首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
To determine how starvation affects adrenal steroidogenesis we measured the activities of 3 adrenal enzymes involved in corticosterone biosynthesis in a group of adult female rats. The animals were either starved for 7 days or fed ad libitum for the same period. Relative adrenal weight and plasma corticosterone levels were increased in the experimental group of animals compared to the control group (40 +/- 2 vs 27 +/- 1 mg/100 g body weight, P less than 0.001, and 45 +/- 4 vs 30 +/- 5 ng/dl, P less than 0.05 respectively). There were no differences in plasma ACTH levels between the groups (34 +/- 5 vs 26 +/- 4 pg/ml). 11-Hydroxylase activity was increased in the starved group of animals (18 +/- 3 vs 8 +/- 2 nmol/mg protein/min, P less than 0.01). 3 beta-Hydroxysteroid dehydrogenase and 21-hydroxylase activities were not different between the groups (19 +/- 2 vs 16 +/- 1 nmol/mg protein/min, and 100 +/- 10 vs 110 +/- 10 pmol/mg protein/min respectively). These results suggest that acute starvation in rats produces an increase in adrenal 11-hydroxylase activity.  相似文献   

2.
Ketoconazole (K) is an antifungal imidazole derivative which has been shown to be a potent inhibitor of testosterone (T) biosynthesis in rodents and humans. To study the effect of K on rat testicular steroidogenesis we measured the activities of five testicular microsomal steroidogenic enzymes in K-treated rats and controls. Thirty male adult rats were given either 2 mg K or water every 12 hours by mouth during 5 days. Mean testicular weight was similar in both groups of animals. The K-treated group had a T serum concentration of 83 +/- 14 ng/dL whereas it was 94 +/- 16 ng/dL in the control group (NS). The K-treated animals had decreased activities of the 3 beta-hydroxysteroid dehydrogenase (830 +/- 48 vs 2,245 +/- 109 pmol/mg protein/min, P less than 0.001), 17-hydroxylase (243 +/- 5 vs 676 +/- 17 pmol/mg protein/min, P less than 0.001), 17-ketosteroid reductase (31 +/- 2 vs 169 +/- 7 pmol/mg protein/min, P less than 0.001), and aromatase enzymes (92 +/- 6 vs 123 +/- 7 pmol/mg protein/min, P less than 0.01). The 17,20-desmolase activity was similar in both groups of animals (210 +/- 4 vs 171 +/- 18 pmol/mg protein/min). We conclude that K given orally to rats inhibits the activity of several testicular steroidogenic enzymes.  相似文献   

3.
Hypoglycaemia which develops in starved newborn rats (0.15 +/- 0.01 mg/ml) is reversed by feeding medium-chain triglycerides (0.66 +/- 0.05 mg/ml). Despite similar glycaemia (0.71 +/- 0.07 mg/ml) starved newborns infused with glucose (10.7 mg/min/kg) show a 30% higher glucose turnover rate than medium-chain triglyceride fed animals (14.1 +/- 0.6 versus 10.6 +/- 0.3 mg/min/kg, p less than 0.01). For a comparable [6-3H]glucose turnover rate (10.5 +/- 0.3 mg/min/kg), glucose-infused (5.25 mg/min/kg) newborns have a 30% lower glycaemia (0.50 +/- 0.03 mg/ml, p less than 0.01) than medium-chain triglyceride-fed newborns. Thus, medium chain triglyceride feeding leads to a 30% decreased capacity of the tissues to utilize glucose. For a similar glucose turnover rate, medium-chain triglyceride-fed newborns have a higher blood lactate concentration than glucose-infused newborns (0.26 +/- 0.03 versus 0.15 +/- 0.02 mg/ml). However, in medium-chain triglyceride-fed newborns, the increase of blood lactate is not only due to the Cori cycle, as glucose recycling is less increased than glucose production. Thus medium-chain triglyceride increases the release of gluconeogenic precursors which are not derived from blood glucose. In presence of a glucose infusion (15.25 mg/min/kg) producing hyperglycaemia (1.35 +/- 0.05 mg/ml), endogenous glucose production is suppressed by only 37%. If 3-mercaptopicolinate, an inhibitor or gluconeogenesis, is given concomitantly, hyperglycaemia is prevented (0.72 +/- 0.08 mg/ml) and endogenous glucose production is suppressed. Glucose infusion in the hypoglycaemic newborn rat might thus lead to a precarious glucose homeostasis.  相似文献   

