首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As part of a biological control program against purple loosestrife (Lythrum salicaria), two species of exotic leaf-grazing beetles, Galerucella pusilla and G. calmariensis, have been introduced throughout North America. To assess the potential of these species to establish in an area approaching the northern limit of L. salicaria, we studied beetle population characteristics and feeding impact on L. salicaria at wetlands near North Bay, Ontario, Canada, where each beetle species was released on a separate site in 1995. Weekly counts of adults and larvae of each Galerucella species were made on tagged L. salicaria plants throughout the growing season from 1996 to 1998. At the G. pusilla release site (Site 1), the abundance and frequency of beetles decreased significantly (P < 0.05) from 1996 to 1998, life history and development patterns were inconsistent and incomplete, and dispersal activity was low. Over the same time period at the G. calmariensis release site (Site 2), the abundance of beetles increased significantly (P < 0.05), frequency remained stable, life history and development patterns were consistent and complete, and adults dispersed actively. In the third year following release, G. calmariensis exhibited a 17-week active period and produced three generations of adults at Site 2. Leaf area analysis on plants harvested in 1998 suggested that the impact of both species on L. salicaria was low. Feeding produced a 4.5 and 3.5% leaf tissue loss at Sites 1 and 2, respectively. The frequency of shot-hole feeding (specific to Galerucella spp.) was 32% at Site 2, where G. calmariensis was established, compared to 10% at Site 1 (where G. pusilla failed to establish) and at a control site. Based on these results, it appears that there is a potential for effective control of L. salicaria in central Ontario using G. calmariensis.  相似文献   

2.
Fecundity and feeding of two introduced sibling biological control species, Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae) on purple loosestrife, Lythrum salicaria L. (Lythraceae) were compared at constant temperatures of 12.5, 15, 20, 25, and 27.5 °C. Larval feeding was also carried out at 30 °C, but at this temperature, larvae developed only to the L2 stage and none pupated. Thus, data for this temperature were not used in the analysis. There were significant species × temperature interactions in fecundity. Of the two species, Galerucella pusilla laid more eggs. Although egg production of both species was lowest at 12.5 °C and increased to 20 °C, at higher temperatures, the two species reacted differently. From 25 to 27.5 °C, egg production decreased for G. pusilla, but G. calmariensis fecundity peaked at 27.5 °C. Significant temperature × species × life-stage interactions were also observed in feeding. For each species, the amount of feeding varied with temperature and stage of development. Galerucella pusilla adults consumed more foliage at 15, 20, and 27.5 °C. However, at 12.5 °C G. calmariensis adults fed more than G. pusilla. G. pusilla larvae consumed an average of 25% less foliage than G. calmariensis. The lower larval consumption of G. pusilla suggests that when food is limited, G. pusilla larvae may have a higher survival rate because of its ability to complete larval development with less food and produce more progeny due to its greater fecundity. When food is not limited neither species would have a competitive advantage and both species could coexist temporally and spatially. However, since G. calmariensis larvae consumed more leaf material, the larval stage of this species would have a greater impact on purple loosestrife than G. pusilla.  相似文献   

3.
The colonial urochordate Botryllus schlosseri is a sedentary species of Mediterranean origin that became cosmopolitan, probably because of postglacial-period dispersal and human-mediated invasions of colonies attached to ship hulls. Here we studied microsatellite allele diversity of Atlantic coast populations from an area ranging from European regions south of the last glacial front to regions that had been permanently ice-covered. Gene diversity levels varied dramatically among populations residing in areas subject to different glacial conditions. Five populations from the Iberian Peninsula, in an area south of the last glacial front, as well as two populations from presumed refugia in Brittany, expressed high gene diversity values (expected heterozygosity [He]: 0.76–0.80; average number of alleles per locus [A]: 7.25–8.75). Two populations inhabiting areas that experienced permafrost conditions (Helgoland Island, Germany, and Plymouth, England) had intermediate values (He: 0.40–0.42; A: 3.0–4.0), whereas the Auchenmalg, Scotland, population, from an area previously covered by ice, showed a remarkably low value (He: 0.17; A: 1.75). Therefore, most European populations of B. schlosseri mirrored the movement of the ice front in the last ice age. A second population from the area that was covered by permanent ice (Lossiemouth, Scotland), however, had a high He of 0.61 and an intermediate A of 3.67. Results were compared with recent invasions (populations less than 200 years old) in the United States and New Zealand that had a higher degree of genetic variation than the European native populations established thousands of years ago. Given the overall dearth of studies on this subject, we suggest that in contemporary established Botryllus populations, gene diversity is affected by ecological factors, some of which can be traced directly to the last ice age. Other parameters of gene diversity are influenced by selection pressure, which might be more intense in northern regions.  相似文献   

