首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, direct evidence is given to SAMe capability of crossing the membrane of isolated rat hepatocytes. The kinetics of SAMe uptake is biphasic: a fast phase being completed in less than 15 sec and a slower one with an apparent Km of 8.33 μM and a Vmax of 10.6 pmol/min/mg protein. Both processes are pH and temperature dependent. Analysis of the fast phase by a Scatchard plot discloses two sets of binding sites of high and low affinity, respectively. Experiments carried out incubating isolated hepatocytes with double-labelled SAMe (methyl-3H, carboxyl-14C) have shown that about 70% of SAMe uptake by the cell is rapidly decarboxylated.  相似文献   

2.

Background

Inhibition of the transporter-mediated hepatobiliary elimination of bile salts is a putative mechanism for liver toxicity observed with some endothelin receptor antagonists (ERAs).

Methods

Sandwich-cultured human hepatocytes were used to study the hepatobiliary distribution and accumulation of exogenous taurocholate, ERAs and endogenous bile acids. The molecular mechanisms for findings in hepatocytes or clinical observations were further explored using either vesicular assays (efflux transporters) or transfected cell-lines (uptake transporters). Inhibition constants (IC50) were measured for the human hepatobiliary transporters bile salt export pump (BSEP), sodium taurocholate cotransporting polypeptide (NTCP), multidrug resistance protein 2 (MRP2), P-glycoprotein (Pgp), breast cancer resistance protein (BCRP), organic anion-transporting polypeptide 1B1 (OATP1B1) and OATP1B3.

Results

The ERAs showed dose-dependent reductions in exogenous taurocholate cellular accumulation in human hepatocytes, with macitentan having the greatest effect. Consistent with their effects on bile acids, the ERAs inhibited bile transporters. IC50 values for OATP1B1 and OATP1B3 ranged from 2 µM for macitentan to 47 µM for ambrisentan. Macitentan and bosentan also inhibited NTCP with IC50 values of 10 and 36 µM, respectively. Similar to previously reported findings with sitaxsentan, BSEP inhibition was observed for bosentan and macitentan with IC50 values of 42 and 12 µM, respectively. In contrast, ambrisentan showed little or no inhibition of these transporters. Other transporters tested were weakly inhibited by the ERAs. Accumulation in hepatocytes was also a factor in the effects on bile transport. Macitentan demonstrated the greatest accumulation in human hepatocytes (∼100x) followed by sitaxsentan (∼40x), bosentan (∼20x) and ambrisentan (∼2x).

Conclusions

Significant differences in the inhibition of hepatic transporters were observed between the evaluated ERAs in vitro. Macitentan had the highest level of cellular accumulation and caused the greatest effects on bile acid distribution in human hepatocytes followed by sitaxsentan and bosentan. Ambrisentan showed a low potential to affect bile acids.  相似文献   

3.
The expression of the basolateral Na+/bile acid (taurocholate) cotransport system of rat hepatocytes has been studied in Xenopus laevis oocytes. Injection of rat liver poly(A)+ RNA into the oocytes resulted in the functional expression of Na+ gradient stimulated taurocholate uptake within 3-5 days. This Na(+)-dependent portion of taurocholate uptake exhibited saturation kinetics (apparent Km approximately 91 microM) and could be inhibited by 4,4'-diisothiocyano-2,2'-disulfonic acid stilbene. Furthermore, the expressed taurocholate transport activity demonstrated similar substrate inhibition and stimulation by low concentrations of bovine serum albumin as the basolateral Na+/bile acid cotransport system previously characterized in intact liver, isolated hepatocytes, and isolated plasma membrane vesicles. Finally, a 1.5- to 3.0-kilobase size-class of mRNA could be identified that was sufficient to express the basolateral Na+/taurocholate uptake system in oocytes. These results demonstrate that "expression cloning" represents a promising approach to ultimately clone the gene and to further characterize the molecular properties of this important hepatocellular membrane transport system.  相似文献   