4.
The impact of maternal starvation during Days 17-20 of gestation was examined in 20-day fetal rat brain tissue cultured for 6 days in MEM and 10% adult rat serum. Acetylcholinesterase (AChE) activities were consistently greater in fetal brain cell cultures from starved mothers. When fetal tissues from starved mothers were continuously exposed to 72-h fasted serum, AChE activities increased from 1.03 +/- 0.14 to 1.59 +/- 0.21 mumol/h/mg protein (P less than 0.001). In fetal tissues from fed mothers, lower AChE activities were increased from 0.78 +/- 0.09 to 1.04 +/- 0.07 mumol/h/mg protein (P less than 0.05) when 72-h fasted serum was used to replace the fed serum during incubation. When fetal brain cell cultures from fed mothers were exposed for 6 days to graded concentrations of fed serum (2.5-15%), the activities of AChE fell reciprocally from 1.34 +/- 0.10 to 0.82 +/- 0.12 mumol/h/mg protein (P less than 0.05). The levels of AChE activity in tissues exposed to fasted serum were consistently greater, but fell similarly from 1.62 +/- 0.10 to 0.97 +/- 14 mumol/h/mg protein (P less than 0.01), when serum concentrations were increased from 2.5 to 15%. AChE activities were 30% higher in tissues incubated with cycloheximide 10(-3) M (P less than 0.02). Unlike AChE, fetal brain enolase activities were unaffected by maternal starvation. In fetal brain cell cultures from fed mothers, enolase fell from 1.85 +/- 0.10 to 1.37 +/- 0.12 mumol/min/mg protein following exposure to fasted instead of fed serum (P less than 0.02). In fetal cultures from starved mothers, enolase activities were depressed similarly from 1.76 +/- 0.08 to 1.41 +/- 0.09 mumol/min/mg protein when fasted replaced fed serum (P less than 0.02). Thus, the fetal brain cell cultures appear to maintain enzymatic realignments imposed by maternal starvation for at least 6 days. In addition, serum from fasted animals has significant growth inhibiting properties manifested by heightened activities of AChE and lower activities of enolase.  相似文献   

5.
Male rats were androgenized on the third postnatal day by a single injection of 1 mg testosterone propionate. The in vitro metabolism of [4-14C]testosterone by pituitary and hypothalamus homogenates was investigated at the age of 90 days. The pituitary and hypothalamus homogenates from control and neonatally androgenized animals converted [4-14C]testosterone to the same metabolites, mainly 5 alpha-reduced derivatives; the quantitative yield of 5 alpha-reduced metabolites was much higher in the pituitary homogenates of androgenized rats. The hypothalamic homogenates showed no differences. In the androgenized rats a very significant increase of the plasma FSH levels was measured while the LH levels were also augmented. The plasma levels of testosterone were not different from the values in control rats, notwithstanding a 25% reduction in testes weight. The present experiments appear to indicate that the neonatal androgenization results in an accentuation of the sexual dimorphism which normally exists in the pituitary of adult rats for the 5 alpha-reductase activity.  相似文献   

