首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants regulate the extent of nodulation and root colonization by arbuscular mycorrhizal fungi (AMF), a phenomenon named autoregulation of symbiosis. We tested AMF colonization in split roots of various soybean genotypes [ Glycine max (L.) Merr. cv. Bragg, Enrei, Harosoy and Williams], where precolonization of one side of the split-root system by the AMF Glomus mosseae resulted in reduced mycorrhization of the other. AMF precolonization failed to control secondary mycorrhization in the supernodulating Bragg nonsense mutant nts1007 (Q106*), indicating that the GmNARK gene (predicted to encode a leucine-rich repeats (LRR) receptor kinase related to CLAVATA1 in Arabidopsis ) is involved in autoregulation of the AMF symbiosis. Here, we tested whether the allelic En6500 nonsense supernodulating mutant ( GmNARK K606*, derived from cv. Enrei) and supernodulating mutants of cv. Williams ( Nod1-3 and Nod2-4 ) with yet-undefined genetic lesions exhibit a similar symbiotic phenotype in mycorrhizal split-root systems. Surprisingly, these supernodulating mutants retained their ability to autoregulate AMF. To examine possible differences between two allelic mutants, we determined levels of IAA, abscisic acid, coumestrol, daidzein and genistein in mycorrhizal and uninoculated control roots. Compared with wild-type plants, both mutants showed reduced IAA accumulation in mycorrhizal roots. Roots of cv. Enrei and En6500 exhibited high levels of isoflavonoids not seen in Bragg or nts1007 . Taken together, these findings showed that supernodulation mutants, despite a common nodulation phenotype, differ in their ability to autoregulate AMF root colonization. This suggests either that the GmNARK gene product of some mutants is still partially functional (Q106* vs. K606*) or that varietal differences reflected in altered physiological responses suppress the loss of function.  相似文献   

2.
Autoregulatory mechanisms have been reported in the rhizobial and the mycorrhizal symbiosis. Autoregulation means that already existing nodules or an existing root colonization by an arbuscular mycorrhizal fungus systemically suppress subsequent nodule formation/root colonization in other parts of the root system. Mutants of some legumes lost their ability to autoregulate the nodule number and thus display a supernodulating phenotype. On studying the effect of pre-inoculation of one side of a split-root system with an arbuscular mycorrhizal fungus on subsequent mycorrhization in the second side of the split-root system of a wild-type soybean (Glycine max L.) cv. Bragg and its supernodulating mutant nts1007, we observed a clear suppressional effect in the wild-type, whereas further root colonization in the split-root system of the mutant nts1007 was not suppressed. These data strongly indicate that the mechanisms involved in supernodulation also affect mycorrhization and support the hypothesis that the autoregulation in the rhizobial and the mycorrhizal symbiosis is controlled in a similar manner. The accumulation patterns of the plant hormones IAA, ABA and Jasmonic acid (JA) in non-inoculated control plants and split-root systems of inoculated plants with one mycorrhizal side of the split-root system and one non-mycorrhizal side, indicate an involvement of IAA in the autoregulation of mycorrhization. Mycorrhizal colonization of soybeans also resulted in a strong induction of ABA and JA levels, but on the basis of our data the role of these two phytohormones in mycorrhizal autoregulation is questionable.  相似文献   

3.
The regulation and nitrate inhibition of nodule formation insoybean, Glycine max (L.) Merr., was further examined usingthe nodulation mutants of cv. Enrei. The non-nodulating mutantsEn115, Enl282, and En1314 produced extremely few markedly-curledroot hairs which were all devoid of infection threads, and invariablyfailed to initiate sub-epidermal cell divisions (SCDs) in theroot cortex. A considerable number of arrested SCDs was foundbefore nodule emergence in Enrei, but not in En6500 which hadsignificantly more SCDs that progressively increased at moreadvanced stages of nodule ontogeny. These observations indicatethat autoregulation acts by blocking the developmental stagebefore nodule emergence. In both Enrei and En65OO, the maturationof emerged nodules was restricted by a late-acting nodulationcontrol mechanism that is apparently unrelated to autoregulation.Reciprocal wedge-grafts of plants inoculated at sowing showedthat the control of the supernodulating phenotype resides inthe shoot, while the non-nodulating phenotype is strictly root-controlled.The nodulation phenotype of the current non-nodulating mutantsresults not from an alteration of the autoregulatory mechanism,but from mutation that exerts a root-localized effect that blocksSCDs which trigger the autoregulatory mechanism. Reciprocalgrafting experiments on Enrei and En6500 seedlings grown undervarious nitrate levels suggest that nitrate inhibition of nodulation,like autoregulation, is shoot-controlled. Since these two processesare invariably expressed together, they are probably causallyrelated, acting synergistically to regulate nodule formationin soybean. These results indicate that the regulation and nitrateinhibition of nodulation in the nodulation mutants of cv. Enreiare similar to those of cv. Bragg nodulation mutants. Key words: Autoregulation, nitrate-tolerant symbosis, non-nodulating mutants, soybean, supernodulating mutant  相似文献   

