首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Ear implants that contained 3 mg Norgestomet or vaginal pessaries that contained 40 or 45 mg fluorogestone acetate were used to induce estrus in dairy goats in three herds in May. Ear implants or vaginal pessaries were left in place for 11 d. Cloprostenol (50 mug) and PMSG (500 IU) were administered i.m. 24 h prior to removal of ear implants or vaginal pessaries. After removal of vaginal pessaries, onset of standing estrus occurred in 22 23 goats (96%) at 20 +/- 4.7 h, in 19 20 goats (95%) at 22 +/- 6.3 h, and in 16 16 goats (100%) at 19 +/- 1.2 h in Herds A, B and C, respectively. After removal of ear implants, onset of standing estrus occurred in 25 25 goats (100%) at 19 +/- 4.9 h, in 20 22 goats (91%) at 22 +/- 7.0 h, and in 15 15 goats (100%) at 18 +/- 2.2 h in Herds A, B and C, respectively. Does were bred by natural service in Herds A and B, and by artificial insemination 28 h after vaginal pessary or ear implant removal in Herd C. Pregnancy rates were determined 39 to 53 d post breeding by real-time ultrasound. Pregnancy rates in goats with vaginal pessaries were 32, 55 and 6%; and in goats with ear implants they were 56, 67 and 27% in Herds A, B and C, respectively. Problems encountered included poor libido in some bucks, abortions in undersized yearling does, and loss of ear implants by three does (not included in the data). Statistically there was no difference in pregnancy rates between goats receiving vaginal pessaries or ear implants (P>0.10).  相似文献   

2.
Peripheral levels of progesterone and estradiol 17beta were quantified in 27 cycling cows following administration of a single Hydron ear implant (G. D. Searle and Co.) containing 2, 4 or 6 mg norgestomet or controls which received no implant. Implants were inserted subcutaneously in the ear on day 15 of the estrous cycle (day of estrus = day 0) and removed 9 days later. The 4 mg (seven of seven cows) and 6 mg (six of six cows) implants suppressed estrus; however, three of eight cows in the 2 mg group exhibited estrus prior to implant removal. The 6 mg implant group had a significantly longer interval from implant removal to estrus than either the 2 or 4 mg group. Failure to detect differences in the rate at which progesterone declined indicated norgestomet treatment did not affect normal corpus luteum regression. Estradiol levels rose at a similar rate approaching estrus in all treatments. There was no indication of increased endogenous estradiol levels due to norgestomet treatment.  相似文献   

3.
《Theriogenology》1996,45(8):1569-1575
Two sources of gonadotropin, combined with norgestomet implants and cloprostenol, were compared to induce estrus in 137 lactating dairy goats during the period of transition from anestrus to estrus. Does received either reagent-grade PMSG or commercially available hCG/PMSG product labeled for use in swine. Of the does treated with hCG/PMSG, 63 of 70 (90%) became pregnant compared with 50 of 66 (76%) does treated with reagent-grade PMSG. The pregnancy rates were significantly associated with the source of gonadotropin (P = 0.047). No difference in estrus response or litter size was detected; however, more does in the PMSG group appeared to have an extended interval from implant removal to breeding than did the hCG/PMSG-treated does. The results of this study indicate that the hCG/PMSG combination product is a satisfactory source of PMSG for extra-label use with norgestomet implants and cloprostenol to synchronize estrus in transitional period does.  相似文献   