4.
Sulfated progesterone metabolite (P4-S) levels are raised in normal pregnancy and elevated further in intrahepatic cholestasis of pregnancy (ICP), a bile acid-liver disorder of pregnancy. ICP can be complicated by preterm labor and intrauterine death. The impact of P4-S on bile acid uptake was studied using two experimental models of hepatic uptake of bile acids, namely cultured primary human hepatocytes (PHH) and Na+-taurocholate co-transporting polypeptide (NTCP)-expressing Xenopus laevis oocytes. Two P4-S compounds, allopregnanolone-sulfate (PM4-S) and epiallopregnanolone-sulfate (PM5-S), reduced [3H]taurocholate (TC) uptake in a dose-dependent manner in PHH, with both Na+-dependent and -independent bile acid uptake systems significantly inhibited. PM5-S-mediated inhibition of TC uptake could be reversed by increasing the TC concentration against a fixed PM5-S dose indicating competitive inhibition. Experiments using NTCP-expressing Xenopus oocytes confirmed that PM4-S/PM5-S are capable of competitively inhibiting NTCP-mediated uptake of [3H]TC. Total serum PM4-S + PM5-S levels were measured in non-pregnant and third trimester pregnant women using liquid chromatography-electrospray tandem mass spectrometry and were increased in pregnant women, at levels capable of inhibiting TC uptake. In conclusion, pregnancy levels of P4-S can inhibit Na+-dependent and -independent influx of taurocholate in PHH and cause competitive inhibition of NTCP-mediated uptake of taurocholate in Xenopus oocytes.  相似文献   

5.
The effect of taurocholate and lecithincholesterol-taurocholate mixed micelles on the structure of isolated intestinal brush border membranes was investigated by nuclear magnetic resonance (NMR). Rabbit brush border membranes isolated by a Mg2+ precipitation step were chosen for this study because of their stability and integrity as revealed by 31P NMR. Incubation of taurocholate with the brush border membranes does not induce significant solubilization of these membranes even when the taurocholate/phospholipid ratio reaches 3.0 1H NMR studies indicate that taurocholate is included in the membrane bilayer at low concentration (3 mM). However this biliary salt produces a size diminution of the vesicles when its concentration increases. Incorporation of lecithin or lecithin-cholesterol in micelles of taurocholate and subsequent incubation with brush border membranes lead simultaneously to a decrease in the 31P NMR isotropic/bilayer line ratio, and to an increase in . These results indicate a protective effect of these compounds against lytic damage of taurocholate. Futhermore the equilibrium distribution of lecithin between mixed micelles and the membrane bilayer is strongly in favour of complete integration of micellar components in the bilayer. These data suggest that uptake of lipids from the micellar phase by isolated brush border membranes involves an interaction of the micelles with membranes followed by a fusion process.  相似文献   

6.
  • 1.1. The effect of incorporating D2O into the incubation medium on glycolysis and gluconeogenesis by hepatocytes from fasted rats was examined.
  • 2.2. The substitution by heavy water, D2O, at concentrations from 10 to 40%, stimulated glucose uptake, lactate production and CO2 yields from glucose. At 10 mM glucose, 40% D2O doubled glucose uptake, increased CO2 production by 40%, and increased lactate production by 350%.
  • 3.3. The stimulation of lactate production decreased at higher glucose concentrations, but was still substantial even at 80 mM glucose.
  • 4.4. There was no effect on CO2 production above glucose concentrations of 30 mM.
  • 5.5. Ten percent D2O showed little inhibition of lactate uptake, its oxidation and gluconeogenesis. At 40% D2O the inhibition ranged from 10 to 20%.
  • 6.6. No effect of D2O on the rate of glucokinase or glucose-6-phosphatase was observed.
  • 7.7. The concentration of fructose, 2,6-P was not affected by D2O
  相似文献   

7.

Background

Levosimendan protects rat liver against peroxidative injuries through mechanisms related to nitric oxide (NO) production and mitochondrial ATP-dependent K (mitoKATP) channels opening. However, whether levosimendan could modulate the cross-talk between apoptosis and autophagy in the liver is still a matter of debate. Thus, the aim of this study was to examine the role of levosimendan as a modulator of the apoptosis/autophagy interplay in liver cells subjected to peroxidation and the related involvement of NO and mitoKATP.

