共查询到20条相似文献,搜索用时 0 毫秒
1.
P. J. Cáceres C. A. Faúndez B. Matsuhiro J. A. Vasquez 《Journal of applied phycology》1996,8(6):523-527
The second-derivative mode of the Fourier transform I.R. spectra of dried algal material has been applied to distinguish the carrageenans-producingStenogramme interrupta from the isomorphous speciesRhodymenia howeana. Spectra of the tetrasporophyteS. interrupta showed bands assigned to a -carrageenan type polysaccharide, while the gametophytic and cystocarpic plants showed the characteristic absorptions of -and -carrageenans. Results were confirmed by hot water extraction of samples of the three nuclear phases ofS. interrupta and characterization of the extracts by chemical analysis.Author for correspondence 相似文献
2.
Polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS) was used to follow the hydrolysis of phospholipid monolayers at the air-water interface by phospholipase A2 (PLA2). The decrease in the intensity of the nuC=O ester band of dipalmitoylphosphatidylcholine at 1733 cm(-1) and the appearance of two new infrared bands in the 1530-1580 cm(-1) region allowed to monitor phospholipid hydrolysis by PLA2. Indeed, the decrease in the intensity of the band at 1733 cm(-1) was attributed to the enzymatic hydrolysis of the acyl ester linkage of the sn-2 fatty acid on the glycerol backbone whereas the doublet appearing at 1537 and 1575 cm(-1) was attributed to the nu(a) COO- vibration of the newly formed calcium-palmitate. The presence of this band as a doublet indicates the formation of a crystalline-like calcium-palmitate monolayer. This observation supports our previously postulated mechanism for the formation of PLA2 domains at the air-water interface. Definitive assignment of the infrared bands has been possible by measuring PM-IRRAS spectra of the individual hydrolysis products (palmitic acid and lysopalmitoylphosphatidylcholine) as well as of 1-caproyl-2-palmitoyl-phosphatidylcholine and 1-palmitoyl-2-caproylphosphatidylcholine monolayers before and after hydrolysis by PLA2. 相似文献
3.
Fourier transform infrared (FTIR) spectroscopy probes the vibrational properties of amino acids and cofactors, which are sensitive to minute structural changes. The lack of specificity of this technique, on the one hand, permits us to probe directly the vibrational properties of almost all the cofactors, amino acid side chains, and of water molecules. On the other hand, we can use reaction-induced FTIR difference spectroscopy to select vibrations corresponding to single chemical groups involved in a specific reaction. Various strategies are used to identify the IR signatures of each residue of interest in the resulting reaction-induced FTIR difference spectra. (Specific) Isotope labeling, site-directed mutagenesis, hydrogen/deuterium exchange are often used to identify the chemical groups. Studies on model compounds and the increasing use of theoretical chemistry for normal modes calculations allow us to interpret the IR frequencies in terms of specific structural characteristics of the chemical group or molecule of interest. This review presents basics of FTIR spectroscopy technique and provides specific important structural and functional information obtained from the analysis of the data from the photosystems, using this method. 相似文献
4.
Amiali NM Mulvey MR Sedman J Louie M Simor AE Ismail AA 《Journal of microbiological methods》2007,68(2):236-242
Coagulase-negative staphylococci (CNS), frequently associated with both community-acquired and nosocomial bloodstream infections, must be distinguished from Staphylococcus aureus for clinical purposes. Conventional methods are too laborious and time-consuming and often lack sensitivity to CNS. Fourier transform infrared (FTIR) spectroscopy combined with the use of a universal growth medium (Que-Bact Universal Medium No. 2) and chemometrics was evaluated for its potential as a rapid and simple clinical tool for making this distinction. FTIR spectra of 11 methicillin-sensitive and 11 methicillin-resistant CNS isolates as well as 25 methicillin-sensitive, 47 methicillin-resistant, 34 borderline oxacillin-resistant and 35 glycopeptide intermediate S. aureus isolates were obtained from dried films of stationary-phase cells grown on the universal medium. Principal component analysis (PCA), self-organizing maps, and the K-nearest neighbor algorithm were employed to cluster the different phenotypes based on similarity of their FTIR spectra. PCA of the first-derivative normalized spectral data from a single narrow region (2888-2868 cm(-1)) yielded complete differentiation of CNS from both methicillin-sensitive and methicillin-resistant S. aureus. The rate of correct classification was somewhat reduced, from 100% to 90%, after inclusion of borderline oxacillin-resistant and glycopeptide intermediate S. aureus strains in the data set. Differentiation based on the data in broader spectral regions was much less reliable. The results of this study indicate that with proper spectral region selection, FTIR spectroscopy and cluster analysis may provide a simple and accurate means of CNS species identification. 相似文献
5.
