首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Assembly of microfilaments involves the conversion of actin from the monomeric (G) to the filamentous (F) form. The exact sequence of events responsible for this conversion is yet to be defined and, in particular, the role of calcium remains unclear. Intact and electropermeabilized human neutrophils were used to assess more directly the role of cytosolic calcium [( Ca2+]i) in actin assembly. Staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin and right angle light scattering were used to monitor the formation of F-actin. Though addition of Ca2+ ionophores can be known to induce actin assembly, the following observations suggest that an increased [Ca2+]i is not directly responsible for receptor-induced actin polymerization: (a) intact cells in Ca2(+)-free medium, depleted of internal Ca2+ by addition of ionophore, responded to the formyl peptide fMLP with actin assembly despite the absence of changes in [Ca2+]i, assessed with Indo-1; (b) fMLP induced a significant increase in F-actin content in permeabilized cells equilibrated with medium containing 0.1 microM free Ca2+, buffered with up to 10 mM EGTA; (c) increasing [Ca2+]i beyond the resting level by direct addition of CaCl2 to permeabilized cells resulted in actin disassembly. Conversely, lowering [Ca2+]i resulted in spontaneous actin assembly. To reconcile these findings with the actin-polymerizing effects of Ca2+ ionophores, we investigated whether A23187 and ionomycin induced actin assembly by a mechanism independent of, or secondary to the increase in [Ca2+]i. We found that the ionophore-induced actin assembly was completely inhibited by the leukotriene B4 (LTB4) antagonist LY-223982, implying that the ionophore effect was secondary to LTB4 formation, possibly by stimulation of phospholipase A2. We conclude that actin assembly is not mediated by an increase in [Ca2+]i, but rather that elevated [Ca2+]i facilitates actin disassembly, an effect possibly mediated by Ca2(+)-sensitive actin filament-severing proteins such as gelsolin. Sequential actin assembly and disassembly may be necessary for functions such as chemotaxis.  相似文献   

2.
When guinea pig peritoneal neutrophils were suspended in the isotonic medium of potassium, rubidium, and cesium ions at 37 degrees C, the cells released superoxide, while low activity was observed in the isotonic medium of sodium and lithium ions. The activity induced in the potassium medium was enhanced by potassium-ionophores, valinomycin, and gramicidin, and decreased by a potassium channel blocker, 4-aminopyridine. The superoxide-releasing activity was not affected by the presence or absence of extracellular calcium but was inhibited by an intracellular calcium antagonist-8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate(TMB-8) with the half-inhibition concentration of 50 microM. The release of granular enzymes, lysozyme and beta-glucuronidase, was also induced in the isotonic potassium medium in the absence of extracellular calcium and inhibited by TMB-8. A remarkable elevation of the intracellular free calcium concentration in neutrophils, which was monitored by quin-2 fluorescence, was found when the cells were added to the potassium medium without calcium. The elevation was inhibited by the addition of TMB-8. These observations suggest that calcium mobilization from intracellular storage sites, not an influx of calcium from the extracellular medium, causes the release of superoxide and the granular enzymes in isotonic potassium medium.  相似文献   

3.
The superoxide release and the change in the intracellular free calcium ions on stimulation with N-formyl-methionyl-leucyl-phenylalanine were studied in human neutrophils deprived of divalent cations by treatment of the cells with ionophore A23187 in the presence of EGTA. The depleted cells showed no release of superoxide on stimulation with the chemotactic peptide when calcium ions were absent in the medium, but the activity was completely recovered when the cells were preincubated with calcium for at least 3 min before the stimulation. The cells pretreated with Cd2+ showed slight activity of the release, but no recovery was observed with other divalent cations such as Mg2+, Sr2+, Co2+, Ba2+ and Zn2+. The recovery with calcium ions was dependent on the time of the addition relative to the time of the stimulation with the chemotactic peptide: a simultaneous addition of both calcium and the peptide elicited about half of the full activity, while no release was observed when calcium was added later than 2 min after the stimulation with the peptide, though a marked elevation of the intracellular free calcium monitored by quin-2 fluorescence was found. Comparison of the time-courses of the superoxide release and the change in the fluorescence suggest that, besides the elevation of intracellular free calcium, a transient reaction which is also dependent on calcium is required for the full induction of the superoxide-producing activity.  相似文献   