Methods and Findings

In primary rat hepatocytes that have been subjected to oxidative stress, Western blot was performed to examine endothelial and inducible NO synthase isoforms (eNOS, iNOS) activation, apoptosis/autophagy and survival signalling detection in response to levosimendan. In addition, NO release, cell viability, mitochondrial membrane potential and mitochondrial permeability transition pore opening (MPTP) were examined through specific dyes. Some of those evaluations were also performed in human hepatic stellate cells (HSC). Pre-treatment of hepatocytes with levosimendan dose-dependently counteracted the injuries caused by oxidative stress and reduced NO release by modulating eNOS/iNOS activation. In hepatocytes, while the autophagic inhibition reduced the effects of levosimendan, after the pan-caspases inhibition, cell survival and autophagy in response to levosimendan were increased. Finally, all protective effects were prevented by both mitoKATP channels inhibition and NOS blocking. In HSC, levosimendan was able to modulate the oxidative balance and inhibit autophagy without improving cell viability and apoptosis.

Conclusions

Levosimendan protects hepatocytes against oxidative injuries by autophagic-dependent inhibition of apoptosis and the activation of survival signalling. Such effects would involve mitoKATP channels opening and the modulation of NO release by the different NOS isoforms. In HSC, levosimendan would also play a role in cell activation and possible evolution toward fibrosis. These findings highlight the potential of levosimendan as a therapeutic agent for the treatment or prevention of liver ischemia/reperfusion injuries.  相似文献   

8.
Summary Bile acid-binding polypeptides were examined using basolateral membrane vesicles and enterocytes isolated from rat ileum. The uptake of a photolabile taurocholate derivative, (7,7,-azo-3, 12-dihydroxy-5[3-3H]cholan-24-oyl)-2-aminoethanesulfonate, 7,7-azo-TC, in ileal vesicles preloaded with paraaminohippurate (PAH) was stimulated with respect to uptake in unpreloaded vesicles. The PAH-transstimulated uptake of 7,7-azo-TC was inhibited by taurocholate and vice versa. Irradiation of membrane vesicles in the presence of 7,7-azo-TC irreversibly inhibited PAH-transtimulated taurocholate uptake. Photoaffinity labeling of basolateral membrane vesicles directly with [3H] 7,7-azo-TC and separation of proteins by SDS-PAGE revealed incorporation of radioactivity into several polypeptides. Photoaffinity labeling of vesicles in the presence of taurocholate inhibited the labeling of 54,000 and 59,000 mol. wt. polypeptides. The efflux of taurocholate from ileal enterocytes wascis-inhibited by 7,7-azo-TC andtransstimulated by PAH. Irradiation of enterocytes in the presence of 7,7-azo-TC inhibited taurocholate efflux greater than the presence of 7.7-azo-TC in the dark. When enterocytes that were irradiated in the presence of [3H] 7,7-azo-TC were fractionated and the resultant basolateral membrane fraction was subjected to SDS-PAGE, incorporation of radioactivity into the 54,000 and 59,000 mol. wt. polypeptides was seen. In contrast, when the brush-border membrane fraction was subjected to SDS-PAGE, greatest incorporation of radioactivity was seen in the previously described 99,000 mol. wt. polypeptide. These studies suggest that 7,7-azo-TC shared transporters with natural bile acid and identified polypeptides that may be involved in bile acid and identified polypeptides that may be involved in bile acid transport across the basolateral membrane and differ from that seen in the brush-border membrane of the ileal epithelial cell.  相似文献   

9.
10.
The uptake of the aminoacid biosynthesis inhibitor, used as the broad-spectrum herbicide ingredient, glyphosate (N-[phosphonomethyl]-glycine) was investigated in E. coli as a model to study mechanisms of cell resistance to antimetabolites as drugs and pesticides. Unlike the glyphosate-degrading Arthrobacter sp. strain for which the first successful measurement of glyphosate uptake and its inhibition by orthophosphate was reported [15], E. coli K-12 cannot take up this inhibitor either in the presence of orthophosphate, or after a prolonged starvation for it. However, cells made competent after an overnight cold CaCl2 exposure followed by dimethyl sulfoxide (DMSO) treatment could take up this compound (K m for glyphosate uptake, 274 M). Neither amino acids, belonging to a single transport system, nor orthophosphate gave essential inhibition of glyphosate uptake by these cells.  相似文献   