4.
The effect of root colonization by Glomus mosseae on the qualitative and quantitative pattern of essential oils (EO) was determined in three oregano genotypes (Origanum sp.). To exclude a simple P-mediated effect through mycorrhization the effect of P application to plants on the EO accumulation was also tested. In two genotypes the leaf biomass was increased through mycorrhization. Root colonization by the arbuscular mycorrhizal fungus (AMF) did not have any significant effect on the EO composition in oregano; however, in two genotypes the EO concentration significantly increased. As EO levels in P-treated plants were not enhanced, we conclude that the EO increase observed in mycorrhizal oregano plants is not due to an improved P status in mycorrhizal plants, but depends directly on the AMF–oregano plant association.  相似文献   

5.
The role of the jasmonate signalling pathway in modulating the establishment of the arbuscular mycorrhiza (AM) symbiosis between tomato plants and Glomus intraradices fungus was studied. The consequences of AM formation due to the blockage of the jasmonate signalling pathway were studied in experiments with plant mutants impaired in JA perception. The tomato jai-1 mutant (jasmonic acid insensitive 1) failed to regulate colonization and was more susceptible to fungal infection, showing accelerated colonization. The frequency and the intensity of fungal colonization were greatly increased in the jai-1 insensitive mutant plants. In parallel, the systemic effects on mycorrhization due to the activation of the jasmonate signalling pathway by foliar application of MeJA were evaluated and histochemical and molecular parameters of mycorrhizal intensity and efficiency were measured. Histochemical determination of fungal infectivity and fungal alkaline phosphatase activity reveal that the systemic application of MeJA was effective in reducing mycorrhization and mainly affected fungal phosphate metabolism and arbuscule formation, analyzed by the expression of GiALP and the AM-specific gene LePT4, respectively. The results of the present study clearly show that JA participates in the susceptibility of tomato to infection by arbuscular mycorrhizal fungi, and it seems that arbuscular colonization in tomato is tightly controlled by the jasmonate signalling pathway.  相似文献   

6.
Among chemicals that are widely spread both in terrestrial and aquatic ecosystems, benzo[a]pyrene is a major source of concern. However, little is known about its adverse effects on plants, as well as about the role of mycorrhization in protection of plant grown in benzo[a]pyrene-polluted conditions. Hence, to contribute to a better understanding of the adverse effects of polycyclic aromatic hydrocarbons on the partners of mycorrhizal symbiotic association, benzo[a]pyrene-induced oxidative stress was studied in transformed Cichorium intybus roots grown in vitro and colonized or not by Glomus intraradices. The arbuscular mycorrhizal fungus development (colonization, extraradical hyphae length, and spore formation) was significantly reduced in response to increasing concentrations of benzo[a]pyrene (35–280 μM). The higher length of arbuscular mycorrhizal roots, compared to non-arbuscular mycorrhizal roots following benzo[a]pyrene exposure, pointed out a lower toxicity of benzo[a]pyrene in arbuscular mycorrhizal roots, thereby suggesting protection of the roots by mycorrhization. Accordingly, in benzo[a]pyrene-exposed arbuscular mycorrhizal roots, statistically significant decreases were observed in malondialdehyde concentration and 8-hydroxy-2′-desoxyguanosine formation. The higher superoxide dismutase activity detected in mycorrhizal chicory roots could explain the benzo[a]pyrene tolerance of the colonized roots. Taken together, these results support an essential role of mycorrhizal fungi in protecting plants submitted to polycyclic aromatic hydrocarbon, notably by reducing polycyclic aromatic hydrocarbon-induced oxidative stress damage.  相似文献   