6.
The 5 alpha-reductase, the enzyme which converts testosterone into dihydrotestosterone (DHT), is present in several CNS structures of the rat. Recent reports from this laboratory indicate that the subcortical white matter and the myelin possess a 5 alpha-reductase activity several times higher than that present in the cerebral cortex. Moreover, previous ontogenetic observations indicate that in all cerebral tissues examined (including the myelin) the 5 alpha-reductase has a higher activity in immature animals. This study was performed in order to verify whether the differences in the 5 alpha-reductase activity on the various brain components might be due to the presence of different concentrations of the same enzyme or to different isoenzymes. To this purpose, the kinetic properties Km and Vmax were measured in the purified myelin as well as in homogenates of the subcortical white matter and of the cerebral cortex, obtained from the brain of adult (60-90-day-old), immature (23-day-old), and aged (greater than 20-month-old) male rats. The results indicate that the enzymes present in the myelin, in the subcortical white matter and in the cerebral cortex of adult male rats possess a very similar apparent Km (1.93 +/- 0.2, 2.72 +/- 0.73 and 3.83 +/- 0.49 microM respectively). On the contrary, the Vmax values obtained in the myelin (34.40 +/- 5.54), in the white matter (19.57 +/- 2.36) and in the cerebral cortex (6.47 +/- 1.03 ng/h/mg protein) of adult animals have been found to be consistently different. Very similar Km values were found in the myelin obtained from the brain of immature and very old rats (2.14 +/- 0.11 and 3.39 +/- 0.75 microM respectively). The Vmax measured in the myelin purified from the immature rat brain (62.25 +/- 4.52) showed a value which was much higher than that found in the myelin of adult animals (34.40 +/- 5.54); a Vmax (34.31 +/- 9.41) almost identical to that of adult animals was found in the myelin prepared from the brain of aged rats.  相似文献   

7.
The influence of corticosteroids and progesterone upon porcine testicular testosterone production was investigated by administration of exogenous adrenocorticotropic hormone (ACTH), cortisol and progesterone, and by applying a specific stressor. Synthetic ACTH (10 micrograms/kg BW) increased (P less than 0.01) peripheral concentrations of testosterone to peak levels of 5.58 +/- 0.74 ng/ml by 90 min but had no effect upon levels of luteinizing hormone (LH). Concentrations of corticosteroids and progesterone also increased (P less than 0.01) to peak levels of 162.26 +/- 25.61 and 8.49 +/- 1.00 ng/ml by 135 and 90 min, respectively. Exogenous cortisol (1.5 mg X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although peripheral concentrations of corticosteroids were elevated (P less than 0.01) to peak levels of 263.57 +/- 35.03 ng/ml by 10 min after first injection. Exogenous progesterone (50 micrograms X three doses every 5 min) had no effect upon circulating levels of either testosterone or LH, although concentrations of progesterone were elevated (P less than 0.01) to peak levels of 17.17 +/- 1.5 ng/ml by 15 min after first injection. Application of an acute stressor for 5 min increased (P less than 0.05) concentrations of corticosteroids and progesterone to peak levels of 121.32 +/- 12.63 and 1.87 +/- 0.29 ng/ml by 10 and 15 min, respectively. However, concentrations of testosterone were not significantly affected (P greater than 0.10). These results indicate that the increase in testicular testosterone production which occurs in boars following ACTH administration is not mediated by either cortisol or progesterone.  相似文献   

8.
The effects of testosterone on cytosol and nuclear androgen receptors of ram pituitary were examined in two experiments. In Exp. I, 500 micrograms testosterone were injected intravenously and groups of 4 rams were slaughtered at 0, 15, 30, 45, 90 and 360 min after injection. Cytosolic receptor concentration decreased from 21 +/- 0.9 to 6 +/- 0.9 fmol/mg protein 30 min after the testosterone injection (P less than 0.001), and then returned towards the preinjection level after 90 min. The pattern of nuclear receptor concentration was the opposite; a maximal increase (12 +/- 3.5 to 32 +/- 5.7 fmol/mg protein) was observed 30 min after injection (P less than 0.001), followed by a progressive but incomplete decrease by 360 min. In Exp. II, blood was collected every 20 min for 17 h in three successive series, each of 12 rams, which were then slaughtered. Plasma LH and testosterone concentrations were measured by radioimmunoassay. No changes were observed in cytosol receptor concentration, but nuclear receptor concentration was negatively correlated with the interval elapsed since the beginning of the last testosterone pulse (r = -0.62; P less than 0.001). The highest values for nuclear receptor concentrations were observed at an interval equal to or less than 120 min. These results indicate that natural pulses are associated with androgen binding particularly in the pituitary nuclei.  相似文献   

