxynonenal and 8-hydroxy-2′-deoxyguanosine, respectively. Rats that received green tea polyphenols 400 mg/kg per day had better spatial learning and memory than saline-treated rats. Green tea polyphenols 400 mg/kg per day were found to scavenge oxygen free radicals, enhance antioxidant potential, decrease lipid peroxide production and reduce oxidative DNA damage. However, green tea polyphenols 100 mg/kg per day had no significant effects, particularly in the cortex. This study suggests that green tea polyphenols 400 mg/kg per day improve spatial cognitive abilities following chronic cerebral hypoperfusion and that these effects may be related to the antioxidant effects of these compounds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号