4.
T.J. McAvoy  L.T. Kok 《BioControl》2004,49(4):467-480
Two sympatric Europeanbeetles, Galerucella calmariensis (L.)and G. pusilla (Duft.) (Coleoptera:Chrysomelidae), have been released in NorthAmerica for biological control of purpleloosestrife, Lythrum salicaria L.(Lythraceae). Because establishment isaffected by environmental conditions, studieswere conducted at temperatures ranging from12.5 to 30 °C to determine differencesin rate of development and survival between thetwo species. No egg hatch occurred at12.5 °C for both species. Eggdevelopment was faster for G.calmariensis than for G. pusilla attemperatures 15 °C. Theminimum threshold temperature for eggdevelopment was lower for G. calmariensisthan G. pusilla. At 12.5 °C, G. calmariensis larvae developed 1.6 daysfaster than G. pusilla, but at 15, 20,25, and 27.5 °C G. pusilla developed2.9, 1.2, 1.1, and 0.6 days faster,respectively, than G. calmariensis. Nodifferences in developmental rate of pupa andtotal development time from egg to adulteclosion were observed for the two species. However, survival of G. calmariensisgenerally was higher than that of G.pusilla at lower temperatures. No differencewas observed in the preoviposition periodbetween the two species except at27.5 °C. The preoviposition period forboth species at 12.5 and 15 °C exceeded50 days and was much higher than for20 °C and above. The long preovipositionperiod suggests that temperatures below15 °C induce reproductive diapause. At15 °C, G. pusilla females livedlonger and also had a longer oviposition periodthan G. calmariensis. However, fasteregg and larval development, and higher survivalat 12.5 °C may give G. calmariensisa competitive advantage over G. pusillain cooler climates.  相似文献   

5.
The Australian snout beetle, Oxyops vitiosa, was introduced to south Florida, USA, as a biological control agent of the invasive tree Melaleuca quinquenervia during the spring of 1997. As part of ongoing post-release evaluations of this weevil, we sought to quantify the population density that can be maintained by O. vitiosa larvae when fully exploiting the available melaleuca foliage. Seasonal population densities were modeled as a function of tree size distribution and density, plant phenology, quantity of acceptable foliage (suitable for larval development) and larval consumption values. Larval densities varied dramatically due to fluctuating resource availability and ranged from 830 946 larvae/ha in July–August to >4.5 million larvae/ha in January–February. The expected population density for a generalized (mixed sized) tree distribution was estimated to be 13.9 million larvae/ha. Larval densities increased to 18.8 million larvae/ha per year when large trees (>20 cm diameter at breast height) represented the dominant size class, whereas habitats dominated by medium (10–19 cm) and small (1.3–9 cm) trees were predicted to have larval densities of 11.3 and 6.3 million/year, respectively. Validation data obtained from smaller, more accessible plants suggested that the model overestimated realized yearly larval densities by 9% or 15 416 larvae/ha per year.  相似文献   