4.
In a 5-year study (1973-1977), 281 cycling beef heifers were treated with a 7-day norgestomet (SC21009) ear implant and an intramuscular injection of prostaglandin F(2alpha) (PGF(2alpha)) at the time of implant removal or 24 hr before implant removal. Percentages of heifers in estrus by 36, 48, 60, 72, and 120 hr after implant removal were 32.4, 52.7, 71.6, 80.1, and 93.2, respectively. Onset of estrus occurred an average of 49.8 +/- 4.7 hr after treatment. Percentages of heifers in estrus 36 hr after treatment were 5.7 and 51.7 for those with a corpus luteum and those without a corpus luteum (or determined regressing by palpation) at implant removal, respectively. When PGF(2alpha) was injected 24 hr before implant removal, 55% of the heifers were in estrus by 36 hr after implant removal compared to 30% when PGF(2alpha) was injected at the time of implant removal; however, by 60 hr after implant removal the difference was 76% vs. 71%. First-service conception rates for synchronized and nonsynchronized heifers were 62.2% and 59.6%, respectively. During 1976 and 1977 heifers were checked for estrus every 4 hr and inseminated 2, 6, 10, 14, 18, 22, 26, or 30 hr after first detected to be in standing estrus. Conception rate was not significantly affected by time of insemination but tended to be higher for heifers bred 26 and 30 hr after first being detected in standing estrus (78.9% and 70.0% vs. average 59.2%). Treatment with a 7-day norgestomet implant plus a single injection of PGF(2alpha) 24 hr before or at implant removal appears to be a practical technique for synchronizing estrus in cycling heifers without affecting conception.  相似文献   

5.
Twenty mature, mixed-breed, seasonally anestrous female goats were used to study the effects of luteinizing hormone releasing hormone (LHRH) on ovulation rate, fertility, and blood progesterone levels following norgestomet-induced estrus and follicle stimulating hormone (FSH) treatments. Each goat received 6 mg norgestomet by subcutaneous (sc) implant and 3 mg intramuscularly, along with an intramuscular (im) injection of 5 mg estradiol valerate. Four injections of FSH were given for 2 d in divided doses of 10, 10, 5 and 5 mg im every 12 h, starting at 24 h before implant removal. The goats were randomly assigned to 1 of 2 equal treatment groups, and were treated with 2 intravenous (iv) injections of either 0.9% saline (control) or 300 ug LHRH at 24 and 48 h after the removal of the implants. All the goats exhibited estrus within 24 or 36 h of implant withdrawal and were mated to bucks of proven fertility. At laparotomy on Day 7 or 8 after the removal of the implants, the mean number of unovulated follicles was higher (P<0.05) in Group I than in Group II. The mean number of corpora lutea (ovulation rate), the total number of embryos and the number of normal embryos recovered were higher (P<0.05) in LHRH-treated does than in the controls. Treatment with LHRH resulted in 72.14% fertility (mean number of CL = 14) as compared with the controls with 64.29% fertility (mean number of CL = 2.8). The embryos obtained from goats in Group II were of more uniform developmental age regardless of the day of embryo collection, as compared with those of the controls. Plasma progesterone levels were significantly increased on Days 4 to 6 in both treatment groups. The results of this study have demonstrated that the FSH and LHRH treatment regimen increased follicular development, ovulation rate and blood progesterone levels in norgestomet-treated anestrous goats. Moreover, LHRH treatment enhanced fertility, and improved embryo quality as indicated by the significantly higher total number of embryos as well as the higher (P<0.05) number of normal recoverable embryos.  相似文献   