4.
Hormone-evoked calcium release from intracellular stores is a quantal process   总被引:19,自引:0,他引:19  
Ca2+ mobilization by hormones, ionomycin, and inositol 1,4,5-trisphosphate (Ins-1,4,5-P3) were studied to determine whether Ca2+ release is a continuous or a quantal process. Hormone-mediated Ca2+ release occurs only during the first 2-4 s of stimulation. Stimulation of acini with a maximal hormone concentration following stimulation with a submaximal concentration resulted in free cytosolic Ca2+ concentration ([Ca2+]i) increase and 45Ca efflux. The peak [Ca2+]i increase induced by a maximal concentration of agonist was nearly constant when cells were prestimulated with a submaximal dose for 1-15 min. Submaximal hormone concentrations release only a fraction of intracellular 45Ca2+, after which intracellular Ca2+ content remains constant. The partially released stores remain depleted until cell stimulation is terminated, at which time the stores reload with Ca2+. For comparison, increasing concentrations of ionomycin resulted in increasing rates of Ca2+ release. Each ionomycin concentration released all the Ca2+ from intracellular stores. We therefore conclude that hormone-evoked Ca2+ release is a quantal rather than a continuous process. In permeabilized cells, increasing concentrations of Ins-1,4,5-P3 resulted in an increased fraction of Ca2+ release. No submaximal Ins-1,4,5-P3 concentration was capable of releasing all the Ins-1,4,5-P3-mobilizable Ca2+. Therefore, it appears that the quantal properties of hormone-evoked Ca2+ release reflect the quantal properties of Ins-1,4,5-P3-mediated Ca2+ release from intracellular stores.  相似文献   

5.
R Proffitt  R M Case 《Cell calcium》1984,5(4):335-350
Orthovanadate accelerates 45Ca efflux and enzyme secretion from the rat pancreas incubated in either control (2.5 mM Ca) or nominally Ca-free buffers. Secretion induced by vanadate does not appear to be mediated by changes in either adenylate cyclase or sodium pump activity. Instead, vanadate appears to act at an intracellular site to cause the release of calcium from the same pool mobilised by acetylcholine. Vanadate action is not inhibited by DIDS. The effect of pH on vanadate action may be accounted for by changes in the distribution of the vanadates. Vanadyl sulphate inhibits secretion evoked by acetylcholine. This suggests that intracellular reduction of vanadate (+5 oxidation state) to the +4 oxidation state may account for an inhibitory component observed during stimulation with vanadate.  相似文献   

6.
Human thyroid cells in monolayer responded to acute stimulation by TSH with an increase in the secretion of T3. This process appeared to be dependent on a rise in the cytosolic calcium concentration since the antagonist of intraceliular calcium mobilization, TMB-8, was found to inhibit the release of T3 in response to TSH. The importance of intracellular calcium was further shown using the agent veratridine which increases the free calcium level within cells; veratridine potentiated the stimulation of T3 secretion by TSH and itself stimulated the release of T3 to a level higher than that seen in the presence of TSH alone. The calcium ionophore A23197 produced a biphasic effect on T3 secretion from human thyroid monolayers; at low concentrations, A23187 caused a decrease in both unstimulated and TSH-stimulated T3 secretion but above a concentration of 1 M, T3 secretion was increased. The calmodulin antagonist W7 was found to inhibit T3 release in response to TSH, indicating a role for calmodulin in mediating the effects of intracellular calcium on T3 secretion.  相似文献   

7.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

8.
The action of two potent store operated Ca2+ entry (SOCE) inhibitors, ML-9 and GdCl3 on Ca2+ fluxes induced by the pro-inflammatory agonists FMLP, PAF, LTB4 as well as the receptor-independent stimulus thapsigargin has not been documented in human neutrophils. In this study, ML-9 enhanced both release and subsequent Ca2+ influx in response to agonists whereas it enhanced Ca2+ release by thapsigargin, but inhibited Ca2+ influx. In contrast, 1 μM GdCl3 completely inhibited Ca2+ influx in response to thapsigargin, but only partially blocked Ca2+ influx after agonist stimulation. These results strongly suggest a major role for receptor-operated Ca2+ influx in human neutrophils.  相似文献   