K. V. Gensh P. V. Kolosov N. G. Bazarnova 《Russian Journal of Bioorganic Chemistry》2011,37(7):814-816
Quantitative express analysis of nitrogen content in cellulose nitrates by Fourier transform infrared spectroscopy has been developed. The slope of the dependence of the ratio of the band intensity (and area) to sample weight in a tablet, on the nitrogen content in a sample was used to find the reduced extinction coefficients for quantitative analysis of nitrogen content in cellulose nitrate samples by IR spectroscopy. The results were compared with the nitrogen content values in the same samples determined by the ferrosulfate method. 相似文献
6.
This study demonstrates the use of Fourier transform infrared (FTIR) spectroscopy for monitoring both synthesis and hydrolysis reactions catalyzed by a recombinant amidase (EC 3.5.1.4) from Pseudomonas aeruginosa. The kinetics of hydrolysis of acetamide, propionamide, butyramide, acrylamide, benzamide, phenylalaninamide, alaninamide, glycinamide, and leucinamide were determined. This revealed that very short-chain substrates displayed higher amidase activity than did branched side-chain or aromatic substrates. In addition, on reducing the polarity and increasing the substrates' bulkiness, a reduction of the amidase affinity for the substrates took place. Using FTIR spectroscopy it was possible to monitor and quantify the synthesis of several hydroxamic acid derivatives and ester hydrolysis products. These products may occur simultaneously in a reaction catalyzed by the amidase. The substrates used for the study of such reactions were ethyl acetate and glycine ethyl ester. Hydroxylamine was the nucleophile substrate used for the synthesis of acetohydroxamate compounds. Results presented in this article demonstrate the usefulness of FTIR spectroscopy as an important tool for understanding the enzyme structure-activity relationship because it provides a simple and rapid real-time assay for the detection and quantification of amidase hydrolysis and synthesis reactions in situ. 相似文献
7.
Banyay M Sandbrink J Strömberg R Gräslund A 《Biochemical and biophysical research communications》2004,324(2):634-639
There may be several advantages associated with an antisense oligonucleotide that induces a bulged structure into its RNA target molecule. Many structures of RNA bulges are elucidated from single-stranded RNA models. However, a two-component system is the minimum requirement for a realistic antisense model. We have used Fourier transform infrared spectroscopy to investigate a single-stranded RNA oligonucleotide with known NMR solution structure, constructed to model a five nucleotide bulge, and its two-component oligonucleotide counterpart. The infrared spectra show A-helical base-paired stems and non-base-paired loops in both systems. The nucleosides are mainly in an anti-conformation. Both N-type and S-type of sugar puckers can be inferred from the infrared region sensitive to sugar conformations. The S-type of sugar pucker is likely to be associated with the nucleotides in the bulge. The FTIR results display an overall structural similarity between the two model systems. 相似文献
8.
Molecular surface characterization of oral streptococci by Fourier transform infrared spectroscopy 总被引:4,自引:0,他引:4
In order to characterize the molecular composition of oral streptococci, infrared transmission spectroscopy on freeze-dried cells dissolved in KBr was used. All infrared spectra show similar absorption bands for the strains studied with the most important absorption bands located at 2930 cm-1 (CH), 1653 cm-1 (AmI), 1541 cm-1 (AmII) and two bands at 1236 cm-1 and 1082 cm-1, which were assigned to phosphate and sugar groups. However, calculation of absorption band ratios normalized with respect to the integrated intensity of the CH stretching region around 2930 cm-1, show significant differences between the strains. Both Streptococcus mitis strains possess high AmI/CH and AmII/CH absorption band ratios compared to the other strains. Streptococcus salivarius HBC12, a mutant strain devoid of all proteinaceous surface appendages, shows significantly lower AmI/CH and AmII/CH band ratios with respect to its parent strain S. salivarius HB. Two positive relationships could be established both between the AmII/CH absorption band ratio and the N/C elemental surface concentration ratio of the strains previously, determined from X-ray photoelectron spectroscopy (XPS) and also between AmI/CH and the fraction of carbon atoms at the surface involved in amide bonds, determined by XPS as well. From this comparison, it is concluded that transmission infrared spectroscopy can be employed as a technique to study the molecular surface composition of freeze-dried microorganisms. 相似文献
9.
