首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The molecular structure of a high potential iron-sulfur protein (HiPIP) isolated from the purple photosynthetic bacterium, Ectothiorhodospira halophila strain BN9626, has been solved by x-ray diffraction analysis to a nominal resolution of 2.5 A and refined to a crystallographic R value of 18.4% including all measured x-ray data from 30.0- to 2.5-A resolution. Crystals used in the investigation contained two molecules/asymmetric unit and belonged to the space group P21 with unit cell dimensions of a = 60.00 A, b = 31.94 A, c = 40.27 A, and beta = 100.5 degrees. An interpretable electron density map, obtained by combining x-ray data from one isomorphous heavy atom derivative with non-crystallographic symmetry averaging and solvent flattening, clearly showed that this high potential iron-sulfur protein contains 71 amino acid residues, rather than 70 as originally reported. As in other bacterial ferredoxins, the [4Fe-4S] cluster adopts a cubane-like conformation and is ligated to the protein via four cysteinyl sulfur ligands. The overall secondary structure of the E. halophila HiPIP is characterized by a series of Type I and Type II turns allowing the polypeptide chain to wrap around the [4Fe-4S] prosthetic group. The hydrogen bonding pattern around the cluster is nearly identical to that originally observed in the 85-amino acid residue Chromatium vinosum HiPIP and consequently, the 240 mV difference in redox potentials between these two proteins cannot be simply attributed to hydrogen bonding patterns alone.  相似文献   

2.
The semi-classical electron transfer theory has been very successful in describing reactions occurring in biological systems, but the relevant parameters in the case of iron-sulfur proteins remain unknown. The recent discovery that 2[4Fe-4S] proteins homologous to Chromatium vinosum ferredoxin contain clusters with different reduction potentials now gives the opportunity to study the dependence of the intramolecular electron transfer rate between these clusters as a function of the driving force. This work shows how decreasing the reduction potential difference between the clusters by site-directed mutagenesis of C. vinosum ferredoxin modifies the rate of electron hopping between the two redox sites of the protein by measuring the line broadening of selected 1H NMR signals. Beside the shifts of the reduction potentials, no signs of large structural changes or of significant alterations of the intrinsic kinetic parameters among the different variants of C. vinosum ferredoxin have been found. A reorganization energy of less than 0.5 eV was deduced from the dependence of the electron transfer rates with the reduction potential difference. This small value is associated with a weak electronic coupling between the two closely spaced clusters. This set of parameters, determined for the first time in an iron-sulfur protein, may help to explain how efficient vectorial electron transfer occurs with a small driving force in the many enzymatic systems containing a 2[4Fe-4S] domain.  相似文献   

3.
Azotobacter vinelandii (4Fe-4S)2 ferredoxin I (Fd I) is an electron transfer protein with Mr equals 14,500 and Eo equals -420 mv. It exhibits and EPR signal of g equals 2.01 in its isolated form. This resonance is almost identical with the signal that originates from a "super-oxidized" state of the 4Fe-4S cluster of potassium ferricyanide-treated Clostridium ferredoxin. A cluster that exhibits this EPR signal at g equals 2.01 is in the same formal oxidation state as the cluster in oxidized Chromatium High-Potential-Iron-Protein (HiPIP). On photoreduction of Fd I with spinach chloroplast fragments, the resonance at g equals 2.01 vanishes and no EPR signal is observed. This EPR behavior is analogous to that of reduced HiPIP, which also fails to exhibit an EPR spectrum. These characteristics suggest that a cluster in A. vinelandii Fd I functions between the same pair of states on reduction as does the cluster in HiPIP, but with a midpoint reduction potential of -420 mv in contrast to the value of +350 mv characteristic of HiPIP. Quantitative EPR and stoichoimetry studies showed that only one 4Fe-4S cluster in this (4Fe-4S)2 ferredoxin is reduced. Oxidation of Fd I with potassium ferricyanide results in the uptake of 1 electron/mol as determined by quantitative EPR spectroscopy. This indicates that a cluster in Fd I shows no electron paramagnetic resonance in the isolated form of the protein accepts an electron on oxidation, as indicated by the EPR spectrum, and becomes paramagnetic. The EPR behavior of this oxidizable cluster indicates that it also functions between the same pair of oxidation states as does the Fe-S cluster in HiPIP. The midpoint reduction potential of this cluster is approximately +340 mv. A. vinelandii Fd I is the first example of an iron-sulfur protein which contains both a high potential cluster (approximately +340 mv) and a low potential cluster (-420 mv). Both Fe-S clusters appear to function between the same pair of oxidation states as the single Fe-S cluster in Chromatium HiPIP, although the midpoint reduction potentials of the two clusters are approximately 760 mv different.  相似文献   

