首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-throughput screening of protein-protein and protein-peptide interactions is of high interest both for biotechnological and pharmacological applications. Here, we propose the use of the noncoded amino acids o-nitrotyrosine and p-iodophenylalanine as spectroscopic probes in combination with circular dichroism and fluorescence quenching techniques (i.e., collisional quenching and resonance energy transfer) as a means to determine the peptide orientation in complexes with SH3 domains. Proline-rich peptides bind SH3 modules in two alternative orientations, according to their sequence motifs, classified as class I and class II. The method was tested on an SH3 domain from a yeast myosin that is known to recognize specifically class I peptides. We exploited the fluorescence quenching effects induced by o-nitrotyrosine and p-iodophenylalanine on the fluorescence signal of a highly conserved Trp residue, which is the signature of SH3 domains and sits directly in the binding pocket. In particular, we studied how the introduction of the two probes at different positions of the peptide sequence (i.e., N-terminally or C-terminally) influences the spectroscopic properties of the complex. This approach provides clear-cut evidence of the orientation of the binding peptide in the SH3 pocket. The chemical strategy outlined here can be easily extended to other protein modules, known to bind linear sequence motifs in a highly directional manner.  相似文献   

2.
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.  相似文献   

3.
The actin filament-associated protein AFAP-110 forms a stable complex with activated variants of Src in chick embryo fibroblast cells. Stable complex formation requires the integrity of the Src SH2 and SH3 domains. In addition, AFAP-110 encodes two adjacent SH3 binding motifs and six candidate SH2 binding motifs. These data indicate that both SH2 and SH3 domains may work cooperatively to facilitate Src/AFAP-110 stable complex formation. As a test for this hypothesis, we sought to understand whether one or both SH3 binding motifs in AFAP-110 modulate interactions with the Src SH3 domain and if this interaction was required to present AFAP-110 for tyrosine phosphorylation by, and stable complex formation with, Src. A proline to alanine site-directed mutation in the amino terminal SH3 binding motif (SH3bm I) was sufficient to abrogate absorption of AFAP-110 with GST-SH3src. Co-expression of activated Src (pp60527F) with AFAP-110 in Cos-1 cells permit tyrosine phosphorylation of AFAP-110 a nd stable complex formation with pp60527F. However, co-expression of the SH3 null-binding mutant (AFAP71A) with pp60527F revealed a 2.7 fold decrease in steady-state levels of tyrosine phosphorylation, compared to AFAP-110. Although a lower but detectable level of AFAP71A was phosphorylated on tyrosine, AFAP71A could not be detected in stable complex with pp60527F, unlike AFAP-110. These data indicate that SH3 interactions facilitate presentation of AFAP-110 for tyrosine phosphorylation and are also required for stable complex formation with pp60527F. (Mol Cell Biochem 175: 243–252, 1997)  相似文献   

4.
Domain database is essential for domain property research. Eliminating redundant information in database query is very important for database quality. Here we report the manual construction of a non-redundant human SH2 domain database. There are 119 human SH2 domains in 110 SH2-containing proteins. Human SH2s were aligned with ClustalX, and a homologous tree was generated. In this tree, proteins with similar known function were classified into the same group. Some proteins in the same group have been reported to have similar binding motifs experimentally. The tree might provide clues about possible functions of hypothetical proteins for further experimental verification.  相似文献   

5.
A complete understanding of the thermodynamic determinants of binding between SH3 domains and proline-rich peptides is crucial to the development of rational strategies for designing ligands for these important domains. Recently we engineered a single-chain chimeric protein by fusing the α-spectrin Src homology region 3 (SH3) domain to the decapeptide APSYSPPPPP (p41). This chimera mimics the structural and energetic features of the interaction between SH3 domains and proline-rich peptides. Here we show that analysing the unfolding thermodynamics of single-point mutants of this chimeric fusion protein constitutes a very useful approach to deciphering the thermodynamics of SH3-ligand interactions. To this end, we investigated the contribution of each proline residue of the ligand sequence to the SH3-peptide interaction by producing six single Pro-Ala mutants of the chimeric protein and analysing their unfolding thermodynamics by differential scanning calorimetry (DSC). Structural analyses of the mutant chimeras by circular dichroism, fluorescence and NMR together with NMR-relaxation measurements indicate conformational flexibility at the binding interface, which is strongly affected by the different Pro-Ala mutations. An analysis of the DSC thermograms on the basis of a three-state unfolding model has allowed us to distinguish and separate the thermodynamic magnitudes of the interaction at the binding interface. The model assumes equilibrium between the “unbound” and “bound” states at the SH3-peptide binding interface. The resulting thermodynamic magnitudes classify the different proline residues according to their importance in the interaction as P2∼P7∼P10 > P9∼P6 > P8, which agrees well with Lim's model for the interaction between SH3 domains and proline-rich peptides. In addition, the thermodynamic signature of the interaction is the same as that usually found for this type of binding, with a strong enthalpy-entropy compensation for all the mutants. This compensation appears to derive from an increase in conformational flexibility concomitant to the weakening of the interactions at the binding interface. We conclude that our approach, based on DSC and site-directed mutagenesis analysis of chimeric fusion proteins, may serve as a suitable tool to analyse the energetics of weak biomolecular interactions such as those involving SH3 domains.  相似文献   