7.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

8.
In the present work, the following hypotheses were tested: (1) the negative effects of mycorrhization over host plant productivity in N-limited conditions are due to N retention by the fungal partner and not due to excessive C drainage; (2) If mycorrhization results in decreased N uptake, the host plant decreases its C investment in fungal growth. The effects of mycorrhization over a wide range of combinations between N availability, N concentration in plant tissues, and degree of mycorrhizal colonization were studied in Pinus pinaster L. mycorrhizal with Pisolithus tinctorius. Several plant productivity parameters, the seedlings’ N status, chl a fluorescence (JIP test), and mycorrhizal colonization were measured. N was always limiting. A gradient of mycorrhizal effects over the host plant’s growth and vitality was successfully obtained. The mycorrhizal effects on plant growth and N uptake were very strongly and positively correlated, and no evidence was found of a C limitation to growth, confirming hypothesis 1. Indications were found that the plants continued to provide C to the fungus although the N supplied by it was increasingly lower, denying hypothesis 2. A new index, the mycorrhizal N demand–supply balance, was found to efficiently explain, and to have a curvilinear relation with, the variation in response to mycorrhization. The mycorrhizal effect on host plant growth was not related to a negative effect on its photosynthetic performance and, therefore, reflected changes in resource allocation between host plant and mycorrhizal fungus, not in plant vitality.  相似文献   

9.
A compound that stimulated the growth of an arbuscular mycorrhizal (AM) fungus was isolated from 75% methyl alcohol (MeOH) extracts of a brown alga, Laminaria japonica Areschoug, using high-pressure liquid chromatography (HPLC). This compound (Compound 1) was identified as mannitol by HPLC and nuclear magnetic resonance (NMR) spectroscopy. Compound 1 and purchased polysaccharides (alginic acid, fucoidan, carrageenan and mannan from marine algae) were tested for in vitro hyphal growth of an AM fungus, Gigaspora margarita Becker and Hall. Compound 1 (50–500 mg L−1) and carrageenan (1000 mg L−1) significantly stimulated the hyphal growth of germinating spores of Gi. margarita. The application of 100 mg L−1 of Compound 1 to trifoliate orange (Poncirus trifoliata Raf.) inoculated with Gi. margarita promoted root colonization and increased plant growth. These results suggest low concentrations of mannitol are among the reasons for enhanced hyphal growth and root colonization by the application of algal extracts. Other sugar alcohols (100–300 mg L−1 of xylitol, sorbitol and meso-erythritol) also increased the hyphal growth of Gi. margarita.  相似文献   

10.
 The effect of root exudates from P-deficient onion on root colonisation by an arbuscular mycorrhizal fungus was examined. Onions (Allium cepa L.) were grown in solution culture at phosphorus concentrations of 0 (P0) and 2 (P2) mg P l–1. Root exudates were collected and fractionated with Amberlite XAD-4 resin to give EtOH and water soluble fractions. Onions inoculated with the arbuscular mycorrhizal fungus Gigaspora margarita Becker & Hall were grown with or without (control) root exudates and exudate fractions in a growth chamber. After 24 days, arbuscular mycorrhiza levels and appressoria formation had increased in plants treated with P0-root exudate or the P0-EtOH fraction when compared to corresponding P2 treatments or control plants. P0 and P2 water-soluble fractions did not significantly affect either aspect of fungal development. These results suggest that hydrophobic compounds found in root exudates from P-deficient onion increase appressorium formation and, therefore, enhance mycorrhiza development. Accepted: 2 June 1998  相似文献   