6.
Hunt-Joshi TR  Blossey B 《Oecologia》2005,142(4):554-563
Interspecific interactions of herbivores sharing a host plant may be important in structuring herbivore communities. We investigated host plant-mediated interactions of root (Hylobius transversovittatus) and leaf herbivores (Galerucella calmariensis), released to control purple loosestrife (Lythrum salicaria) in North America, in field and potted plant experiments. In the potted plant experiments, leaf herbivory by G. calmariensis reduced H. transversovittatus larval survival (but not larval development) but did not affect oviposition preference. Root herbivory by H. transversovittatus did not affect either G. calmariensis fitness or oviposition preference. In field cage experiments, we found no evidence of interspecific competition between root and leaf herbivores over a 4-year period. Our data suggest that large populations of leaf beetles can negatively affect root-feeding larvae when high intensity of leaf damage results in partial or complete death of belowground tissue. Such events may be rare occurrences (or affected by experimental venue) since field data differed from data obtained from potted plant experiments, particularly at high leaf beetle densities. Interspecific interactions between G. calmariensis and H. transversovittatus are possible and may negatively affect either species, but this is unlikely to occur unless heavy feeding damage results in partial or complete plant death.  相似文献   

7.
Among several natural enemies introduced to combat the cassava mealybug, Phenacoccus manihoti (Homoptera: Pseudococcidae), the neotropical parasitoid Apoanagyrus (Epidinocarsis) lopezi (Hymenoptera: Encyrtidae) was the most successful. It established in 26 African countries, causing a satisfactory reduction in the population density of P. manihoti in most farmers' fields. Four conclusions concerning the possible application of the research results to other biological control projects are discussed. (1) Foreign exploration was intensive and should be maintained at this level in other projects, if necessary at the cost of other activities. (2) In the controversy about the amount of research results needed before first releases are made, an understanding of the proper role of quarantine is essential. Whereas quarantine (preferably outside the continent) guarantees nonnoxiousness of natural enemies, only research in the experimental release sites can determine whether a given natural enemy will be efficient. It was confirmed that the released exotic insects did not affect the diversity of the indigenous fauna. Modalities used in this project for the execution of releases, i.e., always on request by and in collaboration with national programs, are recommended for adoption in future projects. (3) Laboratory and field studies established the scientific basis for quantifying the impact of the pest insect and its control by A. lopezi. This was expressed as reduction in pest population levels and yield loss and gain in revenue. Behavior of adult females in searching and choosing hosts was identified as a better predictor of efficiency of a species in the field than life table studies under controlled temperatures. (4) It is concluded that biological control is the basis for integrated pest management. Other interventions, such as cultural methods or the use of resistant varieties, need to be in harmony with biological control because the impact of natural enemies cannot usually be manipulated by the farmer. To achieve sustainability, the aim is to optimize tritrophic interactions among the plant, the phytophagous pest organisms, and their natural enemies, rather than to maximize the effect of a single intervention.  相似文献   

8.
The frequency of dispersal of invertebrates among lakes depends upon perspective and spatial scale. Effective passive dispersal requires both the transport of propagules and the establishment of populations large enough to be detected. At a global scale, biogeographic patterns of cladoceran zooplankton species suggest that effective dispersal among continents was originally rare, but greatly increased in the past century with expanded commerce. Genetic analysis allows some reconstruction of past dispersal events. Allozyme and mitochondrial DNA comparisons among New World and Old-World populations of several exotic cladocerans have provided estimates for likely source populations of colonists, their dispersal corridors, and timing of earlier dispersal events. Detecting the Old-World tropical exotic Daphnia lumholtzi early in its invasion of North America has allowed detailed analysis of its spatial spread. Twelve years of collection records indicate a rapid invasion of reservoirs in the United States, by both regional spread and long-distance jumps to new regions. Combining landscape features with zooplankton surveys from south-central US reservoirs revealed higher colonization rates of D. lumholtzi at lower landscape positions, a result which can be explained by either greater propagule load or by higher susceptibility of these downstream reservoirs. Because invaded reservoirs provide a source of propagules for nearby floodplain ponds, the rarity of this species in ponds suggests limitation by local environments. Such analyses of invading species over multiple spatial scales allow a better understanding of ecological processes governing invasion dynamics.  相似文献   