6.
Many important protein-protein interactions are mediated by peptide recognition modular domains, such as the Src homology 3 (SH3), SH2, PDZ, and WW domains. Characterizing the interaction interface of domain-peptide complexes and predicting binding specificity for modular domains are critical for deciphering protein-protein interaction networks. Here, we propose the use of an energetic decomposition analysis to characterize domain-peptide interactions and the molecular interaction energy components (MIECs), including van der Waals, electrostatic, and desolvation energy between residue pairs on the binding interface. We show a proof-of-concept study on the amphiphysin-1 SH3 domain interacting with its peptide ligands. The structures of the human amphiphysin-1 SH3 domain complexed with 884 peptides were first modeled using virtual mutagenesis and optimized by molecular mechanics (MM) minimization. Next, the MIECs between domain and peptide residues were computed using the MM/generalized Born decomposition analysis. We conducted two types of statistical analyses on the MIECs to demonstrate their usefulness for predicting binding affinities of peptides and for classifying peptides into binder and non-binder categories. First, combining partial least squares analysis and genetic algorithm, we fitted linear regression models between the MIECs and the peptide binding affinities on the training data set. These models were then used to predict binding affinities for peptides in the test data set; the predicted values have a correlation coefficient of 0.81 and an unsigned mean error of 0.39 compared with the experimentally measured ones. The partial least squares-genetic algorithm analysis on the MIECs revealed the critical interactions for the binding specificity of the amphiphysin-1 SH3 domain. Next, a support vector machine (SVM) was employed to build classification models based on the MIECs of peptides in the training set. A rigorous training-validation procedure was used to assess the performances of different kernel functions in SVM and different combinations of the MIECs. The best SVM classifier gave satisfactory predictions for the test set, indicated by average prediction accuracy rates of 78% and 91% for the binding and non-binding peptides, respectively. We also showed that the performance of our approach on both binding affinity prediction and binder/non-binder classification was superior to the performances of the conventional MM/Poisson-Boltzmann solvent-accessible surface area and MM/generalized Born solvent-accessible surface area calculations. Our study demonstrates that the analysis of the MIECs between peptides and the SH3 domain can successfully characterize the binding interface, and it provides a framework to derive integrated prediction models for different domain-peptide systems.  相似文献   

7.
Nebulin, a giant modular protein from muscle, is thought to act as a molecular ruler in sarcomere assembly. The C terminus of nebulin, located in the sarcomere Z-disk, comprises an SH3 domain, a module well known for its role in protein/protein interactions. SH3 domains are known to recognize proline-rich ligands, which have been classified as type I or type II, depending on their relative orientation with respect to the SH3 domain in the complex formed. Type I ligands are bound with their N terminus at the RT loop of the SH3 domain, while type II ligands are bound with their C terminus at the RT loop. Many SH3 domains can bind peptides of either class. Despite the potential importance of the SH3 domain for the function of nebulin as an integral part of a complex network of interactions, no in vivo partner has been identified so far. We have adopted an integrated approach, which combines bioinformatic tools with experimental validation to identify possible partners of nebulin SH3. Using the program SPOT, we performed an exhaustive screening of the muscle sequence databases. This search identified a number of potential nebulin SH3 partners, which were then tested experimentally for their binding affinity. Synthetic peptides were studied by both fluorescence and NMR spectroscopy. Our results show that nebulin SH3 domain binds selectively to type II peptides. The affinity for a type II peptide, 12 residues long, spanning the sequence of a stretch of titin known to colocalise with nebulin in the Z-disk is in the submicromolar range (0.7 microM). This affinity is among the highest found for SH3/peptide complexes, suggesting that the identified stretch could have significance in vivo. The strategy outlined here is of more general applicability and may provide a valuable tool to identify potential partners of SH3 domains and of other peptide-binding modules.  相似文献   