11.
Summary A technique for the in vitro maintenance of isolated portions of rainbow trout intestine is described. Uptake of14C-L-leucine occurs by an active mechanism which is stereospecific, sodium-dependent and susceptible to inhibition by other neutral amino acids.K t for leucine uptake is 2.72 mM with aV max of 19.61 moles/g ethanol extracted dry wt.·10 min. L-valine and L-methionine are competitive inhibitors of L-leucine uptake withK i values of 24.30 mM and 2.56 mM, respectively. Evidence suggests that at least two uptake sites for the transport of neutral amino acids are present in the intestine of this species.  相似文献   

12.
The transport activities of two primary ATP-dependent organic-anion transporters in the tonoplast of isolated barley (Hordeum vulgare L. cv. Klaxon) vacuoles have been characterised with N-ethylmaleimide glutathione (NEM-SG) and taurocholate as substrates. The transporters showed different sensitivities to organic anions and a variety of transport inhibitors and drugs. The vacuolar uptake of NEM-SG was inhibited by carbonylcyanide 4-trifluoromethoxyphenylhydrazone, 4,4-diisothiocyanatostilbene-2,2-disulfonic acid (DIDS), S-(2,4-dinitrophenyl)glutathione, alkyl-S-glutathione derivatives and taurocholate but stimulated by probenecid. The uptake of taurocholate was inhibited by vinblastine, DIDS and probenecid. Both transporters were unaffected by verapamil. The kinetic properties of the transporters indicate a general preference for amphiphilic anions with some substrate overlap. These characteristics of the transporters are similar to those displayed by the multidrug resistance protein of mammalian drug-resistant cells. We suggest that these vacuolar transporters be described as plant multispecific organic anion transporters (pMOATs).Abbreviations Bm-S bimane S-glutathione - DIDS 4,4-diisothiocyanatostilbene-2,2-disulfonic acid - DNP-SG S-(2,4-dinitrophenyl)glutathione - FCCP carbonylcyanide 4-trifluoromethoxyphenylhydrazone - LTC4 cysteinyl leukotriene - MDR multidrug transporter - MRP multidrug resistance protein - NEM-SG N-ethylmaleimide glutathione We thank Prof E. Martinoia for technical advice on the uptake experiments and Prof J. Palmer for helpful discussions and suggestions. M.B.-K. was partially sponsored by a grant from Stichting VSB Fonds, The Netherlands. IACR receives grant-aided support from the Biotechnology and Biological Science Research Council of the United Kingdom  相似文献   

13.
Chloroquine is a potent lysomotropic therapeutic agent used in the treatment of malaria. The mechanism of the chloroquine-mediated modulation of new cardiolipin biosynthesis in isolated rat liver hepatocytes and H9c2 cardiac myoblast cells was addressed in this study. Hepatocytes or H9c2 cells were incubated with [1,3-3H]glycerol in the absence or presence of chloroquine and cardiolipin biosynthesis was examined. The presence of chloroquine in the incubation medium of hepatocytes resulted in a rapid accumulation of radioactivity in cardiolipin indicating an elevated de novo biosynthesis. In contrast, chloroquine caused a reduction in radioactivity incorporated into cardiolipin in H9c2 cells. The presence of brefeldin A, colchicine or 3-methyladenine did not effect radioactivity incorporated into cardiolipin nor the chloroquine-mediated stimulation of cardiolipin biosynthesis in hepatocytes indicating that vesicular transport, cytoskeletal elements or increased autophagy were not involved in de novo cardiolipin biosynthesis induced by chloroquine. The addition of chloroquine to isolated rat liver membrane fractions did not affect the activity of the enzymes of de novo cardiolipin biosynthesis but resulted in an inhibition of mitochondrial cytidine-5-diphosphate-1,2-diacyl-sn-glycerol hydrolase activity. The mechanism for the reduction in cardiolipin biosynthesis in H9c2 cells was a chloroquine-mediated inhibition of glycerol uptake and this did not involve impairment of lysosomal function. The kinetics of the chloroquine-mediated inhibition of glycerol uptake indicated the presence of a glycerol transporter in H9c2 cells. The results of this study clearly indicate that chloroquine has markedly different effects on glycerol uptake and cardiolipin biosynthesis in hepatocytes and H9c2 cardiac cells  相似文献   