9.
Classical biological control is suggested as a tool worth developing now for possible future use in the integrated pest management of the Mediterranean fruit fly (Medfly),Ceratitis capitata(Wiedemann), in California. Three factors that impact broadly on developing and implementing such a biological control program are: (1) the question of Medfly establishment, (2) quarantine considerations, and (3) agricultural and urban concerns. Each of these factors and their combined effects must be considered when discussing biological control of Medfly in California as shaped by historical perspectives on Medfly invasions, methods of Medfly eradication, and past biological control efforts against Medfly. We believe that biological control research should play a foundational role in any future Medfly management programs in California. Development of biological control should involve life history studies of Medfly and its natural enemies in their area of endemicity in sub-Saharan, southeast Africa. Medfly has been studied and should continue to be studied in areas it has invaded, because information derived from such studies provides insights into the potential distribution, abundance, and impact of Medfly populations in California. A plan for a biological research program on Medfly and its relatives and a biological control strategy are presented.  相似文献   

10.
The presence of biological soil crusts can affect the germination and survival of vascular plants, but the reasons are not well investigated. We have conducted a field investigation and greenhouse experiments to test the effect of crusts on two desert annual plants, which occur on the stabilized dunes of the Tengger Desert in N China. The results showed that biological soil crusts negatively influenced the seed bank of Eragrostis poaeoides and Bassia dasyphylla. The important effect of biological soil crusts on seed germination and establishment were performed indirectly through reducing the amount of germinating seeds. Field investigation and experimental results with regard to the seed bank indicated that higher seedling density was found in disturbed crust soil and bare soil surface than in intact crust soils. Greenhouse experiments showed that the effects of biological soil crusts on germination and establishment of the two plants are not obvious in moist condition, while disturbed crusts are more favorable to seed germination in dry treatment. Significant differences in biomass were found between disturbed crust soil and bare soil. Survival and growth of the two annual plants were enhanced in both algal and moss crusts during the season of rainfall or in moist environment, but crusts did not affect seedling survival in the dry period. The small seeded E. poaeoides has higher germination than larger-seeded B. dasyphylla in crust soils, but B. dasyphylla has a relatively higher survival rate than E. poaeoides in crust soils.  相似文献   

11.
Mandeel QA 《Mycopathologia》2006,161(3):173-182
In earlier studies, biological control of Fusarium wilt of cucumber induced by Fusarium oxysporum f. sp. cucumerinum was demonstrated using nonpathogenic strains C5 and C14 of Fusarium oxysporum. Strain C14 induced resistance and competed for infection sites whether roots were wounded or intact, whereas strain C5 required wounds to achieve biocontrol. In the current work, additional attributes involved in enhanced resistance by nonpathogenic biocontrol agents strains to Fusarium wilt of cucumber and pea were further investigated. In pre-penetration assays, pathogenic formae specials exhibited a significantly higher percentage of spore germination in 4-day-old root exudates of cucumber and pea than nonpathogens. Also, strain C5 exhibited the lowest significant reduction in spore germination in contrast to strain C14 or control. One-day-old cucumber roots injected with strain C14 resulted in significant reduction in germ tube orientation towards the root surface, 48–96 h after inoculation with F. o. cucumerinum spores, whereas strain C5 induced significantly lower spore orientation of the pathogen and only at 72 and 96 h after inoculation. In post-penetration tests, passive transport of microconidia of pathogenic and nonpathogens in stems from base to apex were examined when severed plant roots were immersed in spore suspension. In repeated trials, strain C5, F. o. cucumerinum and F. o. pisi were consistently isolated from stem tissues of both cucumber and pea at increasing heights over a 17 days incubation period. Strain C14 however, was recovered at a maximum translocation distance of 4.6 cm at day 6 and later height of isolation significantly declined thereafter to 1.2 cm at day 17. In pea stem, the decline was even less. Significant induction of resistance to challenge inoculation by the pathogen in cucumber occurred 72 and 96 h after pre-inoculation with biocontrol agents. Nonetheless, strain C14 induced protection as early as 48 h and the maximum resistance was reached at 96 h. The presented data confirm the previous findings that attributes important for nonpathogenic fusaria to induce resistant are: rapid spore germination and orientation in response to root exudate; active root penetration and passive conidia transport in stem to initiate defence reaction without pathogenicity and enough lag period between induction and challenge inoculation. Strain C14 possesses all these qualifications and hence its ability to enhance host resistance is superior than strain C5.  相似文献   

