首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Various rhizobacteria are known for their beneficial effects on plants, i. e. promotion of growth and induction of systemic resistance against pathogens. These bacteria are categorized as plant growth promoting rhizobacteria (PGPR) and are associated with plant roots. Knowledge of the underlying mechanisms of plant growth promotion in vivo is still very limited, but interference of bacteria with plant hormone metabolism is suggested to play a major role. To obtain new growth promoting bacteria, we started a quest for rhizobacteria that are naturally associated to Arabidopsis thaliana. A suite of native root-associated bacteria were isolated from surface-sterilized roots of the Arabidopsis ecotype Gol-1 derived from a field site near Golm (Berlin area, Germany). We found several Pseudomonas and a Microbacterium species and tested these for growth promotion effects on the Arabidopsis ecotypes Gol-1 and Col-0, and for growth-promotion associated traits, such as auxin production, ACC deaminase activity and phosphate solubilization capacity. We showed that two of the bacteria strains promote plant growth with respect to rosette diameter, stalk length and accelerate development and that the effects were greater when bacteria were applied to Col-0 compared with Gol-1. Furthermore, the capability of promoting growth was not explained by the tested metabolic properties of the bacteria, suggesting that further bacterial traits are required. The natural variation of growth effects, combined with the extensive transgenic approaches available for the model plant Arabidopsis, will build a valuable tool to augment our understanding of the molecular mechanisms involved in the natural Arabidopsis - PGPR association.  相似文献   

2.
Applications of free living plant growth-promoting rhizobacteria   总被引:2,自引:0,他引:2  
Free-living plant growth-promoting rhizobacteria (PGPR) can be used in a variety of ways when plant growth enhancements are required. The most intensively researched use of PGPR has been in agriculture and horticulture. Several PGPR formulations are currently available as commercial products for agricultural production. Recently developing areas of PGPR usage include forest regeneration and phytoremediation of contaminated soils. As the mechanisms of plant growth promotion by these bacteria are unravelled, the possibility of more efficient plant-bacteria pairings for novel and practical uses will follow. The progress to date in using PGPR in a variety of applications with different plants is summarized and discussed here.  相似文献   

3.
Plant growth-promoting rhizobacteria are commonly found in the rhizosphere (adjacent to the root surface) and may promote plant growth via several diverse mechanisms, including the production or degradation of the major groups of plant hormones that regulate plant growth and development. Although rhizobacterial production of plant hormones seems relatively widespread (as judged from physico-chemical measurements of hormones in bacterial culture media), evidence continues to accumulate, particularly from seedlings grown under gnotobiotic conditions, that rhizobacteria can modify plant hormone status. Since many rhizobacteria can impact on more than one hormone group, bacterial mutants in hormone production/degradation and plant mutants in hormone sensitivity have been useful to establish the importance of particular signalling pathways. Although plant roots exude many potential substrates for rhizobacterial growth, including plant hormones or their precursors, limited progress has been made in determining whether root hormone efflux can select for particular rhizobacterial traits. Rhizobacterial mediation of plant hormone status not only has local effects on root elongation and architecture, thus mediating water and nutrient capture, but can also affect plant root-to-shoot hormonal signalling that regulates leaf growth and gas exchange. Renewed emphasis on providing sufficient food for a growing world population, while minimising environmental impacts of agriculture because of overuse of fertilisers and irrigation water, will stimulate the commercialisation of rhizobacterial inoculants (including those that alter plant hormone status) to sustain crop growth and yield. Combining rhizobacterial traits (or species) that impact on plant hormone status thereby modifying root architecture (to capture existing soil resources) with traits that make additional resources available (e.g. nitrogen fixation, phosphate solubilisation) may enhance the sustainability of agriculture.  相似文献   

4.
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume–rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume–rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume–rhizobia symbiosis. The means by which these processes enhance the legume–rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume–rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.  相似文献   

