首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In addition to their role in cellular bioenergetics, mitochondria also initiate common forms of programmed cell death (apoptosis) through the release of proteins such as cytochrome c from the intermembrane and intracristal spaces. The release of these proteins is studied in populations of cells by western blotting mitochondrial and cytoplasmic fractions of cellular extracts, and in single cells by fluorescence microscopy using fluorescent indicators and fusion proteins. However, studying the changes in ultrastructure associated with release of proteins requires the higher resolution provided by transmission electron microscopy. Here, we have used fluorescence microscopy to characterize the state of apoptosis in HeLa cells treated with etoposide followed by electron microscopy and three-dimensional electron microscope tomography of the identical cells to study the sequence of structural changes. We have identified a remodelling of the inner mitochondrial membrane into many separate vesicular matrix compartments that accompanies release of proteins; however, this remodelling is not required for efficient release of cytochrome c. Swelling occurs only late in apoptosis after release of cytochrome c and loss of the mitochondrial membrane potential.  相似文献   

2.
During apoptosis, mitochondria undergo multiple changes that culminate in the release of cytochrome c and other proapoptotic cofactors. Recently, a role for previously overlooked morphological changes, fission of the mitochondrial reticulum and remodeling of mitochondrial cristae, has been suggested in mammalian cells and in developmental apoptosis of C. elegans. Mitochondrial morphology is determined by fusion and fission processes, controlled by a growing set of “mitochondria-shaping” proteins, whose levels and function appear to regulate the mitochondrial pathways of cell death. Expression of pro-fusion proteins, as well as of inhibition of pro-fission molecules reduces apoptosis, suggesting a linear relationship between fragmentation and death. Mechanisms by which mitochondrial fragmentation promotes apoptosis and interactions between fragmentation and remodeling of the inner membrane are largely unclear. A tempting, unifying hypothesis suggests that fission is coupled to cristae remodeling to maximize cytochrome c release.  相似文献   

3.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

4.
Mitochondrial morphology dynamically changes in a balance of membrane fusion and fission in response to the environment, cell cycle, and apoptotic stimuli. Here, we report that a novel mitochondrial protein, MICS1, is involved in mitochondrial morphology in specific cristae structures and the apoptotic release of cytochrome c from the mitochondria. MICS1 is an inner membrane protein with a cleavable presequence and multiple transmembrane segments and belongs to the Bi-1 super family. MICS1 down-regulation causes mitochondrial fragmentation and cristae disorganization and stimulates the release of proapoptotic proteins. Expression of the anti-apoptotic protein Bcl-XL does not prevent morphological changes of mitochondria caused by MICS1 down-regulation, indicating that MICS1 plays a role in maintaining mitochondrial morphology separately from the function in apoptotic pathways. MICS1 overproduction induces mitochondrial aggregation and partially inhibits cytochrome c release during apoptosis, regardless of the occurrence of Bax targeting. MICS1 is cross-linked to cytochrome c without disrupting membrane integrity. Thus, MICS1 facilitates the tight association of cytochrome c with the inner membrane. Furthermore, under low-serum condition, the delay in apoptotic release of cytochrome c correlates with MICS1 up-regulation without significant changes in mitochondrial morphology, suggesting that MICS1 individually functions in mitochondrial morphology and cytochrome c release.  相似文献   

5.
Bax and Bak promote apoptosis by perturbing the permeability of the mitochondrial outer membrane and facilitating the release of cytochrome c by a mechanism that is still poorly defined. During apoptosis, Bax and Bak also promote fragmentation of the mitochondrial network, possibly by activating the mitochondrial fission machinery. It has been proposed that Bax/Bak-induced mitochondrial fission may be required for release of cytochrome c from the mitochondrial intermembrane space, although this has been a subject of debate. Here we show that Bcl-xL, as well as other members of the apoptosis-inhibitory subset of the Bcl-2 family, antagonized Bax and/or Bak-induced cytochrome c release but failed to block mitochondrial fragmentation associated with Bax/Bak activation. These data suggest that Bax/Bak-initiated remodeling of mitochondrial networks and cytochrome c release are separable events and that Bcl-2 family proteins can influence mitochondrial fission-fusion dynamics independent of apoptosis.  相似文献   