9.
J Egel  J Pfanstiel  J B Puschett 《Life sciences》1985,37(18):1675-1681
Previous studies have indicated that the thiazide diuretics exert effects on proximal electrolyte transport. To determine whether the locus of these effects is at the brush border membrane (BBM) and if renal metabolism is affected, adult female Sprague-Dawley rats were acutely treated with either 1 mg/kg metolazone, 20 mg/kg chlorothiazide followed by a 20 mg/kg/hr maintenance infusion, 10 mg/kg acetazolamide followed by a 10 mg/kg/hr maintenance infusion, or the vehicles only. Administration of these agents resulted in an approximately tenfold increase in sodium excretion. Neither urinary phosphate nor inulin excretion changed significantly in any group. Sodium dependent BBM vesicle phosphate transport was examined at 0.15, 0.5, and 1 and 120 minute incubation periods in the diuretic treated groups and their respective control groups. Decreased uptake was seen in all pre-equilibrium time points in rats treated with metolazone: 0.15 minutes: 221 +/- 24 pmoles/mg protein (pmol/mg prot) in control rats versus (vs) 185 +/- 23 pmoles/mg prot in metolazone-treated animals (P less than .05) ; 0.5 minutes: 463 +/- 54 vs 369 +/- 49 pmol/mg prot (P less than .005); 1 minute: 549 +/- 74 vs 460 +/- 61 pmol/mg prot (P less than .05); no significant difference in phosphate transport was noted at the two hour equilibrium time point. No significant differences in sodium dependent phosphate transport existed between chlorothiazide or acetazolamide treated rats and control animals. Substrate-stimulated renal gluconeogenesis did not differ between metolazone treated and control animals. We therefore conclude that metolazone inhibits phosphate transport through an effect on the BBM and does not affect renal gluconeogenesis in the rat.  相似文献   

10.
Previously we have shown that rats living under heterosexual conditions (HE-rats) have significantly higher weights of androgen target organs like prostate and bulbocavernosus/levator ani muscle (BCLA) than rats living under homosexual conditions (HO-rats). Knowing that androgen metabolism is an important regulator of androgenic action, we have measured in vitro by thin-layer chromatography the testosterone 5 alpha-reductase and 3 alpha (beta)-hydroxysteroid dehydrogenase (3 alpha (beta)-HSDH) activity in prostate and BCLA of both groups. Furthermore, we looked for weight differences of the kidney from HE- and HO-rats. The main results are: (1) The mean apparent Michaelis constant (Km) of 5 alpha-reductase in prostate was identical in both groups, being 0.22 and 0.24 microM for HE- and HO-rats, respectively. (2) The mean 5 alpha-reductase activity was significantly (P less than 0.001; n = 18) lower in prostate of HE- (11.1 +/- 0.5 (SEM) pmol 5 alpha-reduced metabolites X mg protein-1 X h-1 1) than HO-rats (13.9 +/- 0.4). (3) The mean apparent Km of 3 alpha (beta)-HSDH was identical in HE- and HO-rats, being 3.7 and 4.3 microM, respectively. (4) The mean 3 alpha (beta)-HSDH activity was significantly (P less than 0.001; n = 20) lower in prostate of HE- (1.58 +/- 0.05 (SEM) nmol 3 alpha (beta)-reduced metabolites X mg protein-1 X h-1) than HO-rats (1.85 +/- 0.05). (5) The mean 3 alpha (beta)-HSDH activity was significantly (P less than 0.001; n = 24) lower in BCLA of HE- (284 +/- 9.6 (SEM) pmol 3 alpha (beta)-reduced metabolites X mg protein-1 X h-1 than HO-rats (422 +/- 18.7). (6) Besides prostate and BCLA, also the absolute as well as relative weights of the kidney were significantly higher in HE- than HO-rats. (7) It will be discussed that despite various significant differences in androgen metabolism, other factors might be responsible for the organ weight differences of prostate, BCLA and kidney between HE- and HO-rats.  相似文献   