5.
含ACC脱氨酶的根际细菌提高植物抗盐性的研究进展   总被引:1,自引:0,他引:1  
盐胁迫是抑制植物生长的主要非生物因素之一,高浓度的盐分不利于植物体的生长和发育,严重时会导致植物细胞及植物体死亡.已有大量实验结果显示含ACC脱氨酶的根际细菌可以缓解高盐对植物的危害.ACC脱氨酶可以降解乙烯的直接前体1-氨基环丙烷-1-羧酸(ACC),从而降低胁迫乙烯的合成量.胁迫乙烯是阻碍植物生长的主要原因.首先介...  相似文献   

6.
7.
Plant growth‐promoting rhizobacteria (PGPR) affect growth of host plants through various direct and indirect mechanisms. Three native PGPR (Pseudomonas putida) strains isolated from rhizospheric soil of a Mentha piperita (peppermint) crop field near Córdoba, Argentina, were characterised and screened in vitro for plant growth‐promoting characteristics, such as indole‐3‐acetic acid (IAA) production, phosphate solubilisation and siderophore production, effects of direct inoculation on plant growth parameters (shoot fresh weight, root dry weight, leaf number, node number) and accumulation and composition of essential oils. Each of the three native strains was capable of phosphate solubilisation and IAA production. Only strain SJ04 produced siderophores. Plants directly inoculated with the native PGPR strains showed increased shoot fresh weight, glandular trichome number, ramification number and root dry weight in comparison with controls. The inoculated plants had increased essential oil yield (without alteration of essential oil composition) and biosynthesis of major essential oil components. Native strains of P. putida and other PGPR have clear potential as bio‐inoculants for improving productivity of aromatic crop plants. There have been no comparative studies on the role of inoculation with native strains on plant growth and secondary metabolite production (specially monoterpenes). Native bacterial isolates are generally preferable for inoculation of crop plants because they are already adapted to the environment and have a competitive advantage over non‐native strains.  相似文献   

8.
The rhizosphere is the narrow zone of soil surrounding the root that is subject to influence by the root. Rhizobacteria are plant-associated bacteria that are able to colonize and persist on roots. An understanding of the ecology of a microorganism is a fundamental requirement for the introduction of a microbial inoculant into the open environment. This is particularly true for biological control of root pathogens in the rhizosphere, where one is actively seeking to alter the ecological balance so as to favour growth of the host plant and to curtail the development of pathogens. Some strains of plant growth-promoting rhizobacteria can effectively colonize plant roots and protect plants from diseases caused by a variety of root pathogens and growth promotion of plants through direct stimulation of growth hormone. Such beneficial or plant health-promoting strains are emerging as promising biocontrol agents. They are suitable as soil inoculants either individually or in combination and may be compatible with current chemical pesticides. Considerable progress has been achieved using molecular genetic techniques to elucidate the important microbial factors or genetic traits involved in the suppression of fungal root diseases. Strategies utilizing molecular genetic techniques have been developed to complement the ongoing research ranging from the characterization and genetic improvement of a selected biocontrol agent to the measurement of its persistence and dispersal. Finally, biocontrol is considered as part of a disease control strategy like integrated pest management which offers a successful approach for the deployment of both agro-chemicals and biocontrol agents.  相似文献   

9.
Plant growth-promoting rhizobacteria (PGPR) colonize plant roots and exert beneficial effects on plant health and development. We are investigating the mechanisms by which PGPR elicit plant growth promotion from the viewpoint of signal transduction pathways within plants. We report here our first study to determine if well-characterized PGPR strains, which previously demonstrated growth promotion of various other plants, also enhance plant growth in Arabidopsis thaliana. Eight different PGPR strains, including Bacillus subtilis GB03, B. amyloliquefaciens IN937a, B. pumilus SE-34, B. pumilus T4, B. pasteurii C9, Paenibacillus polymyxa E681, Pseudomonas fluorescens 89B-61, and Serratia marcescens 90-166, were evaluated for elicitation of growth promotion of wild-type and mutant Arabidopsis in vitro and in vivo. In vitro testing on MS medium indicated that all eight PGPR strains increased foliar fresh weight of Arabidopsis at distances of 2, 4, and 6 cm from the site of bacterial inoculation. Among the eight strains, IN937a and GB03 inhibited growth of Arabidopsis plants when the bacteria were inoculated 2 cm from the plants, while they significantly increased plant growth when inoculated 6 cm from the plants, suggesting that a bacterial metabolite that diffused into the agar accounted for growth promotion with this strain. In vivo, eight PGPR strains promoted foliar fresh weight under greenhouse conditions 4 weeks after sowing. To define signal transduction pathways associated with growth promotion elicited by PGPR, various plant-hormone mutants of Arabidopsis were evaluated in vitro and in vivo. Elicitation of growth promotion by PGPR strains in vitro involved signaling of brassinosteroid, IAA, salicylic acid, and gibberellins. In vivo testing indicated that ethylene signaling was involved in growth promotion. Results suggest that elicitation of growth promotion by PGPR in Arabidopsis is associated with several different signal transduction pathways and that such signaling may be different for plants grown in vitro vs. in vivo.  相似文献   