4.
 The amide group between residues 78 and 79 of Chromatium vinosum high-potential iron-sulfur protein (HiPIP) is in close proximity to the Fe4S4 cluster of this protein and interacts via a hydrogen bond with Sγ of Cys77, one of the cluster ligands. The reduction potential of the S79P variant was 104±3 mV lower than that of the recombinant wild-type (rcWT) HiPIP (5 mM phosphate, 100 mM NaCl, pH 7, 293 K), principally due to a decrease in the enthalpic term which favors the reduction of the rcWT protein. Analysis of the variant protein by NMR spectroscopy indicated that the substitution has little effect on the structure of the HiPIP or on the electron distribution in the oxidized cluster. Potential energy calculations indicate that the difference in reduction potential between rcWT and S79P variant HiPIPs is due to the different electrostatic properties of amide 79 in these two proteins. These results suggest that the influence of amide group 79 on the reduction potential of C. vinosum HiPIP is a manifestation of a general electrostatic effect rather than a specific interaction. More generally, these results provide experimental evidence for the importance of buried polar groups in determining the reduction potentials of metalloproteins. Received: 26 April 1999 / Accepted: 24 August 1999  相似文献   

5.
We have measured the ionic strength dependence of the rate constants for the electron-transfer reactions of flavin mononucleotide (FMN) and flavodoxin semiquinones with 10 high redox potential ferredoxins (HiPIP's). The rate constants were extrapolated to infinite ionic strength by using a theoretical model of electrostatic interactions developed in our laboratory. In all cases, the sign of the electrostatic interaction was the same as the protein net charge, but the magnitudes were much smaller. The results are consistent with a model in which the electrical charges are approximately uniformly distributed over the HiPIP surface and in which there are both short- and long-range electrostatic interactions. An electrostatic field calculation for Chromatium vinosum HiPIP is consistent with this. The presumed site of electron transfer includes that region of the protein surface to which the iron-sulfur cluster is nearest and appears to be relatively hydrophobic. The principal short-range electrostatic interaction would involve the negative charge on the iron-sulfur cluster. For some net negatively charged proteins, this effect is magnified, and for net positively charged HiPIP's, it is counterbalanced. The rate constants extrapolated to infinite ionic strength can be correlated with redox potential differences between the reactants, as has previously been shown for cytochrome-flavin semiquinone reactions. Both electrostatic and redox potential effects are magnified for the flavodoxin semiquinone as compared to the FMN semiquinone-HiPIP reactions. This was also observed previously for the flavin semiquinone-cytochrome reactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The amino acid sequences of high-redox-potential ferredoxin (HiPIP) isozymes from Ectothiorhodospira halophila have been determined. These are: isozyme I, EPRAEDGHAHDYVNEAADPSHGRYQEGQLCENCAFWGEAVQDGWGRCTHPDFDEVLVKAEGWCSVYAPA S, and isozyme II, GLPDGVEDLPKAEDDHAHDYVNDAADTDHARFQEGQLCENCQFWVDYVNGWGYCQHPDFTDVLVRGEGW CSVYAPA. Isozyme II is the major form of HiPIP produced by the bacterium (65-80%) and is the most acidic of the known HiPIPs. The two isozymes are 72% identical to one another and require only a single residue deletion for alignment. Comparison of these HiPIPs with seven previously determined sequences revealed only 27% average identity. Both E. halophila HiPIP isozymes are likely to be functional since their sequences are equally distant from those of other species. The E. halophila HiPIP sequences show that H-bonding patterns recognized in Chromatium vinosum HiPIP are likely to be conserved and therefore cannot explain the unusually low redox potentials which have been reported.  相似文献   