11.
 The influence of 23 years of phosphorus (P) application at three annual rates of 0, 17.5 and 52.5 kg ha–1 on arbuscular mycorrhizal (AM) fungal colonization was studied 10 years after the fertilization treatment ended. The annual application of 52.5 kg ha–1 was about twice the annual crop P extraction and after 23 years had resulted in a measured increase of 23% in the soil total-P concentration. After 10 and 11 years without fertilization, the total mycorrhizal and arbuscular colonization of the plots previously fertilized at this high rate were still significantly lower than in the plots subjected to the 0 and 17.5 kg ha–1 rates. Plots previously fertilized annually at the rate of 52.5 kg ha–1 also had a lower benefit : cost ratio for the symbiosis between AM fungi and plants. Furthermore, P-use efficiency was lower in these plots, although no decrease in total dry matter production was found. Accepted: 13 October 2000  相似文献   

12.
The aim of this field study was to examine how the development of arbuscular mycorrhizal fungi (AMF) on coal mine spoil banks is affected by the presence of plants with different mycorrhizal status. A 3-year trial was conducted on the freshly created spoil bank Vršany, North-Bohemian coal basin, the Czech Republic. Three plant species – non-mycotrophic annual Atriplex sagittata, highly mycotrophic annual Tripleurospermum inodorum (both dominants of early stages of succession) and facultatively mycotrophic Arrhenatherum elatius (a perennial grass species of the later stage of succession) – were planted on 1 m2 plots over 3 years in different sequences that simulated the progress of succession on spoil banks. The development of AMF populations was monitored by evaluation of mycorrhizal colonization of plant roots and by measurement of the mycorrhizal inoculation potential (MIP) of soil. These two parameters were compared between plots inoculated with the mixture of three AMF isolates – Glomus mosseae BEG95, G. claroideum BEG96 and G. intraradices BEG140 – (“inoculated plots”) and plots exposed only to natural dispersal of AMF propagules (“uninoculated plots”). Highly colonized roots of plants together with a high MIP of soil in uninoculated plots were already found at the end of the first season, indicating rapid natural dispersal of AMF propagules. Root colonization of facultatively mycotrophic and non-mycotrophic plants in later years was affected by the mycorrhizal status of the previous plant species. The MIP of soil continuously increased throughout the experiment; in uninoculated plots, the MIP was temporarily decreased if plant species of higher mycotrophy were replaced by species of lower mycotrophy. The results lead to the conclusion that AMF colonize freshly formed sites very quickly and reproduce or accumulate in the soil, which leads to increasing MIP values. However, this infective potential can be decreased if non-mycotrophic plants predominate on the site.  相似文献   

13.
Abstract

We tested the effect of root colonization of cucumber (Cucumis sativus L.) by the arbuscular mycorrhizal fungus (AMF) Glomus mosseae on different parameters of a plant-thrips (Frankliniella occidentalis Pergande) interaction. In leaf disc bioassays, the feeding activity, the oviposition rate, the settling preference of adult females and the developmental time (first instar larva to adult) on leaves of mycorrhizal and non-mycorrhizal plants were studied. To distinguish between a nutritional effect through an improved phosphorous (P) status of the mycorrhizal plant and other effects caused by mycorrhization, non-mycorrhizal plants watered with a nutrient solution with (+P) or without P (?P) were included in the study. Mycorrhization did not affect any of the parameters on host acceptance tested, whereas on plants with a higher P-level the duration of the non-feeding stages (pronymphae, nymphae) of F. occidentalis was shortened, but all other developmental parameters were similar as in the control and the mycorrhizal plants. Our data indicate that the polyphagous thrips F. occidentalis is neither affected by mycorrhization of cucumber plants nor by enhanced P-levels.  相似文献   

14.
The effect of the arbuscular mycorrhizal symbiosis (AM) varies in plant cultivars. In the present study, we tested whether wild-type, old and modern tomato cultivars differ in the parameters of the AM interaction. Moreover, the bioprotective effect of AM against the soilborne tomato pathogen Fusarium oxysporum f. sp. lycopersici (Fol) was tested in the different cultivars. Ten tomato cultivars were inoculated with the arbuscular mycorrhizal fungus (AMF) Glomus mosseae alone or in combination with Fol. At the end of the experiment, AM root colonization, Fusarium infection, and the plant fresh weight was determined. The tomato cultivars differed in their susceptibility to AMF and Fol, but these differences were not cultivar age dependent. In all the cultivars affected by Fol, mycorrhization showed a bioprotective effect. Independent of the cultivar age, tomato cultivars differ in their susceptibility to AMF and Fol and the bioprotective effect of mycorrhization, indicating that the cultivar age does not affect the AM parameters tested in this study.  相似文献   