10.
11.
During the growing season of 1986, the rhizobacteria (including organisms from the ectorhizosphere, the rhizoplane and endorhizosphere) of 20 different maize hybrids sampled from different locations in the Province of Quebec were inventoried by use of seven different selective media. Isolates were characterized by morphological and biochemical tests and identified using the API20E and API20B diagnostic strips.Pseudomonas spp. were the prominent bacteria found in the rhizoplane and in the ectorhizosphere.Bacillus spp. andSerratia spp. were also detected, but in smaller numbers. In the endorhizosphere,Bacillus spp. andPseudomonas spp. were detected in order of importance. Screening for plant growth-promoting rhizobacteria was carried out in three soils with different physical and chemical characteristics. The results depended on the soil used, but two isolates (Serratia liquefaciens andPseudomonas sp.) consistently caused a promotion of plant growth.Contribution no. 350 of the Research Station, Agriculture Canada, Sainte-Foy, Quebec.  相似文献   

12.
AIMS: Plant growth promoting rhizobacteria (PGPR) are commonly used as inoculants for improving the growth and yield of agricultural crops, however screening for the selection of effective PGPR strains is very critical. This study focuses on the screening of effective PGPR strains on the basis of their potential for in vitro auxin production and plant growth promoting activity under gnotobiotic conditions. METHODS AND RESULTS: A large number of bacteria were isolated from the rhizosphere soil of wheat plants grown at different sites. Thirty isolates showing prolific growth on agar medium were selected and evaluated for their potential to produce auxins in vitro. Colorimetric analysis showed variable amount of auxins (ranging from 1.1 to 12.1 mg l-1) produced by the rhizobacteria in vitro and amendment of the culture media with l-tryptophan (l-TRP), further stimulated auxin biosynthesis (ranging from 1.8 to 24.8 mg l-1). HPLC analysis confirmed the presence of indole acetic acid (IAA) and indole acetamide (IAM) as the major auxins in the culture filtrates of these rhizobacteria. A series of laboratory experiments conducted on two cv. of wheat under gnotobiotic (axenic) conditions demonstrated increases in root elongation (up to 17.3%), root dry weight (up to 13.5%), shoot elongation (up to 37.7%) and shoot dry weight (up to 36.3%) of inoculated wheat seedlings. Linear positive correlation (r = 0.99) between in vitro auxin production and increase in growth parameters of inoculated seeds was found. Based upon auxin biosynthesis and growth-promoting activity, four isolates were selected and designated as plant growth-promoting rhizobacteria (PGPR). Auxin biosynthesis in sterilized vs nonsterilized soil inoculated with selected PGPR was also monitored that revealed superiority of the selected PGPR over indigenous microflora. Peat-based seed inoculation with selected PGPR isolates exhibited stimulatory effects on grain yields of tested wheat cv. in pot (up to 14.7% increase over control) and field experiments (up to 27.5% increase over control); however, the response varied with cv. and PGPR strains. CONCLUSIONS: It was concluded that the strain, which produced the highest amount of auxins in nonsterilized soil, also caused maximum increase in growth and yield of both the wheat cv. SIGNIFICANCE AND IMPACT OF STUDY: This study suggested that potential for auxin biosynthesis by rhizobacteria could be used as a tool for the screening of effective PGPR strains.  相似文献   