7.
The Rieske iron-sulfur proteins have reduction potentials ranging from -150 to +400 mV. This enormous range of potentials was first proposed to be due to differing solvent exposure or even protein structure. However, the increasing number of available crystal structures for Rieske iron-sulfur proteins has shown this not to be the case. Colbert and colleagues proposed in 2000 that differences in the electrostatic environment, and not structural differences, of a Rieske proteins are responsible for the wide range of reduction potentials observed. Using computational simulation methods and the newly determined structure of Pseudomonas sp. NCIB 9816-4 naphthalene dioxygenase Rieske ferredoxin (NDO-F9816-4), we have developed a model to predict the reduction potential of Rieske proteins given only their crystal structure. The reduction potential of NDO-F9816-4, determined using a highly oriented pyrolytic graphite electrode, was -150+/-2 mV versus the standard hydrogen electrode. The predicted reduction potentials correlate well with experimentally determined potentials. Given this model, the effect of protein mutations can be evaluated. Our results suggest that the reduction potential of new proteins can be estimated with good confidence from 3D structures of proteins. The structure of NDO-F9816-4 is the most basic Rieske ferredoxin structure determined to date. Thus, the contributions of additional structural motifs and their effects on reduction potential can be compared with respect to this base structure.  相似文献   

8.
Circular dichroism and redox properties of high redox potential ferredoxins   总被引:2,自引:0,他引:2  
The circular dichroism (CD) spectra of 13 examples of high-potential iron-sulfur proteins (HiPIPs), a class of [4Fe-4S] ferredoxins, have been determined. In contrast to the proposal of Carter [Carter, C. W., Jr. (1977) J. Biol. Chem. 252, 7802-7811], no strict correlation between visible CD features and utilization of the [4Fe-4S]2+/[4Fe-4S]3+ oxidation levels was found. Although most HiPIPs have these features, the model requires their presence in all species. There is also no simple relationship between CD spectral features and the presence of conserved tyrosine-19. In addition, no apparent correlation between CD properties and oxidation-reduction potential could be detected. However, amino acid side chains in close contact to the iron-sulfur cluster appear to be important in modulating spectral and oxidation-reduction properties. In particular, the negative shoulder at 290 nm and negative maximum at 230 nm correlate with the presence of Trp-80 (Chromatium vinosum numbering). Two HiPIPs that do not have Trp at this position have positive bands at 290 and 230 nm. These bands in the Ectothiorhodospira halophila HiPIPs are apparently associated with Trp-49, which is located on the opposite side of the effective mirror plane of the cluster from Trp-80. The effect of pH on circular dichroism and redox potential in Thiocapsa roseopersicina HiPIP, which has a histidine at position 49, is consistent with the interaction of the side chain with the cluster. Despite specific differences in their CD spectra, the various HiPIPs studied show general similarity consistent with structural homology within this class of iron-sulfur proteins.  相似文献   

9.
The kinetics of electron transfer from reduced high-potential iron-sulfur protein (HiPIP) to the photooxidized tetraheme cytochrome c subunit (THC) bound to the photosynthetic reaction center (RC) from the purple sulfur bacterium Allochromatium vinosum were studied under controlled redox conditions by flash absorption spectroscopy. At ambient redox potential Eh = +200 mV, where only the high-potential (HP) hemes of the THC are reduced, the electron transfer from HiPIP to photooxidized HP heme(s) follows second-order kinetics with rate constant k = (4.2 +/- 0.2) 10(5) M(-1) s(-1) at low ionic strength. Upon increasing the ionic strength, k increases by a maximum factor of ca. 2 at 640 mM KCl. The role of Phe48, which lies on the external surface of HiPIP close to the [Fe4S4] cluster and presumably on the electron transfer pathway to cytochrome heme(s), was investigated by site-directed mutagenesis. Substitution of Phe48 with arginine, aspartate, and histidine completely prevents electron donation. Conversely, electron transfer is still observed upon substitution of Phe48 with tyrosine and tryptophan, although the rate is decreased by more than 1 order of magnitude. These results suggest that Phe48 is located on a key protein surface patch essential for efficient electron transfer, and that the presence of an aromatic hydrophobic residue on the putative electron-transfer pathway plays a critical role. This conclusion was supported by protein docking calculations, resulting in a structural model for the HiPIP-THC complex, which involves a docking site close to the LP heme farthest from the bacteriochlorophyll special pair.  相似文献   