AIMS: Fourier transform infrared (FT-IR) was used to analyse a selection of Acinetobacter isolates in order to determine if this approach could discriminate readily between the known genomic species of this genus and environmental isolates from activated sludge. METHODS AND RESULTS: FT-IR spectroscopy is a rapid whole-organism fingerprinting method, typically taking only 10 s per sample, and generates 'holistic' biochemical profiles (or 'fingerprints') from biological materials. The cluster analysis produced by FT-IR was compared with previous polyphasic taxonomic studies on these isolates and with 16S-23S rDNA intergenic spacer region (ISR) fingerprinting presented in this paper. FT-IR and 16S-23S rDNA ISR analyses together indicate that some of the Acinetobacter genomic species are particularly heterogeneous and poorly defined, making characterization of the unknown environmental isolates with the genomic species difficult. CONCLUSIONS: Whilst the characterization of the isolates from activated sludge revealed by FT-IR and 16S-23S rDNA ISR were not directly comparable, the dendrogram produced from FT-IR data did correlate well with the outcomes of the other polyphasic taxonomic work. SIGNIFICANCE AND IMPACT OF THE STUDY: We believe it would be advantageous to pursue this approach further and establish a comprehensive database of taxonomically well-defined Acinetobacter species to aid the identification of unknown strains. In this instance, FT-IR may provide the rapid identification method eagerly sought for the routine identification of Acinetobacter isolates from a wide range of environmental sources. 相似文献
10.
Imamoto Y Shirahige Y Tokunaga F Kinoshita T Yoshihara K Kataoka M 《Biochemistry》2001,40(30):8997-9004
The photocycle intermediates of photoactive yellow protein (PYP) were characterized by low-temperature Fourier transform infrared spectroscopy. The difference FTIR spectra of PYP(B), PYP(H), PYP(L), and PYP(M) minus PYP were measured under the irradiation condition determined by UV-visible spectroscopy. Although the chromophore bands of PYP(B) were weak, intense sharp bands complementary to the 1163-cm(-1) band of PYP, which show the chromophore is deprotonated, were observed at 1168-1169 cm(-1) for PYP(H) and PYP(L), indicating that the proton at Glu46 is not transferred before formation of PYP(M). Free trans-p-coumaric acid had a 1294-cm(-1) band, which was shifted to 1288 cm(-1) in the cis form. All the difference FTIR spectra obtained had the pair of bands corresponding to them, indicating that all the intermediates have the chromophore in the cis configuration. The characteristic vibrational modes at 1020-960 cm(-1) distinguished the intermediates. Because these modes were shifted by deuterium-labeling at the ethylene bond of the chromophore while labeling at the phenol part had no effect, they were attributed to the ethylene bond region. Hence, structural differences among the intermediates are present in this region. Bands at about 1730 cm(-1), which show that Glu46 is protonated, were observed for all intermediates except for PYP(M). Because the frequency of this mode was constant in PYP(B), PYP(H), and PYP(L), the environment of Glu46 is conserved in these intermediates. The photocycle of PYP would therefore proceed by changing the structure of the twisted ethylene bond of the chromophore. 相似文献
11.
The conformational properties of the magainin family of antimicrobial peptides in aqueous solution and in model membranes have been probed by Fourier transform infrared spectroscopy. The magainins were found to be structureless in aqueous solution at neutral pD, confirming other studies by Raman and circular dichroism spectroscopy. Increasing the pD to 10 induced the formation of predominantly alpha-helical secondary structures, with some beta-sheet. In the presence of negatively charged liposomes (dimyristoylphosphatidylglycerol), the peptides folded into alpha-helical secondary structures with some beta-sheet structure evident. On the other hand, in the presence of zwitterionic phospholipids (dimyristoylphosphatidylcholine), the spectra were identical to those in aqueous solution. For some magainins, the interaction with charged liposomes was modulated by the presence of cholesterol; cholesterol was found to promote the formation of beta-sheet structures, as evidenced by the appearance of amide I bands at 1614 and 1637 cm-1. Differences in structure were observed between the amidated and nonamidated forms of some peptides. From the data, a mechanism of antimicrobial action of the magainin family of peptides is proposed. 相似文献
12.
Protein structure by Fourier transform infrared spectroscopy: second derivative spectra 总被引:12,自引:0,他引:12
Second derivative Fourier transform infrared spectra of the proteins ribonuclease A, hemoglobin, and beta-lactoglobulin A (native and denatured) have been obtained in deuterium oxide solution from 1350 to 1800 cm-1. The relationship of the original spectra to their second derivatives is briefly discussed. In the second derivative spectra, clearly resolved peaks are observed which can be associated with the alpha-helix, beta-strands, and turns. No protein spectra with such resolution have heretofore been reported. Tentative assignments are proposed, and the observed peaks are related to the secondary structure of the proteins studied. The data appear to present the first direct spectroscopic evidence of turns in a native protein. 相似文献
13.