6.
Mitochondria amplify activation of caspases during apoptosis by releasing cytochrome c and other cofactors. This is accompanied by fragmentation of the organelle and remodeling of the cristae. Here we provide evidence that Optic Atrophy 1 (OPA1), a profusion dynamin-related protein of the inner mitochondrial membrane mutated in dominant optic atrophy, protects from apoptosis by preventing cytochrome c release independently from mitochondrial fusion. OPA1 does not interfere with activation of the mitochondrial "gatekeepers" BAX and BAK, but it controls the shape of mitochondrial cristae, keeping their junctions tight during apoptosis. Tightness of cristae junctions correlates with oligomerization of two forms of OPA1, a soluble, intermembrane space and an integral inner membrane one. The proapoptotic BCL-2 family member BID, which widens cristae junctions, also disrupts OPA1 oligomers. Thus, OPA1 has genetically and molecularly distinct functions in mitochondrial fusion and in cristae remodeling during apoptosis.  相似文献   

7.
The role of the mitochondrial permeability transition (MPT) in apoptosis and necrosis is controversial. Here we show that the MPT regulates the release of cytochrome c for apoptosis during endoplasmic reticulum (ER) stress by remodeling the cristae junction (CJ). CEM cells, HCT116 colon cancer cells, and murine embryo fibroblast cells were treated with the ER stressor thapsigargin (THG), which led to cyclophilin D-dependent mitochondrial release of the profusion GTPase optic atrophy 1 (OPA1), which controls CJ integrity, and cytochrome c, leading to apoptosis. Interference RNA knockdown of Bax blocked OPA1 and cytochrome c release after THG treatment but did not prevent the MPT, showing that Bax was essential for the release of cytochrome c by MPT. In isolated mitochondria, MPT led to OPA1 and cytochrome c release independently of voltage-dependent anion channel and the outer membrane, indicating that the MPT is an inner membrane phenomenon. Last, the MPT was regulated by the electron transport chain but not mitochondrial reactive oxygen species, since THG-induced cell death was not blocked by antioxidants and did not occur in cells lacking mitochondrial DNA. Our results show that the MPT regulates CJ remodeling for cytochrome c-dependent apoptosis induced by ER stress and that mitochondrial electron transport is indispensable for this process.  相似文献   

8.
The voltage dependent anion channel (VDAC), located in the outer mitochondrial membrane, functions as a major channel allowing passage of small molecules and ions between the mitochondrial inter-membrane space and cytoplasm. Together with the adenine nucleotide translocator (ANT), which is located in the inner mitochondrial membrane, the VDAC is considered to form the core of a mitochondrial multiprotein complex, named the mitochondrial permeability transition pore (MPTP). Both VDAC and ANT appear to take part in activation of the mitochondrial apoptosis pathway. Other proteins also appear to be associated with the MPTP, for example, the 18 kDa mitochondrial Translocator Protein (TSPO), Bcl-2, hexokinase, cyclophylin D, and others. Interactions between VDAC and TSPO are considered to play a role in apoptotic cell death. As a consequence, due to its apoptotic functions, the TSPO has become a target for drug development directed to find treatments for neurodegenerative diseases and cancer. In this context, TSPO appears to be involved in the generation of reactive oxygen species (ROS). This generation of ROS may provide a link between activation of TSPO and of VDAC, to induce activation of the mitochondrial apoptosis pathway. ROS are known to be able to release cytochrome c from cardiolipins located at the inner mitochondrial membrane. In addition, ROS appear to be able to activate VDAC and allow VDAC mediated release of cytochrome c into the cytosol. Release of cytochrome c from the mitochondria forms the initiating step for activation of the mitochondrial apoptosis pathway. These data provide an understanding regarding the mechanisms whereby VDAC and TSPO may serve as targets to modulate apoptotic rates. This has implications for drug design to treat diseases such as neurodegeneration and cancer.  相似文献   