11.
The luteinizing hormone releasing hormone analog D-Trp6-Pro9-Net-LHRH (LHRHa) inhibits rat ovarian estradiol secretion. To determine whether LHRHa decreases serum estradiol concentrations solely by inhibiting gonadotropin secretion or, in addition, by influencing directly ovarian estradiol biosynthesis, we examined the effects of LHRHa on the activities of 5 key ovarian steroidogenic enzymes. Fifty hypophysectomized, gonadotropin-treated rats were given either LHRHa (1 microgram/day) or saline sc during 7 days. The LHRHa treated animals exhibited a significant decrease in serum estradiol when compared with the control group (461 +/- 30 vs 31 +/- 5 pg/ml, mean +/- SE, P less than 0.001). The changes in estradiol concentration were associated with decreases in ovarian weight (372 +/- 19 vs 185 +/- 11 mg, P less than 0.001) and in the microsomal enzyme activities of 3 beta-hydroxysteroid dehydrogenase (156 +/- 5 vs 53 +/- 4 nmol/mg prot/min, P less than 0.001), 17 hydroxylase (4.7 +/- 0.8 vs 3.7 +/- 0.7 nmol/mg prot/min, P less than 0.002), 17,20 desmolase (279 +/- 14 vs 50 +/- 7 pmol/mg prot/min, P less than 0.001), 17 keto-steroid reductase (132 +/- 11 vs 6 +/- 1 nmol/mg prot/min, P less than 0.001), and aromatase (19 +/- 1.5 vs 0.9 +/- 0.1 nmol/mg prot/min, P less than 0.001) in LHRHa treated animals. These findings indicate that LHRHa can inhibit directly rat ovarian estradiol biosynthesis.  相似文献   

12.
To gain insight into the mechanism of the altered carbohydrate metabolism in thyrotoxicosis, intravenous glucose tolerance tests (IVGTT) and pancreatic suppression tests (PST) were performed in hyperthyroid rats (0.1 mg/kg T4 X 5 days) to assess insulin secretion and action in vivo. Thyroid hormone injections significantly increased T4 levels (182.8 nM +/- 11.6 (SEM) versus 50.2 +/- 6.4; P less than 0.001) and baseline glucose concentrations (9.3 mM +/- 0.2 versus 7.1 +/- 0.2; P less than 0.001). Body weights, basal insulin concentrations, glucose concentrations during IVGTT, glucose disappearance rates and steady state plasma glucose levels (SSPG) were normal. Insulin concentrations during the glucose tolerance test and during the PST were significantly decreased. The metabolic clearance rate of insulin (ml/min/kg +/- SEM) was significantly (P less than 0.01) increased (54.4 +/- 3.5 versus 41.6 +/- 2.3) in the hyperthyroid rats. If the different baseline glucose values were subtracted from the glucose concentrations achieved during the 2 tests, both the glucose disappearance rate and the fall in SSPG levels were significantly enhanced in the T4-injected animals. Thus, in the hyperthyroid rat, insulin secretion is decreased, the clearance of insulin is increased and insulin sensitivity is either normal or possibly enhanced.  相似文献   

13.
The conversion of testosterone to dihydrotestosterone (DHT) by 5 alpha-reductase and the interconversion between DHT and 5 alpha-androstane-3 alpha, 17 beta-diol (3 alpha-diol) by 3 alpha-hydroxy-steroid oxidoreductase (3 alpha-HSOR) were studied in fibroblasts derived from the genital skin of 22 males and 6 females, and from the nongenital skin of 19 males and 9 females with normal gonadal function. The formation of DHT from testosterone (5 alpha-reduction) was significantly greater in fibroblasts from genital skin than in those from nongenital skin in both males (2.15 +/- 1.43 vs 0.81 +/- 0.46 pmol/mg protein/h, mean +/- SD, P less than 0.001) and females (2.52 +/- 1.99 vs 0.69 +/- 0.18, P less than 0.01). Furthermore, DHT formation from 3 alpha-diol (3 alpha-HSOR oxidation) was also significantly greater in genital skin fibroblasts than in nongenital skin fibroblasts of males (5.47 +/- 3.37 vs 2.52 +/- 1.74 pmol/mg protein/h, P less than 0.01). However, the degradation of DHT to 3 alpha- and/or 3 beta-diol (3 alpha- and/or 3 beta-HSOR reductions) was not different between genital and nongenital skin fibroblasts of either males or females. Respective ratios of DHT formation to DHT degradation (5 alpha-reduction/3 alpha-HSOR reduction, 3 alpha-HSOR oxidation/3 alpha-HSOR reduction) were also significantly greater (P less than 0.002) in genital skin fibroblasts than in nongenital skin fibroblasts of males. On the other hand, both DHT formation and degradation were not different between male and female genital skin fibroblasts. These results suggest that the increased production of DHT in genital compared to nongenital skin results from increased 5 alpha-reduction and 3 alpha-HSOR oxidation.  相似文献   

