首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Alzheimer's disease is characterized by brain deposition of extracellular amyloid beta-peptide (Abeta)-containing plaques. The cellular site of gamma-secretase activity, which releases Abeta and the corresponding amyloid precursor protein intracellular domain (AICD), remains controversial. Proposed cleavage sites range from the endoplasmic reticulum (ER), the Golgi apparatus, and the cell surface to endosomal compartments. We now used C99-green fluorescent protein (GFP), a fluorescent reporter substrate for gamma-secretase activity and monitored AICD production in living cells. C99-GFP is efficiently cleaved by gamma-secretase, and AICD-GFP is released into the cytosol. Inhibiting gamma-secretase results in accumulation of C99-GFP in early endosomes. By blocking selective transport steps along the secretory pathway, we demonstrate that gamma-secretase does not cleave its substrates in the ER, the Golgi/trans-Golgi network, or in secretory vesicles. In contrast, inhibition of endocytosis did not inhibit cleavage of C99-GFP. Similar results were obtained for another gamma-secretase substrate, NotchDeltaE. Our results suggest that intracellular domains are generated by gamma-secretase at the plasma membrane and/or early endosomes.  相似文献   

3.
Mutations within the amyloid-beta (Abeta) domain of the amyloid precursor protein (APP) typically generate hemorrhagic strokes and vascular amyloid angiopathy. In contrast, the Arctic mutation (APP E693G) results in Alzheimer's disease. Little is known about the pathologic mechanisms that result from the Arctic mutation, although increased formation of Abeta protofibrils in vitro and intraneuronal Abeta aggregates in vivo suggest that early steps in the amyloidogenic pathway are facilitated. Here we show that the Arctic mutation favors proamyloidogenic APP processing by increased beta-secretase cleavage, as demonstrated by altered levels of N- and C-terminal APP fragments. Although the Arctic mutation is located close to the alpha-secretase site, APP harboring the Arctic mutation is not an inferior substrate to a disintegrin and metalloprotease-10, a major alpha-secretase. Instead, the localization of Arctic APP is altered, with reduced levels at the cell surface making Arctic APP less available for alpha-secretase cleavage. As a result, the extent and subcellular location of Abeta formation is changed, as revealed by increased Abeta levels, especially at intracellular locations. Our findings suggest that the unique clinical symptomatology and neuropathology associated with the Arctic mutation, but not with other intra-Abeta mutations, could relate to altered APP processing with increased steady-state levels of Arctic Abeta, particularly at intracellular locations.  相似文献   

4.
Consecutive cleavages of amyloid precursor protein (APP) generate APP intracellular domain (AICD). Its cellular function is still unclear. In this study, we investigated the functional role of AICD in cellular Ca(2+) homeostasis. We could confirm previous observations that endoplasmic reticulum Ca(2+) stores contain less calcium in cells with reduced APP gamma-secretase cleavage products, increased AICD degradation, reduced AICD expression or in cells lacking APP. In addition, we observed an enhanced resting cytosolic calcium concentration under conditions where AICD is decreased or missing. In view of the reciprocal effects of Ca(2+) on mitochondria and of mitochondria on Ca(2+) homeostasis, we analysed further the cellular ATP content and the mitochondrial membrane potential. We observed a reduced ATP content and a mitochondrial hyperpolarisation in cells with reduced amounts of AICD. Blockade of mitochondrial oxidative phosphorylation chain in control cells lead to similar alterations as in cells lacking AICD. On the other hand, substrates of Complex II rescued the alteration in Ca(2+) homeostasis in cells lacking AICD. Based on these observations, our findings indicate that alterations observed in endoplasmic reticulum Ca(2+) storage in cells with reduced amounts of AICD are reciprocally linked to mitochondrial bioenergetic function.  相似文献   

5.
The pathological role of ApoE4 in Alzheimer's disease (AD) is not fully elucidated yet but there is strong evidence that ApoE is involved in Abeta deposition, which is an early hallmark of AD neuropathology. Overexpression of ApoE in neuroblastoma cells (Neuro2a) leads to the generation of an intracellular 13 kDa carboxy-terminal fragment of ApoE comparable to fragments seen in brains of AD patients. ApoE4 generates more of this fragment than ApoE2 and E3 suggesting a potential pathological role of these fragments in Alzheimer's disease. Analysis of this intracellular ApoE4 fragment by protease digest followed by MALDI-TOF mass spectrometry showed the proteolytic cleavage site close to residue 187 of ApoE. We have engineered and expressed the corresponding ApoE fragments in vitro. The recombinant 13 kDa carboxy-terminal fragment inhibited fibril formation of Abeta; this contrasts with the full-length ApoE and the corresponding amino-terminal ApoE fragment. Moreover, we show that the 13 kDa carboxy-terminal fragment of ApoE stabilizes the formation of Abeta hexamers. Complexes of Abeta with the 13 kDa carboxy-terminal ApoE fragment show toxicity in PC12 cells comparable to Abeta fibrils. These data suggest that cleavage of ApoE, leading to the generation of this fragment, contributes to the pathogenic effect of ApoE4 in AD.  相似文献   

