首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human cytochrome P450 17alpha-hydroxylase (CYP17) catalyses not only the 17alpha-hydroxlation of pregnenolone and progesterone and the C17,20-side chain cleavage (lyase) of 17alpha-hydroxypregnenolone, necessary for the biosynthesis of C21-glucocorticoids and C19-androgens, but also catalyses the 16alpha-hydroxylation of progesterone. In efforts to understand the complex enzymology of CYP17, structure/function relationships have been reported previously after expressing recombinant DNAs, encoding CYP17 from various species, in nonsteroidogenic mammalian or yeast cells. A major difference between species resides in the lyase activity towards the hydroxylated intermediates and in the fact that the secretion of C19-steroids take place, in some species, principally in the gonads. Because human and higher primate adrenals secrete steroids, CYP17 has been characterized in the Cape baboon, a species more closely related to humans, in an effort to gain a further understanding of the reactions catalysed by CYP17. Baboon and human CYP17 cDNA share 96% homology. Baboon CYP17 has apparent Km and V values for pregnenolone and progesterone of 0.9 micro m and 0.4 nmol.h-1.mg protein-1 and 6.5 micro m and 3.9 nmol.h-1.mg protein-1, respectively. Baboon CYP17 had a significantly higher activity for progesterone hydroxylation relative to pregnenolone. No 16alpha-hydroxylase and no lyase activity for 17alpha-hydroxyprogesterone. Sequence analyses showed that there are 28 different amino acid residues between human and baboon CYP17, primarily in helices F and G and the F-G loop.  相似文献   

2.
Cytochrome P450 17alpha-hydroxylase/17,20-lyase (CYP17) is critical in determining cortisol and sex steroid biosynthesis. To investigate how CYP17 functions in vivo, we generated mice with a targeted deletion of CYP17. Although in chimeric mice Leydig cell CYP17 mRNA and intratesticular and circulating testosterone levels were dramatically reduced (80%), the remaining testosterone was sufficient to support spermatogenesis as evidenced by the generation of phenotypical black C57BL/6 mice. However, male chimeras consistently failed to generate heterozygous CYP17 mice and after five matings chimeric mice stopped mating indicating a change in sexual behavior. These results suggested that CYP17 deletion caused a primary phenotype (infertility), probably not due to the anticipated androgen imbalance and a secondary phenotype (change in sexual behavior) due to the androgen imbalance. Surprisingly, CYP17 mRNA was found in mature sperm, and serial analysis of gene expression identified CYP17 mRNA in other testicular germ cells. CYP17 mRNA levels were directly related to percent chimerism. Moreover, more than 50% of the sperm from high-percentage chimeric mice were morphologically abnormal, and half of them failed the swim test. Furthermore, 60% of swimming abnormal sperm was devoid of CYP17. These results suggest that CYP17, in addition to its role in steroidogenesis and androgen formation, is present in germ cells where it is essential for sperm function, and deletion of one allele prevents genetic transmission of mutant and wild-type alleles causing infertility followed by change in sexual behavior due to androgen imbalance.  相似文献   

3.
4.
5.
In order to understand the activity specificity of the hamster cytochrome P450 17 alpha-hydroxylase/17,20-lyase (P450c17), we have studied its structure/activity using three hamster P450c17 recombinant mutants (T202N/D240N/D407H). In transiently transfected COS-1 cells, the mutation T202N reduced 17 alpha-hydroxylation of pregnenolone and progesterone to 24 and 44% of wild type (WT), respectively, followed by reduced 17,20-cleavage to 71 and 67%, respectively. On the other hand, the mutation D240N decreased specifically 17,20-lyase activity to 61% of WT when incubated with pregnenolone while the mutation D407H only decreased 17 alpha-hydroxylation to 46% when incubated with progesterone.To comprehend the altered activity profiles of these hamster P450c17 mutants, we have elaborated a 3D model of the hamster P450c17 and compared it to our preceding model of the human P450c17. Analysis of the mutants with this model showed that, without direct contact to the substrates, these mutations transmit structural changes to the active site. By analogy, these results support the concept that any cellular changes modifying the external structure of P450c17, such as phosphorylation, could have influence on its active site and enzymatic activities.  相似文献   