15.
Guevara R  López JC 《Mycorrhiza》2007,17(7):589-596
Arbuscular mycorrhizal colonization in strangler figs, spore richness, and abundance of arbuscular mycorrhizal fungi were quantified in epiphytic and ground-rooted trees in a Sabal palmetto woodland that had marked heterogeneity in rooting environments for hemiepiphytic plants. An inoculation experiment was performed to assess whether low spore density could limit mycorrhizal colonization. There was no significant difference in mycorrhizal colonization among Ficus species, but epiphytic plants in nutrient-rich rooting environments had less mycorrhizal colonization than ground-rooted plants in low-nutrient soils. However, richness and abundance of spores was low, and to some extent, this limited the mycorrhizal colonization of strangler figs. Nevertheless, our results suggest intraindividual adjusting levels of root colonization in strangler figs in accordance with mineral availability. Such responses could maximize the cost–benefit balance of arbuscular mycorrhizal interactions throughout the development of strangler figs from epiphytic young plants to ground-rooted trees.  相似文献   

16.
 This paper reports a 6-year field study of the effects of mycorrhizal pre-colonization of coffee seedlings on initial crop development and coffee bean yield in a low-fertility Oxisol amended with superphosphate (P) at planting. The experiment included five P rates (0, 20, 40, 80 and 160 g plant–1 P2O5) combined with seven fungal treatments [non-mycorrhizal control, pre-colonization with a mix of Glomus clarum and Gigaspora margarita (CM) and with five isolates of Glomus etunicatum]. Inoculated and non-inoculated outplants were raised under glasshouse conditions, transplanted into the field in January 1989 and monitored until July 1995. Plant height and stem diameter were greatly enhanced by P application and were higher in mycorrhizal seedlings than in controls up to 19 months after transplanting (MAT) but were not different at 26 MAT. Inoculation effects on tree canopy diameter were significant up to 26 MAT, at which time mycorrhizal colonization was high (43–55%), but did not differ amongst plants, regardless of whether or not the plants had been pre-colonized at the nursery stage. Root colonization and spore number in the soil were reduced by high P rates at 26 MAT. The first bean yield (1991) was highly enhanced by P and all pre-colonization treatments (38% increment over control) and these factors showed a significant interaction. Three isolates of G. etunicatum showed yield enhancements above 50%. The P rate for maximal yield was 207 g plant–1 P2O5 for non-pre-colonized and approximately 100 g plant–1 for pre-colonized plants. For this harvest, the mycorrhizal biofertilizer effect was equal to 254 kg ha–1 P2O5. In subsequent years, pre-colonization effects were reduced and inconsistent. In 1992, 1993 and 1995, yield was affected by P but not by mycorrhizal inoculation. In 1994 there was a P versus mycorrhiza interaction and CM and G. etunicatum-Var gave higher yields than non-precolonized plants. Considering accumulated yield for this 5-year period, P application resulted in high yield increment in all treatments, whereas pre-colonization effects were extremely diminished. However, despite inconsistency amongst mycorrhizal treatments, pre-colonization effects were detected at the fifth harvest in some fungal treatments. Based on the total yield of five harvests, maximal productivity was achieved with CM at 20 g plant–1 P2O5 and with CM and G. etunicatum-Var at the highest P rate. Diminishing mycorrhizal effects over time are related to colonization of non-precolonized seedlings by the indigenous fungi and to the reduced external P requirement of the mature crop. If adequate phosphorus is applied at planting, pre-colonization of outplants with selected arbuscular mycorrhizal fungi enhances early crop development and productivity of coffee in low-fertility soils of Brazil. Accepted: 3 October 1997  相似文献   

17.
 The effect of root exudates from onions differing in P status on spore germination and hyphal growth of arbuscular mycorrhizal fungi was investigated. Onion (Allium cepa) was grown in solution culture at different phosphorus concentrations (0, 0.1, 1.0, 8.0 and 24.0 mg P l–1) and root exudates were collected. When spores of the arbuscular mycorrhizal fungus, Gigaspora margarita were incubated with these root exudates, spore germination was only slightly affected but hyphal growth was greatly affected, particularly with exudates from P-deficient plants. This suggests that the P nutrition of host plants influences the composition of root exudates and thereby the hyphal growth of arbuscular mycorrhizal fungi. Accepted: 25 June 1995  相似文献   