8.
SH3 domains are molecular-recognition modules that function by interacting with proteins containing sequences in polyproline II (PPII) conformation. The main limitation in designing short-ligand peptides to interact with these domains is the preservation of this helical arrangement, for which a high content of proline is needed. We have overcome this limitation by using a protein scaffold provided by the avian pancreatic polypeptide (APP), a natural hormone of 36 amino acid residues. The APP protein contains a PPII stretch packed against an alpha-helix. We have designed a structure in which some residues of the APP PPII helix are replaced by a sequence motif, named RP1, which interacts with the SH3 domain of the Abelson tyrosine kinase (Abl-SH3). This design, which we call APP-RP1, is folded and, as shown by circular dichroism, has a structural content similar to that of natural APP (APP-WT). The stability of both miniproteins has been compared by unfolding experiments; the designed APP-RP1 is almost 20 deg. C more stable than the wild-type and has a higher Gibbs energy function. This increase in stability has an entropic origin. Isothermal titration calorimetry and fluorescence spectroscopy show that the thermodynamics of the binding of the APP-RP1 molecule to Abl-SH3 is comparable to that of the shorter RP1 peptide. Furthermore, the mutation by Tyr of two proline residues in APP-RP1, which are essential for the binding of some linear peptides to Abl-SH3, demonstrates the effectiveness of the scaffold in enhancing the variability in the design of high-affinity and high-specificity ligands for any SH3 domain. The application of this strategy may help in the design of ligands for other polyproline-recognition domains such as WW, PX or EVH1, and even for the in vivo application of these miniproteins.  相似文献   

9.
10.
SH3 domains represent versatile scaffolds within eukaryotic cells by targeting proline-rich sequences within intracellular proteins. More recently, binding of SH3 domains to unusual peptide motifs, folded proteins or lipids has been reported. Here we show that the newly defined hSH3 domains of immune cell adapter proteins bind lipid membranes with distinct affinities. The interaction of the hSH3 domains of adhesion and degranulation promoting adapter protein (ADAP) and PRAM-1 (Promyelocytic-Retinoic acid receptor alpha target gene encoding an Adaptor Molecule-1), with phosphatidylcholine-containing liposomes is observed upon incorporation of phosphatidylserine (PS) or phosphoinositides (PIs) into the membrane bilayer. Mechanistically we show that stable association of the N-terminal, amphipathic helix with the beta-sheet scaffold favours lipid binding and that the interaction with PI(4,5)P(2)-containing liposomes is consistent with a single-site, non-cooperative binding mechanism. Functional investigations indicate that deletion of both amphipathic helices of the hSH3 domains reduces the ability of ADAP to enhance adhesion and migration in stimulated T cells.  相似文献   

11.
12.
We report here the NMR-derived structure of the binary complex formed by the interleukin-2 tyrosine kinase (Itk) Src homology 3 (SH3) and Src homology 2 (SH2) domains. The interaction is independent of both a phosphotyrosine motif and a proline-rich sequence, the classical targets of the SH2 and SH3 domains, respectively. The Itk SH3/SH2 structure reveals the molecular details of this nonclassical interaction and provides a clear picture for how the previously described prolyl cis/trans isomerization present in the Itk SH2 domain mediates SH3 binding. The higher-affinity cis SH2 conformer is preorganized to form a hydrophobic interface with the SH3 domain. The structure also provides insight into how autophosphorylation in the Itk SH3 domain might increase the affinity of the intermolecular SH3/SH2 interaction. Finally, we can compare this Itk complex with other examples of SH3 and SH2 domains engaging their ligands in a nonclassical manner. These small binding domains exhibit a surprising level of diversity in their binding repertoires.  相似文献   

13.
Hiipakka M  Saksela K 《FEBS letters》2007,581(9):1735-1741
Src-homology (SH3) domain belongs to a class of ubiquitous modular protein domains found in nature. SH3 domains have a conserved surface that recognises proline-rich peptides in ligand proteins, but additional contacts also contribute to binding. Using the SH3 domain of hematopoietic cell kinase as a test case, we show that SH3 binding properties can be profoundly altered by modifications within a hexapeptide sequence in the RT-loop region that is not involved in recognition of currently known consensus SH3 target peptides. These results highlight the role of non-conserved regions in SH3 target selection, and introduce a strategy that may be generally feasible for generating artificial SH3 domains with desired ligand binding properties.  相似文献   

14.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.  相似文献   

15.
Eukaryotic signal transduction involves the assembly of transient protein-protein complexes mediated by modular interaction domains. Specific Pro-rich sequences with the consensus core motif PxxP adopt the PPII helix conformation upon binding to SH3 domains. For short Pro-rich peptides, little or no ordered secondary structure is usually observed before binding interactions. The association of a Pro-rich peptide with the SH3 domain involves unfavorable binding entropy due to the loss of rotational freedom on forming the PPII helix. With the aim of stabilizing the PPII helix conformation in the Pro-rich HPK1 decapeptide PPPLPPKPKF (P2), a series of P2 analogues was prepared, in which specific Pro positions were alternatively occupied by 4(S)- or 4(R)-4-fluoro-L-proline. The interactions of these peptides with the SH3 domain of the HPK1-binding partner HS1 were quantitatively analyzed by the NILIA-CD approach. A CD thermal analysis of the P2 analogues was performed to assess their propensity to adopt the PPII helix conformation. Contrary to our expectations, the K(d) values of the analogues were lower than that of the parent peptide P2. These results clearly show that the induction of a stable PPII helix conformation in short Pro-rich peptides is not sufficient to increase their affinity toward the SH3 domain and that the effect of 4-fluoroproline strongly depends on the position of this residue in the sequence and the chirality of the substituent in the pyrrolidine ring.  相似文献   