6.
The study was designed to localize P450 17alpha-hydroxylase/c17-20 lyase (P450c17) in the ovaries of pregnant pigs and fetal gonads. Immunoexpression of P450c17 was investigated in the porcine ovaries (follicles and corpora lutea; CL) collected on days 10, 18, 32, 50, 70 and 90 post coitum (p.c.), and fetal gonads (testes and ovaries) on days 50, 70 and 90 p.c. The presence of P450c17 in ovarian follicles was demonstrated on all examined days of pregnancy but was restricted to theca interna cells. In CL, P450c17 was detected on all examined days of pregnancy but only in small luteal cells. In the female porcine fetuses, P450c17 immunostaining was found in oocyte nests and granulosa cells of primary ovarian follicles, while in the male fetuses in fetal Leydig cells. In conclusion, the immunolocalization of P450c17, detected in the ovaries of pregnant pigs and fetal porcine gonads, indicates the potential sites of androgen synthesis. We suggest that androgens may play a role in the maintenance of pregnancy and in the development of prenatal gonads in pigs.  相似文献   

7.
Cytochrome P450c17 catalyzes the 17alpha-hydroxylase activity required for glucocorticoid synthesis and the 17,20 lyase activity required for sex steroid synthesis. Most P450 enzymes have fixed ratios of their various activities, but the ratio of these two activities of P450c17 is regulated post-translationally. We have shown that serine phosphorylation of P450c17 and the allosteric action of cytochrome b5 increase 17,20 lyase activity, but it has not been apparent whether these two post-translational mechanisms interact. Using purified enzyme systems, we now show that the actions of cytochrome b5 are independent of the state of P450c17 phosphorylation. Suppressing cytochrome b5 expression in human adrenal NCI-H295A cells by >85% with RNA interference had no effect on 17alpha-hydroxylase activity but reduced 17,20 lyase activity by 30%. Increasing P450c17 phosphorylation could compensate for this reduced activity. When expressed in bacteria, human P450c17 required either cytochrome b5 or phosphorylation for 17,20 lyase activity. The combination of cytochrome b5 and phosphorylation was not additive. Cytochrome b5 and phosphorylation enhance 17,20 lyase activity independently of each other, probably by increasing the interaction between P450c17 and NADPH-cytochrome P450 oxidoreductase.  相似文献   

8.
Cytochrome P-45017 alpha catalyzes both 17 alpha-hydroxylation and 17,20-side-chain cleavage in steroidogenesis and lies at a key branch point in the pathways of steroid hormone biosynthesis. To obtain information on the precise localization of P-45017 alpha in swine testis, ovary, and adrenal, we undertook the simultaneous detection of P-45017 alpha mRNA and protein by combining immunohistochemistry with in situ hybridization. In situ hybridization was performed on 4% paraformaldehyde-fixed, paraffin-embedded sections by employing either a 39-base oligomer or a cDNA insert (1.7 KB) of porcine testis P-45017 alpha as DNA probe. Immunohistochemical study was performed by employing anti-P-45017 alpha. Hybridization signals were obtained in Leydig cells of the testis, theca interna of the ovarian follicle, and zona fasciculata reticularis cells of the adrenal cortex. Oligonucleotide probing yielded lower background signal than the cDNA probe. No specific signals were obtained in seminiferous tubules of the testis, medulla, and zona glomerulosa of the adrenal, and in membrana granulosa and interstitial cells of the ovary. Hybridization signals were obtained in the cells where immunoreactivity of the enzyme was observed by immunohistochemistry, except for some Leydig cells of the testis and theca interna cells of the ovary in which only immunoreactivity but not hybridization signal was observed. The present study provided detailed information about the precise cellular localization of P-45017 alpha expression at both the protein and mRNA levels in swine adrenal glands and gonads. This approach of simultaneous immunohistochemistry and in situ hybridization analysis of steroidogenic enzymes can be applied in the future to tissues exhibiting abnormal steroid metabolism and should contribute to a better understanding of steroidogenesis.  相似文献   