13.
  1. Plants interact with various organisms, aboveground as well as belowground. Such interactions result in changes in plant traits with consequences for members of the plant‐associated community at different trophic levels. Research thus far focussed on interactions of plants with individual species. However, studying such interactions in a community context is needed to gain a better understanding.
  2. Members of the aboveground insect community induce defences that systemically influence plant interactions with herbivorous as well as carnivorous insects. Plant roots are associated with a community of plant‐growth promoting rhizobacteria (PGPR). This PGPR community modulates insect‐induced defences of plants. Thus, PGPR and insects interact indirectly via plant‐mediated interactions.
  3. Such plant‐mediated interactions between belowground PGPR and aboveground insects have usually been addressed unidirectionally from belowground to aboveground. Here, we take a bidirectional approach to these cross‐compartment plant‐mediated interactions.
  4. Recent studies show that upon aboveground attack by insect herbivores, plants may recruit rhizobacteria that enhance plant defence against the attackers. This rearranging of the PGPR community in the rhizosphere has consequences for members of the aboveground insect community. This review focusses on the bidirectional nature of plant‐mediated interactions between the PGPR and insect communities associated with plants, including (a) effects of beneficial rhizobacteria via modification of plant defence traits on insects and (b) effects of plant defence against insects on the PGPR community in the rhizosphere. We discuss how such knowledge can be used in the development of sustainable crop‐protection strategies.
  相似文献   

14.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

15.
The potential of root‐colonising antagonistic microbial biocontrol agents was evaluated for their ability to improve plant growth and suppress aflatoxigenic fungal and aflatoxin contamination in groundnut. By considering root colonisation of groundnut seedlings, plant growth promotion and antagonism against aflatoxigenic Aspergillus flavus as preliminary criteria, eight rhizobacteria and nine Trichoderma spp. were selected and characterised for their beneficial traits. These strains gave varying results for IAA production, phosphate solubilisation, ACC deaminase, chitinase and siderophore production. Under laboratory and greenhouse conditions, these strains significantly (P < 0.05) suppressed seed‐borne and rhizospheric population of A. flavus and improved seed quality variables. However, cdELISA results revealed that none of the biocontrol strains were effective in reducing aflatoxin level in seed. Based on the overall performance, Pseudomonas fluorescens 2bpf, Bacillus sp. Bsp‐3/aM and Trichoderma atroviride UMDBT‐Dha.Tat8 were used for field trials in the form of talcum powder formulations. Under field conditions, biocontrol agents improved seedling emergence, plant biomass and pod yield. Seeds harvested from plots treated with biocontrol agents showed significant (P < 0.05) reduction in A. flavus infection and aflatoxin production after 6 months' storage. Use of microbial strains with multiple beneficial traits is advantageous in bioformulation development. Hence, in future, these formulations will play a major role as biofertilisers and biopesticides, which can reduce the usage of agrochemicals up to greater extents in groundnut production.  相似文献   

16.
丛枝菌根真菌与根围促生细菌相互作用的效应与机制   总被引:7,自引:0,他引:7  
戴梅  王洪娴  殷元元  武侠  王淼焱  刘润进   《生态学报》2008,28(6):2854-2854~2860
丛枝菌根(arbuscular mycorrhiza,AM)真菌是植物活体营养专性共生菌,广泛存在于陆地各生态系统中.研究表明,AM真菌与根围促生细菌(plant growth promoting rhizobacteria,PGPR)之间的相互作用,尤其是它们之间的协同作用不仅影响植物养分吸收利用、病原物发生发展、土壤理化特性与生物修复等,而且对于可持续农、林、牧业生产、稳定生态系统都具有十分重要的意义.因此,近年来给予众多关注和研究.综述了AM真菌与PGPR之间的相互影响及其可能的作用机制,以及AM真菌与PGPR协同改善植物营养和生长、协同抑制病原菌、协同修复土壤方面的作用,旨在总结AM真菌与PGPR相互作用的效应与机制方面的最新研究进展,为今后研究发展提供依据.  相似文献   