9.
Staurosporine, a microbial alkaloid, enhances inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG) production rapidly and dose-dependently in fMet-Leu-Phe (FMLP)-stimulated human neutrophils showing maximal effects at 1 microM concentration. The IP3 increase was specific for staurosporine as three other putative protein kinase C (PKC) inhibitors, H7, sphingosine and palmitoylcarnitine were unable to enhance the IP3 generation in FMLP-stimulated human neutrophils. Staurosporine, at concentrations 0.3-1.0 microM, did not affect the initial mobilization of FMLP-induced intracellular Ca2+ (Ca2+i), although a sustained elevation of cytosolic Ca2+ level was observed within 5 min. This effect could not be suppressed, even by 1 microM phorbol-myristate 12,13-acetate (PMA). Whereas lower concentrations of staurosporine (less than or equal to 100 nM) were unable to affect FMLP-induced IP3 production, DG accumulation and Ca2+i, the PMA-inhibited initial Ca2+i signal and IP3 formation triggered by FMLP were almost completely restored. At higher concentrations (greater than or equal to 300 nM) staurosporine reversed the inhibitory effect of other protein kinases, distinct from the PMA-inducible one, which may be responsible for the phosphatidyl inositol 4,5-bisphosphate (PIP2) breakdown, thus causing accumulation of IP3 and DG and an elevation of C2+i level. Whereas IP3 declined to basal level within 5 min, the DG level remained elevated during the same period. This phenomenon is attributed to phospholipase D (PLD) stimulation by staurosporine, which augments the DG synthesis, in part through PA degradation via phosphatidic acid (PA) phosphohydrolase.  相似文献   

10.
Dopaminergic reduction of intracellular calcium: the role of calcium influx   总被引:1,自引:0,他引:1  
The effects of dopamine (DA) on 45Ca2+ ion movement and prolactin release in dispersed female rat anterior pituitary cells were studied to elucidate the mechanism for DA reduction of intracellular calcium levels. In 45Ca2+ prelabeled cells, DA inhibited fractional calcium efflux and prolactin release simultaneously and continuously in a concentration-dependent manner (IC50 20 nM DA). We then studied unidirectional calcium influx and observed haloperidol-reversible, concentration-dependent DA suppression of calcium influx into unlabeled cells. These data complement and extend reported fluorescent dye studies and suggest that dopamine primarily inhibits calcium influx, thereby reducing intracellular calcium levels, which leads to suppression of prolactin release and is manifest secondarily as a reduction in fractional 45Ca2+ efflux.  相似文献   

11.
Exposure to combined suboptimal concentrations of 4 beta-phorbol 12-myristate 13-acetate and the calcium ionophore A23187 stimulates superoxide release from guinea pig neutrophils to rates ca. 3.5-fold greater than the sum of the rates elicited by each of the agents added separately. This effect was largely dependent upon the presence of calcium in the extracellular medium. The data are discussed in relation to recent reports concerning the interactions of phorbol-esters with cells and the mechanism of activation of superoxide release by neutrophils.  相似文献   

12.
Riegel AC  Williams JT 《Neuron》2008,57(4):559-570
Changes in cytosolic calcium are crucial for numerous processes including neuronal plasticity. This study investigates the regulation of cytosolic calcium by corticotropin-releasing factor (CRF) in midbrain dopamine neurons. The results demonstrate that CRF stimulates the release of intracellular calcium from stores through activation of adenylyl cyclase and PKA. Imaging and photolysis experiments showed that the calcium originated from dendrites and required both functional IP3 and ryanodine receptor channels. The elevation in cytosolic calcium potentiated calcium-sensitive potassium channels (sK) activated by action potentials and metabotropic Gq-coupled receptors for glutamate and acetylcholine. This increase in cytosolic calcium activated by postsynaptic Gs-coupled CRF receptors may represent a fundamental mechanism by which stress peptides and hormones can shape Gq-coupled receptor-mediated regulation of neuronal excitability and synaptic plasticity in dopamine neurons.  相似文献   

13.
There is evidence that C5a and macrophage migration inhibitory factor (MIF) both play important roles in experimental sepsis. Humans with sepsis also show elevated levels of both mediators in the blood. Regulation of MIF during sepsis is poorly understood. We now demonstrate that neutrophil depletion greatly reduced serum MIF levels in rats and mice during the onset of sepsis after cecal ligation and puncture. In vitro, C5a induced MIF release from rat and mouse neutrophils. In vivo blockade of C5aR or absence of C5aR led to significantly reduced MIF generation during the onset of sepsis. C5a-induced release in vitro of MIF from neutrophils appeared to be due to up-regulation of MIF in cytoplasmic granules of neutrophils via activation of the protein kinase B signaling pathway together with involvement of PI3K. Our data suggest that C5a plays a role in enhancing MIF release from neutrophils in vitro and during sepsis. These findings represent a previously unrecognized function of C5a and neutrophils in the appearance of MIF in sepsis.  相似文献   