9.
10.
Most previous studies using reconstituted systems and fast kinetics suggest that the conversion of pregnenolone to dehydroepiandrosterone (DHEA; the precursor of androgen and estrogen biosynthesis) by P450c17 does not require the release of the intermediate 17alpha-OHPreg (a precursor of cortisol biosynthesis). With such a mechanism, it is difficult to conceive how high amounts of DHEA may be produced in some cells or tissues, such as the testis and cells from the adrenal reticularis, while in other tissues such as the fasciculata zone, high levels of 17alpha-OHPreg are synthesized. In this report, we address this matter using intact transfected cells, which better reflect the actual cellular conditions. Furthermore, by using transfected cells, we can conveniently analyze human enzymes, as we are not restricted by the availability of human tissues as in the case of methods using purified or partially purified enzymes. Using intact HEK-293 cells transfected with human P450c17 in culture, we showed, in a time course study of the transformation of pregnenolone, that there is an accumulation of 17alpha-OHPreg, and that, subsequently, the accumulated 17alpha-OHPreg decreases with a concomitant increase in DHEA production. The DHEA/17alpha-OHPreg ratio changes from 0.1 :1 after 1 h incubation to 50 : 1 after 20 h. This result strongly suggests that the transformation of Preg to DHEA proceeds through two steps in which DHEA is produced from the released intermediate 17alpha-OHPreg. We also show that high levels of substrate vs. enzyme concentration will lead to high hydroxylase activity whereas the reverse will increase the lyase activity. The result is in good agreement with recent observations suggesting that surrounding enzymes and steroids could modulate the lyase activity. Cotransfection of vectors expressing cytochrome b5 and NADPH cytochrome P450 reductase indicates that both are required for an optimum production of DHEA.  相似文献   

11.
12.
The rat CYP8B cDNA encoding sterol 12alpha-hydroxylase was cloned and sequenced. The amino acid sequence of the heme-binding region of CYP8B was close to those of CYP7A (cholesterol 7alpha-hydroxylase) and CYP7B (oxysterol 7alpha-hydroxylase). Molecular phylogenetic analysis suggests that CYP8B and the CYP7 family derive from a common ancestor. The P450s of the CYP7 and CYP8 families, except for CYP8A (prostacyclin synthase), catalyze the oxygenation of sterols from an alpha surface in the middle of the steroid skeleton. These facts suggest that CYP8B is a P450 closely linked to those of the CYP7 family. CYP8B was expressed specifically in liver. Hepatic CYP8B mRNA level and the 12alpha-hydroxylase activity were altered by cholestyramine feeding, starvation, streptozotocin-induced diabetes mellitus, and administration of clofibrate, dexamethasone or thyroxin, indicating the pretranslational regulation of CYP8B expression. The enhanced CYP8B mRNA expression in streptozotocin-induced diabetic rats was significantly decreased by insulin within 3 h of its administration. These facts demonstrate a regulatory role of insulin in CYP8B expression as a suppressor.  相似文献   

13.
A simple assay for the measurement of the activities of both 17 alpha-hydroxylase and C17-C20 lyase is described. No extraction procedures are required. The separation of substrate and products is achieved using HPLC which allows the collection of the components of interest and the monitoring of the recovery of various steroids. Using this assay, bifluranol (known to show anti-prostatic activity in vivo) and some analogues were tested for inhibitory activity towards these enzyme activities. Each compound was active, although less potent than ketoconazole, and this activity may contribute towards the in vivo action.  相似文献   