10.
The molecular structure of the high-potential iron-sulfur protein (HiPIP) isolated from the phototrophic bacterium, Rhodocyclus tenuis, has been solved and refined to a nominal resolution of 1.5 A with a crystallographic R-factor of 17.3% for all measured X-ray data from 30 A to 1.5 A. It is the smallest of the HiPIP structures studied thus far with 62 amino acid residues. Crystals used in the investigation belonged to the space group P2(1) with unit cell dimensions of a = 36.7 A, b = 52.6 A, c = 27.6 A and beta = 90.8 degrees and contained two molecules per asymmetric unit. The structure was solved by a combination of multiple isomorphous replacement with two heavy-atom derivatives, anomalous scattering from the iron-sulfur cluster, symmetry averaging and solvent flattening. The folding motif for this HiPIP is characterized by one small alpha-helix, six Type I turns, an approximate Type II turn and one Type I' turn. As in other HiPIPs, the iron-sulfur cluster is co-ordinated by four cysteinyl ligands and exhibits a cubane-like motif. These cysteinyl ligands are all located in Type I turns. The hydrogen bonding around the metal cluster in the R. tenuis protein is similar to the patterns observed in the Chromatium vinosum and Ectothiorhodospira halophila HiPIPs. Several of the amino acid residues invariant in the previously determined C. vinosum and E. halophila structures are not retained in the R. tenuis molecule. There are 13 solvent molecules structurally conserved between the two R. tenuis HiPIP molecules in the asymmetric unit, some of which are important for stabilizing surface loops. Interestingly, while it is assumed that this HiPIP functions as a monomer in solution, the two molecules in the asymmetric unit pack as a dimer and are related to each other by an approximate twofold rotation axis.  相似文献   

11.
The high-potential iron-sulfur protein (HiPIP) from Rhodospirillum tenue (strain 3761) shows only a weak (20-25%) sequence similarity to HiPIPs from Chromatium vinosum, Ectothiorhodospira halophila and Ectothiorhodospira vacuolata, including the strict conservation of only two of the twelve residues assumed to be in the 4Fe-4S cluster packing region [Tedro, S. M., Meyer, T. E. and Kamen, M. D. (1979) J. Biol. Chem. 254, 1495-1500]. In spite of these differences, the general range and distribution of hyperfine-shifted 1H-NMR peaks of oxidized and reduced R. tenue HiPIP resemble those of E. halophila HiPIP I [Krishnamoorthi, R., Markley, J. L., Cusanovich, M. A., Pryzycieki, C. T. and Meyer, T. E. (1986) Biochemistry 25, 60-67]. Temperature- and pH-dependence and longitudinal relaxation behavior were determined for hyperfine-shifted peaks of the oxidized protein. Tentative assignments of peaks to ligands and aromatic residues suggest the presence of common apoprotein-active-site interactions in these proteins. Differences occur in the pattern of paramagnetically shifted peaks attributed to hydrogens bonded to the 4Fe-4S cluster. Hyperfine-shifted peaks of R. tenue HiPIP are not perturbed by pH changes in the range 5-9. In contrast, those of the C. vinosum protein exhibit a pH-dependence of chemical shifts that has been attributed to the titration of His42 [Nettesheim, D. G., Meyer, T. E., Feinberg, B. A. and Otvos, J. D. (1983) J. Biol. Chem. 258, 8235-8239]. Since R. tenue HiPIP contains no histidine, the present observation confirms the above hypothesis.  相似文献   

12.
B W Beck  Q Xie    T Ichiye 《Biophysical journal》2001,81(2):601-613
A sequence determinant of reduction potentials is reported for bacterial [4Fe-4S]-type ferredoxins. The residue that is four residues C-terminal to the fourth ligand of either cluster is generally an alanine or a cysteine. In five experimental ferredoxin structures, the cysteine has the same structural orientation relative to the nearest cluster, which is stabilized by the SH...S bond. Although such bonds are generally considered weak, indications that Fe-S redox site sulfurs are better hydrogen-bond acceptors than most sulfurs include the numerous amide NH...S bonds noted by Adman and our quantum mechanical calculations. Furthermore, electrostatic potential calculations of 11 experimental ferredoxin structures indicate that the extra cysteine decreases the reduction potential relative to an alanine by approximately 60 mV, in agreement with experimental mutational studies. Moreover, the decrease in potential is due to a shift in the polar backbone stabilized by the SH...S bond rather than to the slightly polar cysteinyl side chain. Thus, these cysteines can "tune" the reduction potential, which could optimize electron flow in an electron transport chain. More generally, hydrogen bonds involving sulfur can be important in protein structure/function, and mutations causing polar backbone shifts can alter electrostatics and thus affect redox properties or even enzymatic activity of a protein.  相似文献   