14.
Neutrophil activation by a variety of stimuli is accompanied by an intracellular acidification, which has been postulated to mediate actin polymerization (Yuli and Oplatka, Science 1987, 235, 340). This hypothesis was tested using 7-nitrobenz-2-oxa-1,3-diazole (NBD)-phallacidin staining and flow cytometry, or right angle light scattering to study actin assembly in intact and electrically permeabilized human neutrophils. Intracellular pH was measured fluorimetrically using a pH sensitive dye. In cells stimulated with N-formyl-methionyl-leucyl-phenylalanine (fMLP) at 21 degrees C, actin assembly clearly preceded the intracellular acidification in response to fMLP. Moreover, actin polymerization persisted in cells where intracellular pH was clamped near the resting (unstimulated) level using nigericin/K+. Finally, fMLP induced a significant increase in F-actin content in electropermeabilized neutrophils equilibrated with an extracellular medium containing up to 50 mM HEPES. These observations indicate that fMLP-stimulated F-actin assembly is not mediated by a decrease in intracellular pH and suggest that changes in transmembrane potential and ionic gradients are unlikely to mediate actin polymerization.  相似文献   

15.
Oleic acid (OA) is a nonesterified fatty acid that is released into the blood during lipomobilization at the time of calving in cows, a period where increased risk of infection and acute inflammation is observed. These data suggest potential OA-mediated regulation of innate immune responses. In the present study, we assessed the effects of OA on intracellular calcium release, ERK1/2 phosphorylation, superoxide production, CD11b expression and matrix metalloproteinase-9 (MMP-9) release in bovine neutrophils. Furthermore, the presence of GPR40, an OA receptor, was assessed by RT-PCR, immunoblotting and confocal microscopy. OA induced, in a dose-dependent manner, intracellular calcium mobilization, superoxide production and CD11b expression in bovine neutrophils; these effects were reduced by the intracellular chelating agent BAPTA-AM. OA also induced ERK2 phosphorylation and MMP-9 release. RT-PCR analysis detected mRNA expression of a bovine ortholog of the GPR40 receptor. Using a polyclonal antibody against human GPR40, we detected a protein of 31 kDa by immunoblotting that was localized predominately in the plasma membrane. The selective agonist of GPR40, GW9508, induced intracellular calcium mobilization and ERK2 phosphorylation. In conclusion, OA can modulate bovine neutrophil responses in an intracellular calcium-dependent manner; furthermore, these responses could be induced by GPR40 activation.  相似文献   

16.
After the seminal work of Ebashi and coworkers which established the essential role of the intracellular Ca2+ concentration ([Ca2+]i) in the regulation of skeletal muscle contraction, we have witnessed an explosive elongation of the list of cell functions that are controlled by the [Ca2+]i. In numerous instances, release of intracellular Ca2+ stores plays important roles in Ca2+ signalling which displays significant variation in spatio-temporal pattern. There are two families of Ca2+ release channels, ryanodine receptors and inositol 1,4,5-trisphosphate (IP3) receptors. These Ca2+ release channels are structurally and functionally similar. In particular, the activity of both types of channels is regulated by the [Ca2+]i. The [Ca2+]i dependence of the Ca2+ release channel activity provides both types of channels with properties of a Ca2+ signal amplifier. This function of the ryanodine receptor is important in striated muscle excitation-contraction coupling, whereas that of the IP3 receptor seems to be the basis of the generation of Ca2+ waves. Thus the wide variety of Ca2+ signalling patterns seem to be critically dependent on the [Ca2+]i dependence of the Ca2+ release channels.  相似文献   