14.
Intact or castrated adult male rats were treated for nine days with GnRH (10 micrograms/day), the synthetic GnRH goserelin (100 micrograms/day) or the GnRH-antagonist Org 30276 (250 or 500 micrograms/day). In some series, 1 mg testosterone propionate was administered alone, or in combination with goserelin or Org 30276. The in vitro metabolism of [1 alpha,2 alpha-3H]testosterone by pituitary and hypothalamic homogenates was investigated in combination with the estimation of plasma concentrations of testosterone and gonadotropins. No qualitative or quantitative differences were observed in hypothalamic testosterone metabolism or in the pituitary 17 beta-hydroxysteroid dehydrogenase activity. Testosterone administration to intact male rats decreased the pituitary 5 alpha-reductase activity and LH, while administered to castrated rats, it was able to suppress totally the castration-induced increase of the 5 alpha-reductase activity and of the gonadotropin secretion. The drastic decrease of the plasma levels of testosterone, observed after a prolonged treatment with GnRH, goserelin or Org 30276 was not accompanied by an increased pituitary 5 alpha-reductase activity. Injected to castrated rats, it was observed that the castration-induced increase of the pituitary 5 alpha-reductase was further stimulated by GnRH, totally suppressed by goserelin and partially suppressed by Org 30276. Concomitant administration of goserelin or Org 30276 and testosterone propionate to castrated rats resulted in a further decrease of the pituitary 5 alpha-reductase activity, compared to the castrated, GnRH-analogue treated rats. These data indicate that the pituitary 5 alpha-reductase enzyme system is controlled by both direct steroidal and indirect GnRH-mediated mechanisms.  相似文献   