9.
Cardiolipin (CL) is an inner mitochondrial membrane phospholipid that contributes to optimal mitochondrial function and is gaining widespread attention in studies of mitochondria-mediated apoptosis. Divergent hypotheses describing the role of CL in cytochrome c release and apoptosis have evolved. We addressed this controversy directly by comparing the spontaneous- and Bax-mediated cytochrome c release from mitochondria isolated from two strains of Saccharomyces cerevisiae: one lacking CL-synthase and therefore CL (DeltaCRD1) and the other, its corresponding wild type (WT). We demonstrated by liquid chromatography-mass spectrometry that the main yeast CL species [(16:1)2(18:1)2] differs in fatty acid composition from mammalian CL [(18:2)4], and we verified the absence of the yeast CL species in the DeltaCRD1 strain. We also demonstrated that the mitochondrial association of Bax and the resulting cytochrome c release is not dependent on the CL content of the yeast mitochondrial membranes. Bax inserted equally into both WT and DeltaCRD1 mitochondrial membranes under conditions that lead to the release of cytochrome c from both strains of yeast mitochondria. Furthermore, using models of synthetic liposomes and isolated yeast mitochondria, we found that cytochrome c was bound more "loosely" to the CL-deficient systems compared with when CL is present. These data challenge recent studies implicating that CL is required for Bax-mediated pore formation leading to the release of proteins from the mitochondrial intermembrane space. In contrast, they support our recently proposed two-step mechanism of cytochrome c release, which suggests that CL is required for binding cytochrome c to the inner mitochondrial membrane.  相似文献   

10.
Controversy surrounds the role and mechanism of mitochondrial cristae remodeling in apoptosis. Here we show that the proapoptotic BH3-only proteins Bid and Bim induced full cytochrome c release but only a subtle alteration of crista junctions, which involved the disassembly of Opa1 complexes. Both mitochondrial outer membrane permeabilization (MOMP) and crista junction opening (CJO) were caspase independent and required a functional BH3 domain and Bax/Bak. However, MOMP and CJO were experimentally separable. Pharmacological blockade of MOMP did not prevent Opa1 disassembly and CJO; moreover, expression of a disassembly-resistant mutant Opa1 (Q297V) blocked cytochrome c release and apoptosis but not Bax activation. Thus, apoptosis requires a subtle form of Opa1-dependent crista remodeling that is induced by BH3-only proteins and Bax/Bak but independent of MOMP.  相似文献   

11.
During apoptosis, cytochrome c is released into the cytosol as the outer membrane of mitochondria becomes permeable, and this acts to trigger caspase activation. The consequences of this release for mitochondrial metabolism are unclear. Using single-cell analysis, we found that when caspase activity is inhibited, mitochondrial outer membrane permeabilization causes a rapid depolarization of mitochondrial transmembrane potential, which recovers to original levels over the next 30-60 min and is then maintained. After outer membrane permeabilization, mitochondria can use cytoplasmic cytochrome c to maintain mitochondrial transmembrane potential and ATP production. Furthermore, both cytochrome c release and apoptosis proceed normally in cells in which mitochondria have been uncoupled. These studies demonstrate that cytochrome c release does not affect the integrity of the mitochondrial inner membrane and that, in the absence of caspase activation, mitochondrial functions can be maintained after the release of cytochrome c.  相似文献   

12.
We investigated the role of the mitochondrial inner membrane permeability transition and subsequent release of cytochrome c into the cytosol during oxidative stress-evoked apoptosis. Sublethal oxidative stress was applied by treating L929 cells with 0.5 mM H2O2 for 90 min. Then the cellular localization of cytochrome c was examined by immunofluorescent staining and Western blotting. H2O2 treatment caused the permeability transition and pore formation, resulting in membrane depolarization and translocation of cytochrome c from the mitochondria into the cytosol. Pretreatment with cyclosporin A and aristolochic acid (to inhibit pore formation) significantly attenuated a reduction of the mitochondrial membrane potential, as well as signs of apoptosis such as DNA fragmentation, increased plasma membrane permeability, and chromatin condensation. Therefore, exposure to H2O2 caused the opening of permeability transition pores in the inner mitochondrial membrane. An essential role of cytosolic cytochrome c in the execution of apoptosis was demonstrated by its direct microinjection into the cytosol, thus bypassing the need for cytochrome c release from the mitochondrial intermembrane space. Microinjection of cytochrome c caused caspase-dependent apoptosis.  相似文献   