In this work, the interactions between the main catecholamines-epinephrine and norepinephrine-and fibrinogen were investigated by NMR and Fourier transform infrared spectroscopies. The two hormones were found to interact with fibrinogen and to affect the protein secondary structure to a different extent. In particular, the protein selectively binds epinephrine at both the basal and stress concentrations, while it shows a weak nonspecific interaction with norepinephrine. The interaction with the stress level of epinephrine leads to drastic protein conformational changes, whereas norepinephrine does not affect fibrinogen secondary structure, even at stress concentration. 相似文献
14.
Several aspects of the application of Fourier transform infrared spectroscopy (FTIR) in high-pressure studies on proteins are reviewed. Basic methodological considerations regarding spectral band assignments, quantitative analysis, and choice of pressure calibrants are also placed within the scope of this paper. This work attempts to evaluate recent developments in the field of high-pressure FTIR of proteins and its prospects for future. Particular attention is paid to the phenomenon of protein aggregation. 相似文献
15.
Amiali NM Mulvey MR Sedman J Simor AE Ismail AA 《Journal of microbiological methods》2007,69(1):146-153
A rapid and simple typing system is needed for controlling the spread of epidemic methicillin-resistant Staphylococcus aureus (MRSA), currently one of the most widespread multi-resistant nosocomial pathogens in Canadian hospitals. Fourier transform infrared (FTIR) spectroscopy was used to subtype 85 isolates representing five strains of epidemic Canadian MRSA (CMRSA). Spectral fingerprints of whole cells grown on Que-Bact(R) Universal Medium No. 2 were transformed to first derivative peak-height normalized files and examined visually and by singular-value decomposition (SVD). Distinguishing spectral regions were processed by principal component analysis (PCA), self-organizing map and K-nearest neighbor supervised cluster analysis. Among the visually identified regions, 1070-1050 and 1155-1137 cm(-1) were found suitable for discrimination of CMRSA-4 and CMRSA-2 respectively, while CMRSA-1, CMRSA-3, and CMRSA-5 each exhibited distinctive spectral profiles in the 1123-1094 cm(-1) region. The combination, 1123-1094, 1174-1154 and 2904-2864 cm(-1) separated the five CMRSA with 84.6% correct classification by PCA. Five clusters were also obtained using the SVD-selected regions 1096-1066, 1118-1090 and 2914-2880 cm(-1), with 87.8% correct classification based on visual examination of the PCA scores plot and 97% based on supervised cluster analysis. These results demonstrate that FTIR spectroscopy has considerable potential as a rapid (1-hour) and simple method for MRSA strain typing and monitoring in clinical settings. 相似文献
16.
Rhodopsin-lumirhodopsin phototransition of bovine rhodopsin investigated by Fourier transform infrared difference spectroscopy 总被引:4,自引:0,他引:4
The rhodopsin-lumirhodopsin transition has been investigated by Fourier transform infrared difference spectroscopy using isotope-labeled retinals. In the transition, two protonated carboxyl groups are involved. Another carbonyl band, located at 1725 cm-1 in rhodopsin, is shifted to 1731.5 cm-1 in lumirhodopsin. This line is tentatively assigned to a carbonyl stretching vibration of a peptide bond adjacent to the nitrogen of a proline residue. The C=N stretching vibration of rhodopsin could unequivocally be assigned to a band at 1659 cm-1. In contrast to rhodopsin and bathorhodopsin, the C=N stretching vibration of lumirhodopsin is at a low position, i.e., at 1635 cm-1, and exhibits only a downshift of 4 cm-1 upon deuteriation of the nitrogen. The C15-H rocking vibration of rhodopsin is assigned to the unusual high position of 1456 cm-1 and shifts into the normal region upon formation of lumirhodopsin. From these results, it is concluded that, whereas the environment of the Schiff base in rhodopsin, bathorhodopsin, and isorhodopsin is approximately the same, large changes occur with the formation of lumirhodopsin. From the assignment of the C10-C11 stretching vibration in bathorhodopsin and lumirhodopsin, a 10-s-cis geometry of lumirhodopsin can be excluded. 相似文献
17.