15.
Castration reduces prostate size and causes intraprostatic testosterone (T) and dihydrotestosterone (DHT) to fall to very low levels. 5 alpha-Reductase inhibition also reduces prostate size, but results in a marked increase in intraprostatic T levels. To compare the effects of 5 alpha-reductase inhibition and castration on prostate physiology, male Sprague-Dawley rats were left intact, castrated, or given the selective 5 alpha-reductase inhibitor finasteride for up to 9 days. To be sure that finasteride itself did not directly affect gene expression, an additional group of rats was castrated and given finasteride for 4 days. The prostates were weighed, intraprostatic RNA, DNA, and androgen levels were measured, and mRNAs for two androgen-regulated genes, prostate steroid-binding protein (PSBP; an androgen-induced gene) and testosterone-repressed prostate message (TRPM-2), were quantitated by Northern and slot blot analyses. Finasteride caused a 95% reduction in intraprostatic DHT levels and a 10-fold increase in intraprostatic T levels. Finasteride, as expected, caused a pronounced decrease in prostate weight (45% on day 4). DNA content fell correspondingly (48% on day 4). Intraprostatic DNA (micrograms of DNA per gland) on day 4 was 328 +/- 53 in control rats, 171 +/- 10 in finasteride-treated rats (P less than 0.001 compared to controls), 115 +/- 2 in castrated rats (P less than 0.05 compared to finasteride), and 107 +/- 43 in finasteride-treated plus castrated rats (P = NS compared to castration alone). There were no significant differences in DNA levels among the groups when expressed per mg prostate tissue, indicating that mean prostate cell size was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Glomerular filtration rate (GFR) and effective renal plasma flow (ERPF) are decreased and mean arterial pressure (MAP) and renal vascular resistance (RVR) are increased after unilateral release of bilateral ureteral obstruction (BUO) of 24 hr duration. An imbalance between vasoconstrictor and vasodilator substances may explain these hemodynamic changes. We examined the role of the cytochrome P-450 pathway in this setting. After unilateral release of BUO, GFR and ERPF (ml/min/kg body wt) were significantly lower in these rats than in sham-operated rats (SOR) 1.14 +/- 0.09 vs 6.7 +/- 0.5 and 3.09 +/- 0.2 vs 23.5 +/- 3.4, respectively). BUO rats had significantly higher MAP (mm Hg) and RVR (mm Hg/ml/min/kg body wt) than SOR (155 +/- 5 vs 120 +/- 1 and 29.1 +/- 1.7 vs 3.2 +/- 0.4, respectively). SOR given 3-methylcholanthrene and beta-naphthoflavone to induce the cytochrome P-450 system had no significant changes in renal function, RVR, or MAP. SOR given ketoconazole to inhibit the cytochrome P-450 system had significantly lower GFR (4.8 +/- 0.5) than temporal control rats without significant changes in ERPF (21.2 +/- 4.6), MAP (127 +/- 6), or RVR (4.2 +/- 0.9). Rats with BUO given ketoconazole had lower but not significantly different GFR (0.84 +/- .1) and ERPF (2.61 +/- .4) than BUO controls. Values for MAP did not differ in BUO rats given ketoconazole versus BUO temporal controls. BUO rats given 3-methylcholanthrene and beta-naphthoflavone had significantly higher GFR and ERPF (2.01 +/- 0.24 and 6.66 +/- 1.36, respectively) and significantly lower RVR (14.7 +/- 3.9) than control rats with BUO; MAP was unchanged. Microsomal preparations from indomethacin-treated isolated kidneys obtained from BUO rats when compared with preparations obtained from SOR had significantly less activity of the P-450 cytochrome-dependent omega/omega-1 hydroxylase (103 +/- 6 vs 130 +/- 7 pmol hydroxyeicosatetraenoic acids produced per mg of protein/min, P < 0.02) and the P-450 cytochrome-dependent epoxygenase (11 +/- 0.3 vs 30 +/- 4 pmol lipoxyeicosatrienoic acids produced per mg of protein/min, P < 0.04). Indomethacin-treated microsomes prepared from kidneys of BUO rats converted significantly less 14C-arachidonic acid through the P-450-dependent hydroxylases (13.5 +/- 0.8 vs 17.0 +/- 0.1% of 14C-arachidonic acid converted to 19- and 20-hydroxyeicosatetraenoic acids, P < 0.02), and significantly less through the epoxygenases (1.4 +/- 0.4 vs. 3.8 +/- 0.5% of 14C-arachidonic acid converted to epoxyeicosatrienoic acids).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Kinetic constants for the 5 alpha-reductase were determined in freshly isolated epithelial cells from the rat ventral prostate. Studies were also performed on stromal tissue but not isolated stromal cells for comparison. Secretory and non-secretory epithelial cells were separated by centrifugation in a Percoll gradient. Both epithelial cell populations metabolized testosterone to predominantly 5 alpha-dihydrotestosterone (5 alpha-DHT), although when expressed per cell the capacity for conversion was 3-4-fold higher for secretory cells (7.4 pmol/min/10(6) cells) than for non-secretory cells (2.3 pmol/min/10(6) cells; P less than 0.01 in 4 separate studies). When compared per mg cytosol protein this difference became non-significant. Stromal tissue contained a 5 alpha-reductase Vmax (expressed) per mg protein) which was comparable to the non-secretory cell enzyme. Lineweaver-Burke plots revealed different Km values for the different cell populations (12.5, 5.9 and 4.7 microM for secretory, non-secretory and stromal cells, respectively) suggesting the presence of different isoforms of the enzyme, or differences in the intracellular concentrations of enzyme antagonists.  相似文献   