14.
The cytochrome P-450 enzyme, 17alpha-hydroxylase/17,20-lyase (P450(17alpha)), is a potential target in hormone-dependent cancers. Here, we report the synthesis and biochemical evaluation of a range of benzyl imidazole-based compounds which have been targeted against the two components of this enzyme, that is, 17alpha-hydroxylase (17alpha-OHase) and 17,20-lyase (lyase). The results from the biochemical testing suggest that the compounds synthesised are good inhibitors, with N-4-iodobenzyl imidazole (5) (IC50=10.06 microM against 17alpha-OHase and IC50=1.58 microM against lyase) showing equipotent activity against lyase compared to the standard compound, ketoconazole (KTZ) (IC50=3.76+/-0.01 microM against 17alpha-OHase and IC50=1.66+/-0.15 microM against lyase). Furthermore, the compounds tested are less potent towards the 17alpha-OHase component, a desirable property in the development of novel inhibitors of P450(17alpha).  相似文献   

15.
A new compound, 17 beta-(cyclopropylamino)-androst-5-en-3 beta-ol, MDL 27,302, has been designed and synthesized as a mechanism-based inhibitor of cytochrome P450(17 alpha). The time-dependent inactivation of human testicular P450(17 alpha) is irreversible by dialysis and requires the cofactor, NADPH; Kiapp. 90 nM (determined on cynomolgous monkey testis enzyme). Inactivation was not affected by the nucleophile DTT, suggesting retention of the inhibitor in the enzyme active site during the inactivation process. Inhibition is specific to the cyclopropylamino compound, since the isopropylamino- and cyclobutylamino-analogs were not inhibitory. Enzymatic specificity of MDL 27,302 for P450(17 alpha) was demonstrated by its failure to inhibit steroid 21-hydroxylase and the cholesterol side chain cleavage enzyme (P450scc). Both the 17 alpha-hydroxylase and C17-20 lyase activities of cytochrome P450(17 alpha) of human testis microsomes were inhibited by MDL 27,302.  相似文献   

16.
The steroid 17-hydroxylase cytochrome P450 (CYP17) found in mammalian adrenal and gonadal tissues typically exhibits not only steroid 17-hydroxylase activity but also C-17,20-lyase activity. These two reactions, catalyzed by CYP17, allow for the biosynthesis of the glucocorticoids in the adrenal cortex, as a result of the 17-hydroxylase activity, and for the biosynthesis of androgenic C(19) steroids in the adrenal cortex and gonads as a result of the additional lyase activity. A major difference between species with regard to adrenal steroidogenesis resides in the lyase activity of CYP17 toward the hydroxylated intermediates and in the fact that the secretion of C(19) steroids takes place, in some species, exclusively in the gonads. Ovine CYP17 expressed in HEK 293 cells converts progesterone to 17-hydroxyprogesterone and pregnenolone to dehydroepiandrosterone via 17-hydroxypregnenolone. In ovine adrenal microsomes, minimal if any lyase activity was observed toward either progesterone or pregnenolone. Others have demonstrated the involvement of cytochrome b(5) in the augmentation of CYP17 lyase activity. Although the presence of cytochrome b(5) in ovine adrenocortical microsomes was established, ovine adrenal microsomes did not convert pregnenolone or 17-hydroxypregnenolone to dehydroepiandrosterone. Furthermore the addition of purified ovine cytochrome b(5) to ovine adrenal microsomes did not promote lyase activity. We conclude that, in the ovine adrenal cortex, factors other than cytochrome b(5) influence the lyase activity of ovine CYP17.  相似文献   