12.
Lathrolestes nigricollis(Thomson) and Grypocentrus albipes Ruthe,Palearctic specialist parasitoids of thebirch-leafmining sawfly Fenusa pusilla(Lepeletier), were imported from central Europe andreleased at three locations in Edmonton, Alberta,Canada during 1994–1996. Parasitoids becameestablished at two locations, L. nigricollis atboth and G. albipes at one, and were recoveredfor 3–5 years after release. Lathrolestesnigricollis has dispersed throughout most ofEdmonton, and at least 13 km from release sites, butG. albipes has been recovered only 400–500 mfrom one release site. Five years after introductionat one site, percent parasitism by L.nigricollis was 78% and 84% for the first andsecond generations, respectively, and about 48% ofparasitoid eggs were encapsulated.  相似文献   

13.
The encyrtid wasp Epidinocarsis (= Apoanagyrus) lopezi (De Santis) was imported from Paraguay into Nigeria for the biological control of the cassava mealybug, Phenacoccus manihoti Matile-Ferrero. It was mass-reared and released at four localities in Nigeria. The parasitoid is now established and it is dispersing throughout cassava growing areas of Nigeria.
Libération et installation au Nigéria d'Epidinocarsis lopezi, parasitoïde de la cochenille du manioc Phenococcus manihoti
Résumé Epidinocarsis lopezi (Apoanagyrus) lopezi a été introduit du Paraguay au Nigéria pour lutter contre la cochenille du manioc, Phenacoccus manihoti. Il a été lâché dans quatre champs de manioc pour étudier son acclimatation et son installation au Nigéria. Trois ans après les lâchers, les résultats ont permis de conclure que E. lopezi s'est établi avec succès et se disperse dans la plupart des zones de culture du manioc au Nigeria; il a aussi survécu à trois saisons pluvieuses pendant lesquelles les populations de P. manihoti ont été très faibles. Quatorze mois après les premiers lâchers, cet encyrtide a été obtenu à environ 150 km du lieu de libération.
  相似文献   

14.
Amblyseius fallacis Garman has been selected for pyrethroid resistance and mass reared for experimental release as a biological control agent for tetranychid mites on a number of crops in Canada. Several releases of this predator onto apple and peach trees have failed to result in the establishment of A. fallacis, or in the biological control of Panonychus ulmi Koch. Here, we test the hypothesis that the change of host-plant at the time of release is a critical factor in the establishment of A. fallacis for biological control of P. ulmi. Functional and numerical response studies were undertaken on two populations of A. fallacis: a wild strain collected from the canopy foliage of an apple orchard near Vineland, Ontario; and a second strain reared on bean plants in a commercial insectary with Tetranychus urticae as prey. Each population consumed significantly more P. ulmi and produced significantly more eggs when on leaf disks from the plant species they were reared on, than on leaf disks from the novel host plant. A further experiment was conducted to determine if establishment and biological control of mass-reared A. fallacis could be affected by rearing a population for a short term on apple leaves prior to release on apple trees. Three release treatments were made into potted apple trees in a glasshouse, using predators commercially mass-reared on bean and T. urticae: A. fallacis released directly; A. fallacis reared in the laboratory for four weeks on bean and T. urticae; A. fallacis reared on apple leaves and T. urticae for four weeks. They were compared with a control treatment lacking predator release. Contrary to results of the functional and numerical response studies, no difference was observed between release treatments. All release treatments adding A. fallacis resulted in a similar, if limited, degree of biological control of P. ulmi. These results indicated that there may be short-term effects of host plant on the establishment of A. fallacis and biological control of P. ulmi, which in our study were observed as an initial reduction of the predatory response. However, in a test, the predators appeared to overcome these short-term effects and successfully established on the new host-plant to control P. ulmi.  相似文献   