6.
The amyloid beta-protein precursor (APP) is proteolytically cleaved to generate the amyloid beta-protein (Abeta), the principal constituent of senile plaques found in Alzheimer's disease (AD). In addition, Abeta in its oligomeric and fibrillar forms have been hypothesized to induce neuronal toxicity. We and others have previously shown that APP can be cleaved by caspases at the C-terminus to generate a potentially cytotoxic peptide termed C31. Furthermore, this cleavage event and caspase activation were increased in the brains of AD, but not control, cases. In this study, we show that in cultured cells, Abeta induces caspase cleavage of APP in the C-terminus and that the subsequent generation of C31 contributes to the apoptotic cell death associated with Abeta. Interestingly, both Abeta toxicity and C31 pathway are dependent on the presence of APP. Both APP-dependent Abeta toxicity and C31-induced apoptotic cell death involve apical or initiator caspases-8 and -9. Our results suggest that Abeta-mediated toxicity initiates a cascade of events that includes caspase activation and APP cleavage. These findings link C31 generation and its potential cell death activity to Abeta cytotoxicity, the leading mechanism proposed for neuronal death in AD.  相似文献   

7.
FE65 is an adaptor protein that interacts with the cytoplasmic tail of the amyloid precursor protein (APP). In cultured non-neuronal cells, the formation of the FE65-APP complex is a key element for the modulation of APP processing, signalling and beta-amyloid (Abeta) production. The functions of FE65 in vivo, including its role in the metabolism of neuronal APP, remain to be investigated. In this study, transgenic mice expressing human FE65 were generated and crossbred with APP transgenic mice, known to develop Abeta deposits at 6 months of age. Compared with APP mice, APP/FE65 double transgenic mice exhibited a lower Abeta accumulation in the cerebral cortex as demonstrated by immunohistochemistry and immunoassay, and a lower level of APP-CTFs. The reduced accumulation of Abeta in APP/FE65 double transgenics, compared with APP mice, could be linked to the low Abeta42 level observed at 4 months of age and to the lower APP-CTFs levels. The present work provides evidence that FE65 plays a role in the regulation of APP processing in an in vivo model.  相似文献   

8.
Beta amyloid peptide-containing neuritic plaques are a defining feature of Alzheimer's disease pathology. Beta amyloid are 38-43 residue peptides derived by proteolytic cleavage of amyloid precursor protein. Although much attention has focused on the proteolytic events leading to beta amyloid generation, the function of amyloid precursor protein remains poorly described. Previously, we reported that amyloid precursor protein functions as a pro-inflammatory receptor on monocytic lineage cells and defined a role for amyloid precursor protein in adhesion by demonstrating that beta(1) integrin-mediated pro-inflammatory activation of monocytes is amyloid precursor protein dependent. We demonstrated that antibody-induced cross-linking of amyloid precursor protein in human THP-1 monocytes and primary mouse microglia stimulates a tyrosine kinase-based pro-inflammatory signaling response leading to acquisition of a reactive phenotype. Here, we have identified pro-inflammatory mediators released upon amyloid precursor protein-dependent activation of monocytes and microglia. We show that amyloid precursor protein cross-linking stimulated tyrosine kinase-dependent increases in pro-inflammatory cytokine release and a tyrosine kinase-independent increase in beta amyloid 1-42 generation. These data provide much needed insight into the function of amyloid precursor protein and provide potential therapeutic targets to limit inflammatory changes associated with the progression of Alzheimer's disease.  相似文献   

9.
Frame-shifted amyloid precursor protein (APP(+1)), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP(+1) in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP(+1) in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP(+1) is a secretory protein, but high expression of APP695 and APP(+1) results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP(+1) is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP(+1) immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid beta40 in cells co-expressing APP695 and APP(+1), although APP(+1) itself does not contain the amyloid beta sequence. Taken together, these data show that co-expression of APP695 and APP(+1) affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.  相似文献   