17.
The site of action of synthetic progestins or danazol in the treatment of endometriosis is considered to be mainly the hypothalamo-pituitary level, but the direct action to the uterine endometrium and the ovary is also suggested. We investigated the effect of these synthetic steroids to rat ovarian steroidogenic enzymes. The effect of norethisterone, levonorgestrel, danazol, gestrinone, desogestrel and 3-keto-desogestrel was studied in vitro. The sources of the enzymes were prepared from ovaries of immature rats treated either with pregnant mare serum gonadotropin (PMS) and human chorionic gonadotropin (hCG) for 3 beta-hydroxy steroid dehydrogenase (3 beta-HSD), or with PMS for 17 alpha-hydroxylase and 17,20 lyase. The substrates used were pregnenolone (P5) for 3 beta-HSD, progesterone (P4) for 17 alpha-hydroxylase, and 17 alpha-hydroxy-progesterone (17 alpha-OH-P4) for 17,20 lyase. The substrates were incubated with the enzyme sources and coenzymes, and the products formed were measured. All the steroids inhibited 3 beta-HSD, and the inhibition by gestrinone (Ki = 3.0 microM) and 3-keto-desogestrel (17.5 microM) was particularly marked. Only desogestrel (Ki = 30.3 microM) and danazol (168 microM) inhibited 17 alpha-hydroxylase. All the steroids inhibited 17,20 lyase, and the inhibition by desogestrel (Ki = 0.70 microM), danazol (0.80 microM), and gestrinone (30 microM) was particularly marked.  相似文献   

18.
It is now clearly established that the brain has the capability of synthesizing various biologically active steroids including 17-hydroxypregnenolone (17OH-Delta(5)P), 17-hydroxyprogesterone (17OH-P), dehydroepiandrosterone (DHEA) and androstenedione (Delta(4)). However, the presence, distribution and activity of cytochrome P450 17alpha-hydroxylase/C17, 20-lyase (P450(C17)), a key enzyme required for the conversion of pregnenolone (Delta(5)P) and progesterone (P) into these steroids, are poorly documented. Here, we show that P450(C17)-like immunoreactivity is widely distributed in the frog brain and pituitary. Prominent populations of P450(C17)-containing cells were observed in a number nuclei of the telencephalon, diencephalon, mesencephalon and metencephalon, as well as in the pars distalis and pars intermedia of the pituitary. In the brain, P450(C17)-like immunoreactivity was almost exclusively located in neurons. In several hypothalamic nuclei, P450(C17)-positive cell bodies also contained 3beta-hydroxysteroid dehydrogenase-like immunoreactivity. Incubation of telencephalon, diencephalon, mesencephalon, metencephalon or pituitary explants with [(3)H]Delta(5)P resulted in the formation of several tritiated steroids including 17OH-Delta(5)P, 17OH-P, DHEA and Delta(4). De novo synthesis of C(21) 17-hydroxysteroids and C(19) ketosteroids was reduced in a concentration-dependent manner by ketoconazole, a P450(C17) inhibitor. This is the first detailed immunohistochemical mapping of P450(C17) in the brain and pituitary of any vertebrate. Altogether, the present data provide evidence that CNS neurons and pituitary cells can synthesize androgens.  相似文献   

19.
20.
Cytochrome P450c17 catalyzes 17 alpha-hydroxylation needed for cortisol synthesis and 17,20 lyase activity needed to produce sex steroids. Serine phosphorylation of P450c17 specifically increases 17,20 lyase activity, but the physiological factors regulating this effect remain unknown. Treating human adrenal NCI-H295A cells with the phosphatase inhibitors okadaic acid, fostriecin, and cantharidin increased 17,20 lyase activity, suggesting involvement of protein phosphatase 2A (PP2A) or 4 (PP4). PP2A but not PP4 inhibited 17,20 lyase activity in microsomes from cultured cells, but neither affected 17 alpha-hydroxylation. Inhibition of 17,20 lyase activity by PP2A was concentration-dependent, could be inhibited by okadaic acid, and was restored by endogenous protein kinases. PP2A but not PP4 coimmunoprecipitated with P450c17, and suppression of PP2A by small interfering RNA increased 17,20 lyase activity. Phosphoprotein SET found in adrenals inhibited PP2A, but not PP4, and fostered 17,20 lyase activity. The identification of PP2A and SET as post-translational regulators of androgen biosynthesis suggests potential additional mechanisms contributing to adrenarche and hyperandrogenic disorders such as polycystic ovary syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号