16.
Proteins with Src homology 2 (SH2) domains play major roles in tyrosine kinase signaling. Structures of many SH2 domains have been studied, and the regions involved in their interactions with ligands have been elucidated. However, these analyses have been performed using short peptides consisting of phosphotyrosine followed by a few amino acids, which are described as the canonical recognition sites. Here, we report the solution structure of the SH2 domain of C-terminal Src kinase (Csk) in complex with a longer phosphopeptide from the Csk-binding protein (Cbp). This structure, together with biochemical experiments, revealed the existence of a novel binding region in addition to the canonical phosphotyrosine 314-binding site of Cbp. Mutational analysis of this second region in cells showed that both canonical and novel binding sites are required for tumor suppression through the Cbp-Csk interaction. Furthermore, the data indicate an allosteric connection between Cbp binding and Csk activation that arises from residues in the βB/βC loop of the SH2 domain.  相似文献   

17.
SH3 domains are small protein modules that are involved in protein-protein interactions in several essential metabolic pathways. The availability of the complete genome and the limited number of clearly identifiable SH3 domains make the yeast Saccharomyces cerevisae an ideal proteomic-based model system to investigate the structural rules dictating the SH3-mediated protein interactions and to develop new tools to assist these studies. In the present work, we have determined the solution structure of the SH3 domain from Myo3 and modeled by homology that of the highly homologous Myo5, two myosins implicated in actin polymerization. We have then implemented an integrated approach that makes use of experimental and computational methods to characterize their binding properties. While accommodating their targets in the classical groove, the two domains have selectivity in both orientation and sequence specificity of the target peptides. From our study, we propose a consensus sequence that may provide a useful guideline to identify new natural partners and suggest a strategy of more general applicability that may be of use in other structural proteomic studies.  相似文献   

18.
The core of the Abelson tyrosine kinase (c-Abl) is structurally similar to Src-family kinases where SH3 and SH2 domains pack against the backside of the kinase domain in the down-regulated conformation. Both kinase families depend upon intramolecular association of SH3 with the linker joining the SH2 and kinase domains for suppression of kinase activity. Hydrogen deuterium exchange (HX) and mass spectrometry (MS) were used to probe intramolecular interaction of the c-Abl SH3 domain with the linker in recombinant constructs lacking the kinase domain. Under physiological conditions, the c-Abl SH3 domain undergoes partial unfolding, which is stabilized by ligand binding, providing a unique assay for SH3:linker interaction in solution. Using this approach, we observed dynamic association of the SH3 domain with the linker in the absence of the kinase domain. Truncation of the linker before W254 completely prevented cis-interaction with SH3, while constructs containing amino acids past this point showed SH3:linker interactions. The observation that the Abl linker sequence exhibits SH3-binding activity in the absence of the kinase domain is unique to Abl and was not observed with Src-family kinases. These results suggest that SH3:linker interactions may have a more prominent role in Abl regulation than in Src kinases, where the down-regulated conformation is further stabilized by a second intramolecular interaction between the C-terminal tail and the SH2 domain.  相似文献   

19.
Phage-displayed peptide libraries have been used to identify specific ligands for peptide-binding domains that mediate intracellular protein-protein interactions. These studies have provided significant insights into the specificities of particular domains. For PDZ domains that recognize C-terminal sequences, the information has proven useful in identifying natural binding partners from genomic databases. For SH3 domains that recognize internal proline-rich motifs, the results of database searches with phage-derived ligands have been compared with the results of yeast-two-hybrid experiments to produce overlap networks that reliably predict natural protein-protein interactions. In addition, libraries of phage-displayed PDZ and SH3 domains have been used to identify the residues responsible for ligand recognition, and also to engineer domains with altered specificities.  相似文献   

20.
A substantial fraction of protein interactions in the cell is mediated by families of protein modules binding to relatively short linear peptides. Many of these interactions have a high dissociation constant and are therefore suitable for supporting the formation of dynamic complexes that are assembled and disassembled during signal transduction. Extensive work in the past decade has shown that, although member domains within a family have some degree of intrinsic peptide recognition specificity, the derived interaction networks display substantial promiscuity. We review here recent advances in the methods for deriving the portion of the protein network mediated by these domain families and discuss how specific biological outputs could emerge in vivo despite the observed promiscuity in peptide recognition in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号