13.
The high-potential iron-sulfur protein (HiPIP) from Chromatium vinosum contains a cubane prosthetic group that shuttles between the [4Fe-4S]3+,2+ states. We find that the EPR spectra from this protein can be explained as a sum of two components, a major one with g = 2.02; 2.04; 2.12, and a minor one with g = 2.04; 2.07; approximately 2.13. In the presence of 0.1-2.0 M NaCl, freezing induces polymerization of the protein (presumably dimers), which is detected as intercluster spin-spin interaction in the EPR. The observed spin-spin interactions are interpreted as being due to two very similar dimeric structures in an approx. 1:2 ratio. Computer simulation of the X- and Q-band EPR spectra shows that the z-components of the g-tensors in each dimer pair must be co-linear, with center-to-center distances between the clusters of approximately 13 A and approximately 16 A. Inspection of possible dimeric structures of C. vinosum HiPIP by standard molecular graphics procedures revealed that the Fe/S cluster is exposed toward a flattened surface and is accessible to solvent. Moreover, the Fe/S clusters in two HiPIP molecules can easily achieve a center-to-center distance of approximately 14 A when approaching along a common 3-fold axis that extends through the S4 sulfur atom of the cubane; the z-component of the EPR g-tensor is co-linear with this symmetry axis.  相似文献   

14.
Heteronuclear multidimensional NMR spectroscopy was used to investigate in detail the structural and dynamical properties of a partially unfolded intermediate of the reduced high-potential iron-sulfur protein (HiPIP) from Chromatium vinosum present in 4 M guanidinium chloride solution. After an extensive assignment of 15N and 1H resonances, NOE data, proton longitudinal relaxation times, and 3JHNHalpha coupling constants as well as 15N relaxation parameters (T1, T2, T1rho, and 1H-15N NOE) were obtained and used to build a structural model of the intermediate. The Fe4S4 cluster of the HiPIP plays a decisive role in determining the resulting structure, which is random in the N-terminal half of the protein and partially organized in the loops between the cysteines bound to the cluster. Consistent with the structural data, the backbone mobility is typical of folded proteins in the regions where there are elements of structure and increases with the structural indetermination.  相似文献   

15.
Targeting of proteins to and translocation across the membranes is a fundamental biological process in all organisms. In bacteria, the twin arginine translocation (Tat) system can transport folded proteins. Here, we demonstrate in vivo that the high potential iron-sulfur protein (HiPIP) from Allochromatium vinosum is translocated into the periplasmic space by the Tat system of Escherichia coli. In vitro, reconstituted HiPIP precursor (preHoloHiPIP) was targeted to inverted membrane vesicles from E. coli by a process requiring ATP when the Tat substrate was properly folded. During membrane targeting, the protein retained its cofactor, indicating that it was targeted in a folded state. Membrane targeting did not require a twin arginine motif and known Tat system components. On the basis of these findings, we propose that a pathway exists for the insertion of folded cofactor-containing proteins such as HiPIP into the bacterial cytoplasmic membrane.  相似文献   

16.
Detailed circular dichroism (CD), steady-state and time-resolved tryptophan fluorescence studies on the holo- and apo- forms of high potential iron protein (HiPIP) from Chromatium vinosum and its mutant protein have been carried out to investigate conformational properties of the protein. CD studies showed that the protein does not have any significant secondary structure elements in the holo- or apo- HiPIP, indicating that the metal cluster does not have any effect on formation of secondary structure in the protein. Steady-state fluorescence quenching studies however, suggested that removal of the iron-sulfur ([Fe(4)S(4)](3+)) cluster from the protein leads to an increase in the solvent accessibility of tryptophans, indicating change in the tertiary structure of the protein. CD studies on the holo- and apo- HiPIP also showed that removal of the metal prosthetic group drastically affects the tertiary structure of the protein. Time-resolved fluorescence decay of the wild type protein was fitted to a four-exponentials model and that of the W80N mutant was fitted to a three-exponentials model. The time-resolved fluorescence decay was also analyzed by maximum entropy method (MEM). The results of the MEM analysis agreed with those obtained from discrete exponentials model analysis. Studies on the wild type and mutants helped to assign the fast picosecond lifetime component to the W80 residue, which exhibits fast fluorescence energy transfer to the [Fe(4)S(4)](3+) cluster of the protein. Decay-associated fluorescence spectra of each tryptophan residues were calculated from the time-resolved fluorescence results at different emission wavelengths. The results suggested that W80 is in the hydrophobic core of the protein, but W60 and W76 are partially or completely exposed to the solvent.  相似文献   