10.
The deposition of amyloid beta-protein in the brain is a fundamental process in the development of Alzheimerís disease; however, the mechanism underlying aggregation of amyloid beta-protein remains to be determined. Here, we report that a membrane-mimicking environment, generated in the presence of detergents or a ganglioside, is sufficient per se for amyloid fibril formation from soluble amyloid beta-protein. Furthermore, hereditary variants of amyloid beta-protein, which are caused by amyloid precursor protein gene mutations, including the Dutch (E693Q), Flemish (A692G) and Arctic (E693G) types, show mutually different aggregation behavior in these environments. Notably, the Arctic-type amyloid beta-protein, in contrast to the wild-type and other variant forms, shows a markedly rapid and higher level of amyloid fibril formation in the presence of sodium dodecyl sulfate or GM1 ganglioside. These results suggest that there are favorable local environments for fibrillogenesis of amyloid beta-protein.  相似文献   

11.
Tumor necrosis factor-alpha (TNF-alpha) is implicated in inflammatory processes and much effort is being directed at inhibiting the release of TNF-alpha for treatment of inflammatory conditions. In this context, the drug CP-661,631 has been developed to inhibit the TNF-alpha converting enzyme (TACE). However, TACE is also implicated in amyloid precursor protein secretion. Amyloid precursor protein (APP) undergoes constitutive and regulated secretion by alpha-secretase endoproteolytic cleavage within the amyloid beta peptide (Abeta) domain. Alternative cleavage at the N- and C-terminus of the Abeta domain by beta- and gamma-secretases results in the production of Abeta. In many cellular and in vivo animal models, increased secretion of APP results in a concomitant decrease in the production of Abeta suggesting that the two pathways are intricately linked. However, in human primary neuron cultures, increased APP secretion is not associated with a decrease in total Abeta production. To determine if the use of CP-661,631 may enhance amyloidogenic processing in human brain, we have assessed the effect of CP-661,631 on APP metabolism in primary cultures of human neurons. Our results show that CP-661,631 effectively prevents regulated APP secretion but does not increase total Abeta levels in human primary neuron cultures.  相似文献   

12.
The beta-amyloid precursor protein (betaAPP) undergoes a physiological cleavage triggered by one or several proteolytic activities referred to as alpha-secretases, leading to the secretion of sAPPalpha. Several lines of evidence indicate that the alpha-secretase cleavage is a highly regulated process. Thus, besides constitutive production of sAPPalpha, several studies have reported on protein kinase C-regulated sAPPalpha secretion. Studies aimed at identifying alpha-secretase(s) candidates suggest the involvement of enzymes belonging to the pro-hormone convertases and disintegrin families. The delineation of respective contributions of proteolytic activities in constitutive and regulated sAPPalpha secretion is rendered difficult by the fact that the overall regulated response always includes the basal constitutive counterpart that cannot be selectively abolished. Here we report on the fact that the furin-deficient LoVo cells are devoid of regulated PKC-dependent sAPPalpha secretion and therefore represent an interesting model to study exclusively the constitutive sAPPalpha secretion. We show here, by a pharmacological approach using selective inhibitors, that pro-hormone convertases and proteases of the ADAM (disintegrin metalloproteases) family participate in the production/secretion of sAPPalphas in LoVo cells. Transfection analysis allowed us to further establish that the pro-hormone convertase 7 and ADAM10 but not ADAM17 (TACE, tumour necrosis factor alpha-converting enzyme) likely contribute to constitutive sAPPalpha secretion by LoVo cells.  相似文献   

13.
The phosphotyrosine binding domain of the neuronal protein X11alpha/mint-1 binds to the C-terminus of amyloid precursor protein (APP) and inhibits catabolism to beta-amyloid (Abeta), but the mechanism of this effect is unclear. Coexpression of X11alpha or its PTB domain with APPswe inhibited secretion of Abeta40 but not APPsbetaswe, suggesting inhibition of gamma- but not beta-secretase. To further probe cleavage(s) inhibited by X11alpha, we coexpressed beta-secretase (BACE-1) or a component of the gamma-secretase complex (PS-1Delta9) with APP, APPswe, or C99, with and without X11alpha, in HEK293 cells. X11alpha suppressed the PS-1Delta9-induced increase in Abeta42 secretion generated from APPswe or C99. However, X11alpha did not impair BACE-1-mediated proteolysis of APP or APPswe to C99. In contrast to impaired gamma-cleavage of APPswe, X11alpha or its PTB domain did not inhibit gamma-cleavage of NotchDeltaE to NICD (the Notch intracellular domain). The X11alpha PDZ-PS.1Delta9 interaction did not affect gamma-cleavage activity. In a cell-free system, X11alpha did not inhibit the catabolism of APP C-terminal fragments. These data suggest that X11alpha may inhibit Abeta secretion from APP by impairing its trafficking to sites of active gamma-secretase complexes. By specifically targeting substrate instead of enzyme X11alpha may function as a relatively specific gamma-secretase inhibitor.  相似文献   