18.
The effect of DMSO on cholesterol and bile acid metabolism was studied in rats. Male Sprague-Dawley rats were randomly assigned to one of two groups and given either tap water or 2% DMSO (v/v) in tap water to drink for 9 days. Both food (stock rat diet) and water were available ad libitum. Animals in both groups gained weight equally throughout the study. They also had similar liver weights (g/100 g body wt) at the end of the study (control: 5.0 +/- 0.1 (N = 6) vs DMSO: 4.9 +/- 0.1 (N = 6]. The activity of hepatic cholesterol 7 alpha-hydroxylase (pmole/mg/min), the rate-limiting enzyme of bile acid biosynthesis, was significantly (P less than 0.005) reduced in the treated animals (control: 9.7 +/- 1.0 (N = 6) vs DMSO: 4.3 +/- 0.7 (N = 6)). Plasma cholesterol (mg/dl) was significantly (P less than 0.005) elevated in the treated animals (control: 90 +/- 3 (N = 6) vs DMSO: 107 +/- 4 (N = 6)), a finding consistent with the reduced CH-7 alpha hydroxylase activity in this group. DMSO treatment did not affect either microsomal cholesterol content or hepatic glutathione content. Thus, this study has shown that DMSO treatment per se can affect cholesterol and bile acid metabolism. However, the precise mechanisms whereby DMSO exerts the observed effects are not known.  相似文献   

19.
A gastric [U-14C]glucose load (4.8 mg/g body wt.) was delivered to unrestrained post-absorptive or 30 h-starved rats bearing peripheral and portal vein catheters and continuously perfused with [3-3H]glucose, in order to compare their metabolic and hormonal responses. In the basal state, portal and peripheral glycaemia were less in starved rats than in rats in the post-absorptive period (P less than 0.01), whereas blood lactate was similar. Portal insulinaemia (P less than 0.05) and protal glucagonaemia (P less than 0.005) were lower in starved rats, but insulin/glucagon ratio was higher in post-absorptive rats (P less than 0.005). The glucose turnover rate was decreased by starvation (P less than 0.005). After glucose ingestion, blood glucose was similar in post-absorptive and starved rats. A large portoperipheral gradient of lactate appeared in starved rats. Portal insulinaemia reached a peak at 9 min, and was respectively 454 +/- 68 and 740 +/- 65 mu-units/ml in starved and post-absorptive rats. Portal glucagonaemia remained stable, but was higher in post-absorptive rats (P less than 0.05). At 60 min after the gastric glucose load, 30% of the glucose was delivered at the periphery in both groups. The total glucose appearance rate was higher in starved rats (P less than 0.05), as was the glucose utilization rate (P less than 0.05), whereas the rate of appearance of exogenous glucose was similar. This was due to a non-suppressed hepatic glucose production in the starved rats, whereas it was totally suppressed in post-absorptive rats. At 1 h after the glucose load, the increase in both liver and muscle glycogen concentration was greater in starved rats. Thus short-term fasting induces an increased portal lactate concentration after a glucose load, and produces a state of liver insulin unresponsiveness for glucose production, whereas the sensitivity of peripheral tissues for glucose utilization is unchanged or even increased. This might allow preferential replenishment of the peripheral stores of glycogen.  相似文献   

20.
The effects of the anabolic steroid stanozolol (17-methyl-2H-5 alpha-androst-2-eno-(3,2-c)pyrazol-17 beta-ol) on lecithin-cholesterol acyltransferase, apolipoproteins B and D and the Lp(a) lipoprotein were determined in a prospective study of ten normolipidemic women with postmenopausal osteoporosis. Lecithin-cholesterol acyltransferase was reduced approx. 30% by 6 weeks of treatment with stanozolol (off treatment 5.1 +/- 1.2, on treatment 3.4 +/- 0.8 muml; P less than 0.02). The Lp(a) lipoprotein was reduced 65 +/- 23% by the steroid treatment (off treatment 5.5 +/- 5.5, on treatment 1.4 +/- 0.7 mg/dl; P less than 0.02). Apolipoprotein D was reduced 23 +/- 9% by the treatment (off treatment 5.9 +/- 0.9, on treatment 4.5 +/- 0.7 mg/dl; P less than 0.02). In contrast, apolipoprotein B increased slightly but insignificantly on steroid therapy (off treatment 90 +/- 21, on treatment 112 +/- 24 mg/dl). By 5 weeks after the drug was discontinued, all four of these proteins were near pretreatment levels. These significant changes in lipoprotein metabolism, combined with our previous report of reductions of HDL and particularly HDL2, suggest the need for caution in the long-term use of anabolic steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号