14.
Various carbon compounds inhibited galactose induced synthesis of a -galactosidase activity in Streptomyces violaceus. Glucose and 2-deoxyglucose, but not methyl--d-glucose, caused inhibition of galactose uptake activity. In addition, glucose, or one of its metabolites, inhibited the synthesis of the glactose uptake system. Therefore it is concluded that the main inhibitory activity of glucose on galactose induced enzyme synthesis is exerted through inducer exclusion. Other carbon sources, such as d-ribose, d-gluconate, cellobiose or dl--glycerophosphate, did not inhibit uptake of the inducer galactose and may exert their effect through catabolite repression, inactivation or direct enzyme inhibition.  相似文献   

15.
The uptake of glutamine was studied in Bacillus pasteurii DSM 33. Only one uptake system was detected in the concentration range studied (between 1 and 100 M glutamine) which exhibited Michaelis-Menten saturation kinetics, with an apparent K t of 10.7 (±3.5) M glutamine. The uptake was sodium-dependent (apparent K t=0.2 mM Na+); none of several monovalent cations tested was able to replace sodium in the uptake reaction. Ionophores interfering with proton, sodium or potassium gradients across membranes strongly inhibited uptake of glutamine. Low uptake rates correlating with low potassium content and an acidic cytoplasm were measured in cells grown at high ammonium1 concentrations. Ammonium and other permeant amines as well as potassium stimulated the uptake reaction in these cells, leading to an increase of up to 100-fold in V max without affecting the affinity of the uptake system. In cells grown at low concentrations of ammonium, an alkaline cytoplasm and both high glutamine uptake activities and potassium content were measured; the uptake reaction was not further stimulated by permeant amines or potassium in such cells. Growth of the strain was inhibited by Tris at high concentrations; this inhibition was relieved by the addition of increasing amounts of ammonium.Abbreviations CCCP carbonylcyanide-m-chlorphenylhydrazone - DCCD dicyclohexylcarbodiimide This work is dedicated to Prof. Dr. H. Kaltwasser on the occasion of his 60th birthday  相似文献   

16.
Summary Liver cells were prepared from rats fed a rachitogenic diet to investigate the hepatic metabolism of [ — 1,2 —3H2] vitamin D3. Rat hepatocytes suspended in Hanks medium rapidly took up labeled vitamin D3 from the incubation medium and converted this sterol to various metabolites, including 25-hydroxy vitamin D3 (25-OH-D3). There was a steady increment in the cellular production of 25-OH-D3 and of the more polar metabolites of vitamin D3 over 3 hr of incubation as determined by thin layer chromatography. Neither the addition of cyclic nucleotides or dexamethasone to, nor the removal of calcium or phosphate from the medium resulted in changes in the rate of conversion of vitamin D3 to its products. Rats pretreated with sodium diphenylhydantoin converted labeled vitamin D3 to its metabolites at the same rate as control rats. These data indicate that isolated liver cells retain the capacity for vitamin D3 hydroxylation, but suggest that the rate of this process does not undergo rapid changes in response to metabolic stimulation.Recipient of Research Career Development Award 1 K04 HL-00089.  相似文献   

17.
The uptake mechanism for the bile salt, taurocholate, by the liver cell is coupled to sodium but the stoichiometry is controversial. A one-to-one coupling ratio would result in electroneutral transport, whereas cotransport of more than one sodium ion with each taurocholate molecule cause an electrogenic response. To better define the uptake of this bile salt, we measured the effect of taurocholate on the membrane potential and resistance of isolated rat hepatocytes using conventional microelectrode electrophysiology. The addition of 20 microM taurocholate caused transient but significant depolarization accompanied by a significant decrease in membrane resistance. The electrical effect induced by taurocholate mimicked that induced by L-alanine (10 mM), the uptake of which is known to occur through an electrogenic, sodium-coupled mechanism. The sodium dependence of taurocholate-induced depolarization was further confirmed by: (1) replacing Na+ with choline +, and (2) preincubating cells with ouabain (2 mM) or with the Na+-ionophore, gramicidin (25 micrograms/ml); both suppressed the electrogenic response. Further, cholic acid, which inhibits sodium-coupled taurocholate uptake in hepatocytes, inhibited taurocholate evoked depolarization. These results support the hypothesis that sodium-coupled taurocholate uptake by isolated hepatocytes occurs through an electrogenic process which transports more than one Na+ with each taurocholate molecule.  相似文献   