13.
Several mitochondrial proteins, such as cytochrome c, are directly involved in the pathway for caspase activation following induction of apoptosis. Release of mitochondrial cytochrome c early in apoptosis is rapid and almost complete. Microinjection of cytochrome c into resting cells induces apoptosis, but the amount needed approaches the total cellular content. These observations suggest that mitochondrial protein release is an all-or-nothing process inside the cell and not an amplifiable apoptotic signal. To test this hypothesis, laser micro-irradiation was used to rupture membranes of individual mitochondria within living rat neural cells. Laser micro-irradiation caused swelling, fragmentation, depolarization, and cytochrome c depletion in targeted mitochondria. These effects were explained by correlative electron microscopic analysis showing local rupture of outer and inner membranes at the site of irradiation. In all cases, there were no detectable changes in the structure, membrane potential, or cytochrome c content of neighboring, non-irradiated organelles. Furthermore, irradiation of up to 15% of the mitochondria in a cell did not induce apoptosis. The results from these laser micro-irradiation experiments prove that local release of mitochondrial proteins does not constitute an amplifiable apoptotic signal in resting neural cells.  相似文献   

14.
During apoptosis, the mitochondrial membrane potential (MMP) decreases, but it is not known how this relates to the apoptotic process. It was recently suggested that cytochrome c is compartmentalized in closed cristal regions and therefore, matrix remodeling is required to attain complete cytochrome c release from the mitochondria. In this work we show that, at the onset of apoptosis, changes in MMP control matrix remodeling prior to cytochrome c release. Early after growth factor withdrawal the MMP declines and the matrix condenses. Both phenomena are reversed by adding oxidizable substrates. In mitochondria isolated from healthy cells, matrix condensation can be induced by either denying oxidizable substrates or by protonophores that dissipate the membrane potential. Matrix remodeling to the condensed state results in cristal unfolding and exposes cytochrome c to the intermembrane space facilitating its release from the mitochondria during apoptosis. In contrast, when a transmembrane potential is generated due to either electron transport or a pH gradient formed by acidifying the medium, mitochondria maintain an orthodox configuration in which most cytochrome c is sequestered in the cristae and is resistant to release by agents that disrupt the mitochondrial outer membrane.  相似文献   

15.
Release of cytochrome c from the mitochondria plays an integral role in apoptosis; however, the mechanism by which cytochrome c is released remains one of the conundrums that has occupied the field. Recently, evidence has emerged that the commitment to death may be regulated downstream of cytochrome c release; therefore the mechanism of release must be subtle enough for the cell to recover from this event. In this review, we discuss the evidence that cytochrome c release is mediated by Bcl-2 family proteins in a process that involves only outer membrane permeability but leaves inner membrane energization, protein import function and the ultrastructure of mitochondria intact. Cell Death and Differentiation (2000) 7, 1192 - 1199.  相似文献   

16.
Zhao L  He F  Liu H  Zhu Y  Tian W  Gao P  He H  Yue W  Lei X  Ni B  Wang X  Jin H  Hao X  Lin J  Chen Q 《The Journal of biological chemistry》2012,287(2):1054-1065
Overwhelming evidence indicates that Bax and Bak are indispensable for mediating cytochrome c release from mitochondria during apoptosis. Here we report a Bax/Bak-independent mechanism of cytochrome c release and apoptosis. We identified a natural diterpenoid compound that induced apoptosis in bax/bak double knock-out murine embryonic fibroblasts and substantially reduced the tumor growth from these cells implanted in mice. Treatment with the compound significantly increased expression of Bim, which migrated to mitochondria, altering the conformation of and forming oligomers with resident Bcl-2 to induce cytochrome c release and caspase activation. Importantly, purified Bim and Bcl-2 proteins cooperated to permeabilize a model mitochondrial outer membrane; this was accompanied by oligomerization of these proteins and deep embedding of Bcl-2 in the membrane. Therefore, the diterpenoid compound induces a structural and functional conversion of Bcl-2 through Bim to permeabilize the mitochondrial outer membrane, thereby inducing apoptosis independently of Bax and Bak. Because Bcl-2 family proteins play important roles in cancer development and relapse, this novel cell death mechanism can be explored for developing more effective anticancer therapeutics.  相似文献   