15.
We introduced a mass-reared pyrethroid-resistant strain of the predatory phytoseiid mite Amblyseius fallacis (Garman) into an Ontario peach orchard in an attempt to control populations of the phytophagous mites Panonychus ulmi Koch and Tetranychus urticae Koch (Acari: Tetranychidae). Releases of 1,000 and 2,000 mites per tree were made, at three different times. The release of 2,000 mites per tree in June and in July resulted in significantly higher phytoseiid densities than was observed on control trees. However, densities of P. ulmi or T. urticae were not significantly affected by any release rate or by timing. The release of 1,000 A. fallacis per tree, or of any density in August, did not significantly increase phytoseiid abundance. In the following year, population dynamics of both phytoseiid and phytophagous mites were not significantly affected by the previous year's release. Amblyseius fallacis can be a useful predator in some fruit orchards. However, further research is necessary into the timing and rate of release, modified spray programmes, and with different crops, in order to clarify the role of this species for biological control in Ontario peach orchards.  相似文献   

16.
Colonization is of longstanding interest in theoretical ecology and biogeography, and in the management of weeds and other invasive species, including insect pests and emerging infectious diseases. Due to accelerating invasion rates and widespread economic costs and environmental damages caused by invasive species, colonization theory has lately become a matter of considerable interest. Here we review the concept of propagule pressure to inquire if colonization theory might provide quantitative tools for risk assessment of biological invasions. By formalizing the concept of propagule pressure in terms of stochastic differential equation models of population growth, we seek a synthesis of invasion biology and theoretical population biology. We focus on two components of propagule pressure that affect the chance of invasion: (1) the number of individuals initially introduced, and (2) the rate of subsequent immigration. We also examine how Allee effects, which are expected to be common in newly introduced populations, may inhibit establishment of introduced propagules. We find that the establishment curve (i.e., the chance of invasion as a function of initial population size), can take a variety of shapes depending on immigration rate, carrying capacity, and the severity of Allee effects. Additionally, Allee effects can cause the stationary distribution of population sizes to be bimodal, which we suggest is a possible explanation for time lags commonly observed between the detection of an introduced population and widespread invasion of the landscape.  相似文献   

17.
Introduction of biological control agents to reduce the abundance of exotic invasive plant species is often considered necessary but risky. I used matrix projection models to investigate the current population dynamics of Clidemia hirta (Melastomataceae), an invasive shrub, in two rainforest stands on the island of Hawaii and to predict the efficacy of hypothetical biological control agents in reducing population growth rates. Stage-structured matrix models were parameterized with field data collected over 3 years from 2906 C. hirta plants in a recently invaded forest with an open overstory (Laupahoehoe) and 600 plants in a less recently invaded forest with a closed canopy (Waiakea). Asymptotic population growth rates (λ) for both populations in all years were greater than one, demonstrating that both populations were growing. Composite elasticities were high for the seedling life-history stage and fecundity, and near-term demographic elasticities suggested that changes in seedling survival would have the largest effect on population size in the short term. However, simulations showed that almost 100% of seedlings or new recruits produced per reproductive adult would have to be destroyed to cause populations to go locally extinct under current environmental conditions. Herbivores or pathogens that decrease survival across all vegetative stages by 12% at Waiakea and 64% at Laupahoehoe were projected to cause the populations to decline. Thus, biocontrol agents that reduce survival of multiple life-history stages rather than seed production should be pursued to control C. hirta in Hawaiian rainforests.  相似文献   