17.
The iron-sulfur proteins of the green photosynthetic bacterium Chlorobium have been characterized by oxidation-reduction potentiometry in conjunction with low-temperature electron paramagnetic resonance spectroscopy. Chlorobium ferredoxin was the only iron-sulfur protein detected in the soluble fraction; no high-potential iron-sulfur protein was observed. In addition, high-potential iron-sulfur protein was not detected in the chromatophores. Four chromatophore-bound iron-sulfur proteins were detected. One is the "Rieske" type iron-sulfur protein with a g-value of 1.90 in the reduced state; the protein has a midpoint potential of + 160 mV (pH 7.0), and this potential is pH dependent. Three g=1.94 chromatophore-bound iron-sulfur proteins were observed, with midpoint potentials of -25, -175, and about -550 mV. A possible role for the latter iron-sulfur protein in the primary photochemical reaction in Chlorobium is considered.  相似文献   

18.
Ferredoxin is a typical iron-sulfur protein that is ubiquitous in biological redox systems. This study investigates the in vitro assembly of a [Fe2S2] cluster in the ferredoxin from Acidithiobacillus ferrooxidans in the presence of three scaffold proteins: IscA, IscS, and IscU. The spectra and MALDI-TOF MS results for the reconstituted ferredoxin confirm that the iron-sulfur cluster was correctly assembled in the protein. The inactivation of cysteine desulfurase by L-allylglycine completely blocked any [Fe2S2] cluster assembly in the ferredoxin in E. coli, confirming that cysteine desulfurase is an essential component for iron-sulfur cluster assembly. The present results also provide strong evidence that [Fe2S2] cluster assembly in ferredoxin follows the AUS pathway.  相似文献   

19.
Iron-sulfur clusters are essential protein prosthetic groups that provide their redox potential to several different metabolic pathways. Formation of iron-sulfur clusters is assisted by a specialised machine that comprises, among other proteins, a ferredoxin. As a first step to elucidate the precise role of this protein in cluster assembly, we have studied the factors governing the stability and the dynamic properties of E. coli ferredoxin using different spectroscopic techniques. The cluster-loaded protein is monomeric and well structured with a flexible C-terminus but is highly oxygen sensitive so that it readily loses the cluster leading to an irreversible unfolding under aerobic conditions. This process is slowed down by reducing conditions and high ionic strengths. NMR relaxation experiments on the cluster-loaded protein also show that, once the cluster is in place, the protein forms a globular and relatively rigid domain. These data indicate that the presence of the iron-sulfur cluster is the switch between a functional and a non-functional state.  相似文献   

20.
P D Swartz  B W Beck    T Ichiye 《Biophysical journal》1996,71(6):2958-2969
Redox potentials often differ dramatically for homologous proteins that have identical redox centers. For two types of iron-sulfur proteins, the rubredoxins and the high-potential iron-sulfur proteins (HiPIPs), no structural explanations for these differences have been found. We calculated the classical electrostatic potential at the redox site using static crystal structures of four rubredoxins and four HiPIPs to identify important structural determinants of their redox potentials. The contributions from just the backbone and polar side chains are shown to explain major features of the experimental redox potentials. For instance, in the rubredoxins, the presence of Val 44 versus Ala 44 causes a backbone shift that explains a approximately 50 mV lower redox potential in one of the four rubredoxins. This result is consistent with experimental redox potentials of five additional rubredoxins with known sequence. Also, we attribute the unusually lower redox potentials of two of the HiPIPs studied to a less positive electrostatic environment around their redox sites. Finally, molecular dynamics simulations of solvent around static rubredoxin crystal structures indicate that water alone is a major factor in dampening the contribution of charged side chains, in accord with experiments showing that mutations of surface charges produce relatively little effect on redox potentials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号