14.
beta-amyloid peptide (Abeta) is one of the main protein components of senile plaques associated with Alzheimer's disease (AD). Abeta readily aggregates to forms fibrils and other aggregated species that have been shown to be toxic in a number of studies. In particular, soluble oligomeric forms are closely related to neurotoxicity. However, the relationship between neurotoxicity and the size of Abeta aggregates or oligomers is still under investigation. In this article, we show that different Abeta incubation conditions in vitro can affect the rate of Abeta fibril formation, the conformation and stability of intermediates in the aggregation pathway, and toxicity of aggregated species formed. When gently agitated, Abeta aggregates faster than Abeta prepared under quiescent conditions, forming fibrils. The morphology of fibrils formed at the end of aggregation with or without agitation, as observed in electron micrographs, is somewhat different. Interestingly, intermediates or oligomers formed during Abeta aggregation differ greatly under agitated and quiescent conditions. Unfolding studies in guanidine hydrochloride indicate that fibrils formed under quiescent conditions are more stable to unfolding in detergent than aggregation associated oligomers or Abeta fibrils formed with agitation. In addition, Abeta fibrils formed under quiescent conditions were less toxic to differentiated SH-SY5Y cells than the Abeta aggregation associated oligomers or fibrils formed with agitation. These results highlight differences between Abeta aggregation intermediates formed under different conditions and provide insight into the structure and stability of toxic Abeta oligomers.  相似文献   

15.
The time dependency of the spontaneous aggregation of the fibrillogenic -Amyloid peptide, A1–40, was measured by turbidity, circular dichroism, HPLC, and fluorescence polarization. The results by all methods were comparable and they were most consistent with a kinetic model where the peptide first slowly forms an activated monomeric derivative (AM), which is the only species able to initiate, by tetramerization, the formation of linear aggregates. The anti-A antibody 6E10, raised against residues 1–17, at concentrations of 200–300 nM delayed significantly the aggregation of 50 M amyloid peptide. The anti–A antibody 4G8, raised against residues 17–24, was much less active in that respect, while the antibody A162, raised against the C-terminal residues 39–43 of the full-length A was totally inactive at those concentrations. Concomitant with the aggregation experiments, we also measured the time dependency of the A1–40–induced toxicity toward SH-EP1 cells and hippocampal neurons, evaluated by SYTOX Green fluorescence, lactate dehydrogenase release, and activation of caspases. The extent of cell damage measured by all methods reached a maximum at the same time and this maximum coincided with that of the concentration of AM. According to the kinetic scheme, the latter is the only transient peptide species whose concentration passes through a maximum. Thus, it appears that the toxic species of A1–40 is most likely the same transient activated monomer that is responsible for the nucleation of fibril formation. These conclusions should provide a structural basis for understanding the toxicity of A1–40 in vitro and possibly in vivo.  相似文献   

16.
Polymorphisms in the apolipoprotein E (APOE) gene affect the risk of Alzheimer disease and the amount of amyloid beta-protein (Abeta) deposited in the brain. The apoE protein reduces Abeta levels in conditioned media from cells in culture, possibly through Abeta clearance mechanisms. To explore this effect, we treated multiple neural and non-neural cell lines for 24 h with apoE at concentrations similar to those found in the cerebrospinal fluid (1-5 microg/mL). The apoE treatment reduced Abeta40 by 60-80% and Abeta42 to a lesser extent (20-30%) in the conditioned media. Surprisingly, apoE treatment resulted in an accumulation of amyloid precursor protein (APP)-C-terminal fragments in cell extracts and a marked reduction of APP intracellular domain-mediated signaling, consistent with diminished gamma-secretase processing of APP. All three isoforms of apoE, E2, E3 and E4, had similar effects on Abeta and APP-C-terminal fragments, and the effects were independent of the low-density lipoprotein receptor family. Apolipoprotein E had minimal effects on Notch cleavage and signaling in cell-based assays. These data suggest that apoE reduces gamma-secretase cleavage of APP, lowering secreted Abeta levels, with stronger effects on Abeta40. The apoE modulation of Abeta production and APP signaling is a potential mechanism affecting Alzheimer disease risk.  相似文献   