18.
Studies were conducted during 1994 and 1995 in the environmental control plot facility at the National Peanut Research Laboratory to determine the effect of different inoculum rates of biological control agents on preharvest aflatoxin contamination of Florunner peanuts. Biocontrol agents were nontoxigenic color mutants ofAspergillus flavusandAspergillus parasiticusthat were grown on rice for use as soil inoculum. Three replicate plots (4.0 × 5.5 m) were treated with 0, 2, 10, and 50 g/m of row (0, 20, 100, and 500 lb/acre, respectively) of an equal mixture of the color mutant-infested rice in 1994, and the same plots were retreated in 1995. Aflatoxin concentrations were determined by high performance liquid chromatographic analysis of all peanuts. Treatment means for total kernels in 1994 were 337.6, 73.7, 34.8, and 33.3 ppb for the 0, 2, 10, and 50 g/m treatments, respectively. Regression analysis indicated a trend toward lower aflatoxin concentrations with increasing rates of inoculum (R2= 0.40;P< 0.05). For the same repeated treatments in 1995 aflatoxin concentrations in total kernels averaged 718.3, 184.4, 35.9, and 0.4 ppb. Regression analysis revealed a stronger relationship between inoculum rate and aflatoxin concentrations (R2= 0.66;P< 0.05) in the second year of treatment. Compared with untreated controls, the 2, 10, and 50 g/m treatments produced respective reductions in aflatoxin of 74.3, 95.0, and 99.9% in the second year. The data indicated not only a treatment-related effect, but also that a higher degree of control might be achieved when plots or fields are retreated with biocontrol agents in subsequent years.  相似文献   

19.
Introduced species usually fail to establish, but when they succeed, may undergo character release and rapid evolutionary divergence in novel environments. We collected brown anoles (Anolis sagrei: Lacertilia: Iguanidae) from a single Florida population and released them onto two ecologically different dredge-spoil islands in central Florida (forested and non-forested) and measured differences in population growth, individual growth, body size, and condition over four years. The population on the non-forested island expanded twice as fast as the forested island population and reached a density of ca. 12,000 lizards ha–1 and a biomass of ca. 43.3 kg ha–1, among the largest values recorded for non-aggregated terrestrial vertebrates. First-year progeny grew larger than their surviving parents on both islands, indicating character release occurred in early stages of both invasions. However, in subsequent years, lizards became larger on the forested island, but smaller on the non-forested island. Body condition declined over time on both islands, but the effect was most dramatic on the non-forested island. Lizards on the forested island had the lowest survival rates and highest tail autotomy frequencies. These results were attributed to differences in abiotic and biotic conditions on the two islands. Brown anoles are generally larger on islands where they have been introduced than on their native Caribbean islands, and are much larger on mainlands than on islands, indicating character release occurred at larger geographic scales as well. Habitat influences the morphology of introduced species possessing the ability to rapidly adapt to local conditions, presenting invasive species managers with moving targets.  相似文献   

20.
We evaluated how manyTrichogramma nubilale should be released at a single location to controlOstrinia nubilalis in sweet corn. Six 8.6×16 m plots received 18.4 to 2 090 ΦΦT. nubilale/SAI when plants were in the mid to late whorl stage, where SAI, surface area index, is the plant surface area/m2. To evaluate the potential control by our releases, we exposed laboratory-rearedO. nubilalis egg masses to the released parasitoids at 4 times after the release. When an egg mass was parasitized byT. nubilale, 75.7% of the eggs in the egg mass were parasitized. We developed an equation to estimate the percent of egg masses that a single female was expected to parasitize in a day (efficiency of parasitism) and female disappearance (death and dispersal) rates, if both were constant during our experiment. The exponential disappearance rate was −0.52±0.03 day−1, which implied that 40% of the remaining ΦΦ disappeared per day. The efficiency of parasitism was 0.050% parasitism/Φ/SAI/day, which implied that at least 351,000 ΦΦ/ha would be needed to achieve 90% parasitism. Clearly, forT. nubilale to be a successful biological control agent, efficiency of parasitism must be increased and disappearance rates must be reduced.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号