17.
植物修复是一种前景广阔的重金属污染土壤的主要修复技术,在微生物的协助下效果更为显著。植物根际促生菌可通过分泌吲哚-3-乙酸(IAA)、产铁载体、固氮溶磷等方式促进植物生长、改善植物重金属耐受性,从而有效提高重金属污染土壤的植物修复效率。菌根真菌是土壤-植物系统中重要的功能菌群之一,可侵染植物根系改变根系形态和矿质营养状况,通过菌丝体吸附重金属,也可产生球囊霉素、有机酸、植物生长素等次生代谢产物改变重金属生物有效性。植物根际促生菌与丛枝菌根真菌可对植物产生协同促生作用,在重金属污染土壤修复中具有一定应用潜力。目前,国内外关于植物根际促生菌和丛枝菌根真菌互作已有大量研究,而二者的相互作用机理仍处于探索阶段。本文综述了近年来国内外植物根际促生菌和丛枝菌根真菌在重金属污染土壤植物修复中的作用机制,并对其研究前景进行展望。  相似文献   

18.
Several chemical changes in soil are associated with plant growth-promoting rhizobacteria. An endosporeforming bacterium, strain XTBG34, was isolated from a Xishuangbanna Tropical Botanical Garden soil sample and identified as Bacillus megaterium. The strain’s volatiles had remarkable plant growth promotion activity in Arabidopsis thaliana plants; after 15 days treatment, the fresh weight of plants inoculated with XTBG34 was almost 2-fold compared with those inoculated with DH5α. Head space volatile compounds produced by XTBG34, trapped with headspace solid phase microextraction and identified by gas chromatography-mass spectrometry, included aldehydes, alkanes, ketones and aroma components. Of the 11 compounds assayed for plant growth promotion activity in divided Petri plates, only 2-pentylfuran increased plant growth. We have therefore identified a new plant growth promotion volatile of B. megaterium XTBG34, which deserves further study in the mechanisms of interaction between plant growth-promoting rhizobacteria and plants.  相似文献   

19.
Nitrogen‐fixing rhizobacteria can promote plant growth; however, it is controversial whether biological nitrogen fixation (BNF) from associative interaction contributes to growth promotion. The roots of Setaria viridis, a model C4 grass, were effectively colonized by bacterial inoculants resulting in a significant enhancement of growth. Nitrogen‐13 tracer studies provided direct evidence for tracer uptake by the host plant and incorporation into protein. Indeed, plants showed robust growth under nitrogen‐limiting conditions when inoculated with an ammonium‐excreting strain of Azospirillum brasilense. 11C‐labeling experiments showed that patterns in central carbon metabolism and resource allocation exhibited by nitrogen‐starved plants were largely reversed by bacterial inoculation, such that they resembled plants grown under nitrogen‐sufficient conditions. Adoption of S. viridis as a model should promote research into the mechanisms of associative nitrogen fixation with the ultimate goal of greater adoption of BNF for sustainable crop production.  相似文献   

20.
The ability to colonize roots is a sine qua non condition for a rhizobacteria to be considered a true plant growth‐promoting rhizobacteria (PGPR). A simple screening method to detect such a potential ability of PGPR is described. Tomato seeds were surface sterilized for 30 s in 50% ethanol and this was followed by 3 min dipping in 2% NaClO. They were then washed three times in sterile water, left immersed in a propagule suspension of the rhizobacteria for 24 h, and transferred onto sterile 0.6% water‐agar in tubes. The young, developing root system shows a tendency to grow downwards in the agar‐gel column. When the rhizobacterium has a potential ability to colonize roots it is possible to visualize, by transparency, bacterial growth (turbid, milky and narrow zone) along and around roots. Testing 500 rhizobacteria isolated from tomato rhizosphere for their ability to induce systemic resistance against Pseudomonas syringae pv. tomato, 28 of them did reduce infection to less than 40% and all 28 colonized roots according to the described bioassay. Therefore the bioassay may turn into an important auxiliary tool for helping in selecting rhizobacteria with PGPR potentiality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号