17.
We have studied the capacity of human neutrophils to release arachidonic acid from diacylglycerol, employing 1-stearoyl-2-[1-14C]arachidonoyl-sn-glycerol and 1-[1-14C]stearoyl-2-arachidonoyl-sn-glycerol as exogenous substrates. We have found that arachidonic acid is removed from diacylglycerol by the sequential action of two enzymes. First, the sn-1 position is split by 1-diacylglycerol lipase activity, and then, arachidonic acid is released from the resulting 2-monoacylglycerol by a 2-monoacylglycerol lipase. The specific activity of the 2-monoacylglycerol lipase, using 2-[1-14C]arachidonoyl-sn-glycerol as exogenous substrate, was at least 9-fold higher than that of 1-diacylglycerol lipase, indicating that the action of the 1-diacylglycerol lipase is the rate-limiting step in arachidonic acid release from diacylglycerol. Postnuclear supernatants from A23187-treated cells showed a 2.5-fold increase in both lipase activities. The arachidonic acid-releasing diacylglycerol lipase system showed an optimum pH of 4.5 and was not inhibited by EGTA or stimulated by Ca2+, Mg2+, Mn2+, Zn2+, or Co2+. However, arachidonic acid release was inhibited by Hg2+, suggesting the involvement of sulfhydryl groups in catalytic activity. The subcellular distribution of both 1-diacylglycerol lipase and 2-monoacylglycerol lipase activities was examined in resting and A23187-treated human neutrophils by fractionation of postnuclear supernatants on continuous sucrose gradients. Both lipases were localized mainly in the membrane of gelatinase-containing granules, which were resolved from cytosol, plasma membrane, phosphasomes, and specific and azurophilic granules. When neutrophils were stimulated by the calcium ionophore A23187, a drastic shift of the 1-diacylglycerol lipase and 2-monoacylglycerol lipase toward the plasma membrane was detected. This shift was due to fusion of gelatinase-containing granules with the plasma membrane upon neutrophil stimulation. As a result of the membrane fusion process, the capacity to release arachidonic acid from diacylglycerol was increased. This translocation from the membrane of gelatinase-containing granules to the plasma membrane may play an important role in regulating the diacylglycerol level in stimulated human neutrophils.  相似文献   

18.
In order to account for the time courses of both evoked release and facilitation, in the framework of the Ca2+ hypothesis, Fogelson and Zucker (1985,Biophys. J. 48, 1003–1017) suggested treating diffusion of Ca2+, once it enters through the Ca2+ channels, as a three-dimensional process (three-dimensional diffusion model). This model is examined here as a refined version of the “Ca2+-theory” for neurotransmitter release. The three-dimensional model was suggested to account for both the time course of release and that of facilitation. As such, it has been examined here as to its ability to predict the dependence of the amplitude and time course of facilitation under various experimental conditions. It is demonstrated that the three-dimensional diffusion model predicts the time course of facilitation to be insensitive to temperature. It also predicts the amplitude and time course of facilitation to be independent of extracellular Ca2+ concentration. Moreover, it predicts that inhibition of the [Na+]o↔[Ca2+]i exchange does not alter facilitation. These predictions are not upheld by the experimental results. Facilitation is prolonged upon reduction in temperature. The amplitude of facilitation declines and its duration is prolonged upon increase in extracellular Ca2+ concentration. Finally, inhibition of the [Na+]o↔[Ca2+]i exchange prolongs facilitation but does not alter the time course of evoked release after an impulse.  相似文献   

19.
Release of Ca2+ from intracellular stores was visualised in individual neutrophils in the presence of the Mn2+ or SKF 96365. Influx of Mn2+ quenched fura-2 close to the plasma membrane but did not quench fura-2 at the site of store release. The size and location of the 'cloud' of elevated Ca2+ was unaffected by the channel blocker SKF 96365. Furthermore, the size and location was unaffected by the presence of extracellular Ca2+. This dissociation of transmembrane influx from store release demonstrates that the entry of Ca2+ into the cytosol of neutrophils occurs directly into the cytosol and not via the store site.  相似文献   

20.
Activation of neutrophils induces generation of reactive oxygen species and release of granule enzymes, which not only participate in the bactericidal mechanisms of these cells, but also in possible tissue damage. We studied the effect of carvedilol (CARV) [0.1-100 micromol/l], an antihypertensive and cardiovascular drug with antioxidative properties, on superoxide generation (SO) and myeloperoxidase (MPO) release from isolated human neutrophils stimulated with fMLP, a specific receptor activator, or with PMA, a receptor bypassing stimulus. Unstimulated cells showed neither SO formation nor MPO release after preincubation with drug. CARV decreased fMLP and PMA stimulated MPO release and SO generation dose dependently. The inhibitory effect of CARV may attributed to non-specific action since its effect was not influenced by the type of stimulation. It might inhibit SO generation as well as MPO release either by membrane-operating stimulus (fMLP) or membrane bypassing activator (PMA).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号