18.
Audet P  Charest C 《Mycorrhiza》2006,16(4):277-283
This greenhouse study aimed to determine the effect of colonization by the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on the “wild” tobacco (Nicotiana rustica L. var. Azteca), under soil–zinc (Zn) conditions. Plants of N. rustica were grown in AM or non-AM inoculated substrate and subjected to four soil–[Zn] concentrations (0, 50, 100, and 250 mg Zn kg−1 dry soil). The AM root colonization increased markedly from 14 to 81% with the increasing soil–[Zn] and the mycorrhizal structures were significantly more abundant at the highest soil–[Zn], suggesting that Zn may be involved directly or indirectly in AM root colonization. In addition, total Zn content or Zn concentrations in shoots and roots were shown to increase as soil–[Zn] increased in both AM and non-AM plants. As for the growth parameters studied, there were no significant differences between treatments despite the increase in Zn content or concentration. The AM roots subjected to the highest soil–[Zn] had a significant reduction by about 50% of total Zn content and Zn concentration compared to non-AM roots. Still, the relative extracted Zn percentage decreased dramatically as soil–[Zn] increased. Soil pH was significantly lower in non-AM than AM treatments at the highest soil–[Zn]. In summary, AM plants (particularly roots) showed lower Zn content and concentration than non-AM plants. In this regard, the AM fungi have a protective role for the host plant, thus playing an important role in soil-contaminant immobilization processes; and, therefore, are of value in phytoremediation, especially when heavy metals approach toxic levels in the soil.  相似文献   

19.
In arbuscular mycorrhizas, H+-ATPase is active in the plant membrane around arbuscules but absent from plant mutants defective in arbuscule development (Gianinazzi-Pearson et al. 1995, Can J Bot 73: S526–S532). The proton-pumping H+-ATPase is encoded by a family of genes in plants. Immunocytochemical studies and promoter-gusA fusion assays were performed in transgenic tobacco (Nicotiana tabacum L.) to determine whether the periarbuscular enzyme activity results from de-novo activation of plant genes by an arbuscular mycorrhizal fungus. The H+-ATPase protein was localized in the plant membrane around arbuscule hyphae. The enzyme was absent from non-colonized cortical cells. Regulation of seven H+-ATPase genes (pma) was compared in non-mycorrhizal and mycorrhizal roots by histochemical detection of β-glucuronidase (GUS) activity. Two genes (pma2, pma4) were induced in arbuscule-containing cells of mycorrhizal roots but not in non-mycorrhizal cortical tissues or senescent mycorrhiza. It is concluded that de-novo H+-ATPase activity in the periarbuscular membrane results from selective induction of two H+-ATPase genes, which can have diverse roles in plant-fungal interactions at the symbiotic interface. Received: 23 October 1999 / Accepted: 7 February 2000  相似文献   

20.
Urban environments are highly disturbed and fragmented ecosystems that commonly have lower mycorrhizal fungal species richness and diversity compared to rural or natural ecosystems. In this study, we assessed whether the mycorrhizal status and colonization of trees are influenced by the overall environment (rural vs. urban) they are growing in. Soil cores were collected from the rhizosphere of trees growing in urban and rural environments around southern Ontario. Roots were extracted from the soil cores to determine whether the trees were colonized by arbuscular mycorrhizal fungi, ectomycorrhizal fungi, or both, and to quantify the percent colonization of each type of mycorrhizal fungi. All 26 tree species were colonized by arbuscular mycorrhizal fungi, and seven tree species were dually colonized by arbuscular mycorrhizal and ectomycorrhizal fungi. Overall, arbuscular mycorrhizal and ectomycorrhizal fungal colonization was significantly (p < 0.001) lower in trees growing in urban compared to rural environments. It is not clear what ‘urban’ factors are responsible for the reduction in mycorrhizal fungal colonization; more research is needed to determine whether inoculating urban trees with mycorrhizal fungi would increase colonization levels and growth of the trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号