The effect of cholesterol on vibrational spectra in the non polar and in the polar region of dimyristoyl phosphatidylserine (DMPS) and of phosphatidylserine from bovine spinal cord (PS) has been investigated. The small shifts in the methylene CH stretching frequencies after taking into account the contribution of the cholesterol spectrum were interpreted as a combined effect of cholesterol on the conformation of the chains and of the lesser contributions of the cholesterol methyl groups. Cholesterol also influences the ratio of the trans (1465 cm–1) to the lower wavelength (1457 cm–1) CH2 bending bands. No significant direct effect of cholesterol on the vibration of the polar residues was discerned. The small shift of the carboxylate band observed below the phase transition is probably due to the change in the intermolecular zwitterions when the average distance between the neighboring polar groups increases due to incorporation of cholesterol molecules.Abbreviations PS phosphatidylserine natural - DMPS dimyristoyl phosphatidylserine - DPPC dipalmitoyl phosphatidylcholine - FTIR Fourier transform infrared spectroscopy - DSC differential scanning calorimetry - PE phosphatidylethanolamineOffprint requests to: D. Bach 相似文献
18.
pH-induced structural changes in bacteriorhodopsin studied by Fourier transform infrared spectroscopy. 总被引:1,自引:1,他引:1
下载免费PDF全文

Previous C13-NMR studies showed that two of the four internal aspartic acid residues (Asp-96 and Asp-115) of bacteriorhodopsin (bR) are protonated up to pH = 10, but no accurate pKa of these residues has been determined. In this work, infrared spectroscopy with the attenuated total reflection technique was used to characterize pH-dependent structural changes of ground-state, dark-adapted wild-type bacteriorhodopsin and its mutant (D96N) with aspartic acid-96 replaced by asparagine. Data indicated deprotonation of Asp-96 at high pH (pKa = 11.4 +/- 0.1), but no Asp-115 titration was observed. The analysis of the whole spectral region characteristic to complex conformational changes in the protein showed a more complicated titration with an additional pKa value (pKa1 = 9.3 +/- 0.3 and pKa2 = 11.5 +/- 0.2). Comparison of results obtained for bR and the D96N mutant of bR shows that the pKa approximately 11.5 characterizes not a direct titration of Asp-96 but a protein conformational change that makes Asp-96 accessible to the external medium. 相似文献
19.
Miguel Gómez MA Bratos Pérez MA Martín Gil FJ Dueñas Díez A Martín Rodríguez JF Gutiérrez Rodríguez P Orduña Domingo A Rodríguez Torres A 《Journal of microbiological methods》2003,55(1):121-131
Fourier transform infrared spectroscopy (FTIR) is a technique that has been used over the years in chemical analysis for the identification of substances and is one that may be applied to the characterisation of microorganisms. The marked tendency of Brucella towards variation in the smooth rough phase, together with the laboriousness and risk involved in the methods used in their identification, make their classification difficult. We studied the type strains of the different species and biovars of Brucella and 11 isolates of human origin of Brucella melitensis, six corresponding to biovar 1, one to biovar 2 and five to biovar 3. The results of linear discriminant analysis performed using the data provide an above 95% likelihood of correct classification, over half of which are in fact above 99% for the vast majority of Brucella strains. Only one case of B. melitensis biovar 1 has been incorrectly classified. The rest of the microorganisms studied (Staphylococcus aureus, Strteptococcus pyogenes, Enterococcus faecalis, Corynebacterium pseudodiphtheriticum, Clostridium perfringens, Escherichia coli, Acinetobacter calcoaceticus and Pseudomonas aeruginosa) have been classified correctly in all cases to a likelihood of over 80%. In the graphic representation of the analysis, a grouping of these can be seen in clusters, which include the different species. One of these comprises B. melitensis, another Brucella abortus, and another wider one is made up of Brucella suis. The Brucella canis, Brucella ovis and Brucella neotomae strains appear separate from the previously described groups. 相似文献
20.
Jung C 《Journal of molecular recognition : JMR》2000,13(6):325-351
An overview of the application of Fourier transform infrared spectroscopy for the analysis of the structure of proteins and protein-ligand recognition is given. The principle of the technique and of the spectra analysis is demonstrated. Spectral signal assignments to vibrational modes of the peptide chromophore, amino acid side chains, cofactors and metal ligands are summarized. Several examples for protein-ligand recognition are discussed. A particular focus is heme proteins and, as an example, studies of cytochrome P450 are reviewed. Fourier transform infrared spectroscopy in combination with the various techniques such as time-resolved and low-temperature methods, site-directed mutagenesis and isotope labeling is a helpful approach to studying protein-ligand recognition. 相似文献