17.
Generation and deposition of the amyloid beta (Abeta) peptide following proteolytic processing of the amyloid precursor protein (APP) by BACE-1 and gamma-secretase is central to the aetiology of Alzheimer's disease. Consequently, inhibition of BACE-1, a rate-limiting enzyme in the production of Abeta, is an attractive therapeutic approach for the treatment of Alzheimer's disease. We have designed a selective non-peptidic BACE-1 inhibitor, GSK188909, that potently inhibits beta-cleavage of APP and reduces levels of secreted and intracellular Abeta in SHSY5Y cells expressing APP. In addition, we demonstrate that this compound can effectively lower brain Abeta in vivo. In APP transgenic mice, acute oral administration of GSK188909 in the presence of a p-glycoprotein inhibitor to markedly enhance the exposure of GSK188909 in the brain decreases beta-cleavage of APP and results in a significant reduction in the level of Abeta40 and Abeta42 in the brain. Encouragingly, subchronic dosing of GSK188909 in the absence of a p-glycoprotein inhibitor also lowers brain Abeta. This pivotal first report of central Abeta lowering, following oral administration of a BACE-1 inhibitor, supports the development of BACE-1 inhibitors for the treatment of Alzheimer's disease.  相似文献   

18.
One of the hallmarks of Alzheimer's disease is the accumulation of senile plaques in brain, extracellular lesions comprised mostly of aggregates of the amyloid beta-peptide (Abeta). Abeta is proteolytically derived from the Alzheimer's amyloid precursor protein (APP). The generation of Abeta and nonamyloidogenic derivatives of APP involves utilization of alternative processing pathways and multiple subcellular compartments. To improve our understanding of the regulation of APP processing, we investigated the effects of wortmannin, a phosphatidylinositol 3-kinase (PI3-kinase) inhibitor, on APP processing. PI3-kinases form a multifaceted family of enzymes that represent converging points for multiple signal transduction pathways and also act as key regulators of vesicular trafficking. In N2a neuroblastoma cells expressing either wild-type APP or the "Swedish" familial Alzheimer's disease-associated mutant variant of APP, wortmannin treatment resulted in decreased release of both Abeta and soluble APPalpha. In parallel, full-length APP and both processed derivatives accumulated inside the cells. These effects were not present at nanomolar concentrations of wortmannin, but only at micromolar concentrations, implying the possible involvement of a recently described trans-Golgi network (TGN)-associated PI3-kinase that is resistant to nanomolar concentrations of the inhibitor, but sensitive to micromolar concentrations. All effects were reversible when the drug was removed from the cell culture medium. Given the suspected site of action of this novel PI3-kinase activity at the TGN, it is tempting to speculate that the unexpected increase in the levels of both intracellular soluble APPalpha and intracellular Abeta might be due to wortmannin-induced covesiculation of APP together with its respective secretase enzymes within the TGN, leading to the execution of alpha-, beta-, and gamma-secretase reactions.  相似文献   

19.
20.
Alzheimer's disease (AD) is marked by the presence of neurofibrillary tangles and amyloid plaques in the brain of patients. To study plaque formation, we report on further quantitative and qualitative analysis of human and mouse amyloid beta peptides (Abeta) from brain extracts of transgenic mice overexpressing the London mutant of human amyloid precursor protein (APP). Using enzyme-linked immunosorbant assays (ELISAs) specific for either human or rodent Abeta, we found that the peptides from both species aggregated to form plaques. The ratios of deposited Abeta1-42/1-40 were in the order of 2-3 for human and 8-9 for mouse peptides, indicating preferential deposition of Abeta42. We also determined the identity and relative levels of other Abeta variants present in protein extracts from soluble and insoluble brain fractions. This was done by combined immunoprecipitation and mass spectrometry (IP/MS). The most prominent peptides truncated either at the carboxyl- or the amino-terminus were Abeta1-38 and Abeta11-42, respectively, and the latter was strongly enriched in the extracts of deposited peptides. Taken together, our data indicate that plaques of APP-London transgenic mice consist of aggregates of multiple human and mouse Abeta variants, and the human variants that we identified were previously detected in brain extracts of AD patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号