18.
Two-year-old sweet chestnut trees were grown outside in normal or double CO2 atmospheric concentration. In spring and in autumn of two growing seasons, a six day labelling pulse of14C labelled CO2 was used to follow the carbon assimilation and distribution in the plant-soil system. Doubling atmospheric CO2 had a significant effect on the tree net carbon uptake. A large proportion of the additional C uptake was lost through the root system. This suggests that increased C uptake under elevated CO2 conditions increases C cycling without necessarily increasing C storage in the plant. Total root derived material represented a significant amount of the extra-assimilated carbon due to the CO2 treatment and was strongly correlated with the phenological stage of the tree. Increasing root rhizodeposition led to a stimulation of microbial activity, particularly near the end of the growing season. When plant rhizodeposition was expressed as a function of the root dry weight, the effect of increasing CO2 resulted in a higher root activity. The C to N ratios were significantly higher for trees grown under elevated CO2 except for the fine root compartment. An evaluation of the plant-soil system nitrogen dynamics showed, during the second season of CO2 treatment, a decrease of soil N mineralization rate and total N uptake for trees grown at elevated CO2 levels.  相似文献   

19.
Inhibition of three glycolytic enzymes by NaF and Na2PO3F1 in isolated rat hepatocytes has been demonstrated. The data indicate that incubation of hepatocytes with NaF or MFP and subsequent removal of NaF and MFP results in a significant inhibition of enolase (E.C. 4.2.1.11), phosphoglucomutase (E.C. 2.7.5.1.), and pyruvate kinase (E.C. 2.7.1.40). It is suggested that the fluorine compound enters the hepatocyte, becomes bound to the enzyme (phosphoglucomutase and enolase) and inhibits its activity. The inhibition of pyruvate kinase may be due to a cAMP dependent phosphorylation of the enzyme.  相似文献   

20.
A mass spectrometric 16O2/18O2-isotope technique was used to analyse the rates of gross O2 evolution, net O2 evolution and gross O2 uptake in relation to photon fluence rate by Dunaliella tertiolecta adapted to 0.5, 1.0, 1.5, 2.0 and 2.5 M NaCl at 25°C and pH 7.0.At concentrations of dissolved inorganic carbon saturating for photosynthesis (200 M) gross O2 evolution and net O2 evolution increased with increasing salinity as well as with photon fluence rate. Light compensation was also enhanced with increased salinities. Light saturation of net O2 evolution was reached at about 1000 mol m-2s-1 for all salt concentrations tested. Gross O2 uptake in the light was increased in relation to the NaCl concentration but it was decreased with increasing photon fluence rate for almost all salinities, although an enhanced flow of light generated electrons was simultaneously observed. In addition, a comparison between gross O2 uptake at 1000 mol photons m-2s-1, dark respiration before illumination and immediately after darkening of each experiment showed that gross O2 uptake in the light paralleled but was lower than mitochondrial O2 consumption in the dark.From these results it is suggested that O2 uptake by Dunaliella tertiolecta in the light is mainly influenced by mitochondrial O2 uptake. Therefore, it appears that the light dependent inhibition of gross O2 uptake is caused by a reduction in mitochondrial O2 consumption by light.Abbreviations DCMU 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea - DHAP dihydroxy-acetonephosphate - DIC dissolved inorganic carbon - DRa rate of dark respiration immediately after illumination - DRb rate of dark respiration before illumination - E0 rate of gross oxygen evolution in the light - NET rate of net oxygen evolution in the light - PFR photon fluence rate - RubP rubulose-1,5-bisphosphate - SHAM salicyl hydroxamic acid - U0 rate of gross oxygen uptake in the light  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号