17.
During apoptosis, an important pathway leading to caspase activation involves the release of cytochrome c from the intermembrane space of mitochondria. Using a cell-free system based on Xenopus egg extracts, we examined changes in the outer mitochondrial membrane accompanying cytochrome c efflux. The pro-apoptotic proteins, Bid and Bax, as well as factors present in Xenopus egg cytosol, each induced cytochrome c release when incubated with isolated mitochondria. These factors caused a permeabilization of the outer membrane that allowed the corelease of multiple intermembrane space proteins: cytochrome c, adenylate kinase and sulfite oxidase. The efflux process is thus nonspecific. None of the cytochrome c-releasing factors caused detectable mitochondrial swelling, arguing that matrix swelling is not required for outer membrane permeability in this system. Bid and Bax caused complete release of cytochrome c but only a limited permeabilization of the outer membrane, as measured by the accessibility of inner membrane-associated respiratory complexes III and IV to exogenously added cytochrome c. However, outer membrane permeability was strikingly increased by a macromolecular cytosolic factor, termed PEF (permeability enhancing factor). We hypothesize that PEF activity could help determine whether cells can recover from mitochondrial cytochrome c release.  相似文献   

18.
The BH3 domain is essential for the release of cytochrome c from mitochondria by pro-apoptotic Bcl-2 family proteins during apoptosis. This study tested the hypothesis that a Bax peptide that includes the BH3 domain can permeabilize the mitochondrial outer membrane and release cytochrome c in the absence of a permeability transition at the mitochondrial inner membrane. BH3 peptide (0.1-60 microm) released cytochrome c from mitochondria in the presence of physiological concentrations of ions in a cell type-selective manner, whereas a BH3 peptide with a single amino acid substitution was ineffective. The release of cytochrome c by BH3 peptide correlated with the presence of endogenous Bax at the mitochondria and its integral membrane insertion. Cytochrome c release was accompanied by adenylate kinase release, was not associated with mitochondrial swelling or substantial loss of electrical potential across the inner membrane, and was unaffected by inhibitors of the permeability transition pore. Cytochrome c release was, however, inhibited by Bcl-2. Although energy-coupled respiration was inhibited after the release of cytochrome c, mitochondria maintained membrane potential in the presence of ATP due to the reversal of the ATP synthase. Overall, results support the hypothesis that BH3 peptide releases cytochrome c by a Bax-dependent process that is independent of the mitochondrial permeability transition pore but regulated by Bcl-2.  相似文献   

19.
Bcl-2 family proteins regulate the release of proteins like cytochrome c from mitochondria during apoptosis. We used cell-free systems and ultimately a vesicular reconstitution from defined molecules to show that outer membrane permeabilization by Bcl-2 family proteins requires neither the mitochondrial matrix, the inner membrane, nor other proteins. Bid, or its BH3-domain peptide, activated monomeric Bax to produce membrane openings that allowed the passage of very large (2 megadalton) dextran molecules, explaining the translocation of large mitochondrial proteins during apoptosis. This process required cardiolipin and was inhibited by antiapoptotic Bcl-x(L). We conclude that mitochondrial protein release in apoptosis can be mediated by supramolecular openings in the outer mitochondrial membrane, promoted by BH3/Bax/lipid interaction and directly inhibited by Bcl-x(L).  相似文献   

20.
Mitochondria are double-membrane enclosed eukaryotic organelles with a central role in numerous cellular functions. The ultrastructure of mitochondria varies considerably between tissues, organisms, and the physiological state of cells. Alterations and remodeling of inner membrane structures are evident in numerous human disorders and during apoptosis. The inner membrane is composed of two subcompartments, the cristae membrane and the inner boundary membrane. Recent advances in electron tomography led to the current view that these membrane domains are connected by rather small tubular structures, termed crista junctions. They have been proposed to regulate the dynamic distribution of proteins and lipids as well as of soluble metabolites between individual mitochondrial subcompartments. One example is the release of cytochrome c upon induction of apoptosis. However, only little is known on the molecular mechanisms mediating the formation and maintenance of cristae and crista junctions. Here we review the current knowledge of the factors that determine cristae morphology and how the latter is linked to mitochondrial function. Further, we formulate several theoretical models which could account for the de novo formation of cristae as well as their propagation from existing cristae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号