6.
Treatments with progestin to synchronize the bovine estrous cycle in the absence of the corpus luteum, induces persistence of a dominant follicle and a reduction of fertility at doses commonly utilized. The objective of the present research was to induce a new wave of ovarian follicular development in heifers in which stage of the estrous cycle was synchronized with norgestomet. Holstein heifers (n=30) were used, in which estrus was synchronized using two doses of PGF2alpha i.m. (25 mg each) 11 days apart. Six days after estrus (day 0=day of estrus) heifers received a norgestomet implant (6 mg of norgestomet). On day 12, heifers were injected with 25 mg of PGF2alpha i.m. and assigned to treatments (T1 to T4) as follows: treatment 1, heifers received a second norgestomet implant (T1: N+N, n=6), treatment 2, received 100 microg of GnRH i.m. (T2: N+GnRH, n=6), treatment 3, 200 mg of progesterone i.m. (T3: N+P4, n=6), treatment 4, control treatment with saline solution i.m. (T4: N+SS); in the four treatments (T1 to T4) implants were removed on day 14. For treatment 5, heifers received 100 microg of GnRH i.m. on day 9 and 25 mg of PGF2alpha i.m. (T5: N+GnRH+PGF2alpha) at the time of implant removal (day 16). Ovarian evaluations using ultrasonographic techniques were performed every 48 h from days 3 to 11 and every 24 h from days 11 to 21. Blood samples were collected every 48 h to analyze for progesterone concentration. A new wave of ovarian follicular development was induced in 3/6, 6/6, 3/6, 1/6 and 6/6, and onset of estrus in 6/6, 0/6, 6/6, 6/6 and 6/6 for T1, T2, T3, T4 and T5, respectively. Heifers from T1, T3 and T4 that ovulated from a persistent follicle, showed estrus 37.5 +/- 12.10 h after implant removal and heifers that developed a new wave of ovarian follicular development showed it at 120.28 +/- 22.81 h (P<0.01). Ovulation occurred at 5.92 +/- 1.72 and 2.22 +/- 1.00 days (P<0.01), respectively. Progesterone concentration was <1 ng/ml from days 7 to 15 in T1, T2 and T4; for T3 progesterone concentration was 2.25 +/- 0.50 ng/ml on day 13 and decreased on day 15 to 0.34 +/- 0.12 ng/ml (P<0.01). For T5, progesterone concentration was 1.66 +/- 0.58 ng/ml on day 15. The more desirable results were obtained with T5, in which 100% of heifers had a new wave of ovarian follicular development induced, with onset of estrus and ovulation synchronized in a short time period.  相似文献   

7.
The superovulatory response of goats treated with purified pFSH supplemented with 30, 40 or 50% pLH was compared. Sixty-four Boer goat does were synchronized by progestagen-containing ear implant, randomly allotted to 3 groups and, beginning 2 d before implant removal, treated with purified pFSH supplemented with 30, 40 or 50% pLH. Each animal received 16 Armour Units of pFSH administered in 6 descending doses at 12-h intervals. Along with the last 2 injections, the does received 5 mg PGF(2alpha). Embryos were flushed either surgically or after slaughter on Day 5 or 6 after the last day of standing estrus. The percentage of animals responding to treatment was not different among groups treated with pFSH supplemented with 30, 40 or 50% pLH (76, 71 and 63%, respectively). The corresponding data for number of ovulations was 11.3 +/- 1.6, 16.3 +/- 1.8 and 16.4 +/- 2.6, for number of ova and embryos recovered 8.1 +/- 1.9, 12.0 +/- 1.5 and 13.5 +/- 2.9 and for number of transferable embryos 6.6 +/- 1.9, 9.1 +/- 1.5 and 7.1 +/- 2.1 (x +/- SEM). Results confirm the earlier finding of a good response of goats to pFSH preparations with a high FSH:LH ratio, and, although group differences were statistically nonsignificant (P > 0.05), they suggest that supplementation with approximately 40% pLH may be close to the optimum.  相似文献   

8.
Three experiments evaluated the effects of estradiol valerate (EV) on ovarian follicular and CL dynamics, intervals to estrus and ovulation, and superovulatory response in cattle. Experiment 1 compared the efficacy of two norgestomet ear implants (Crestar and Syncro-Mate B; SMB) for 9 d (with PGF at implant removal), combined with either 5 mg estradiol-17beta and 100 mg progesterone (EP) or 5 mg EV and 3mg norgestomet (EN) im at the time of implant insertion on CL diameter and follicular wave dynamics. Ovaries were monitored by ultrasonography. There was no effect of norgestomet implant. Diameter of the CL decreased following EN treatment (P < 0.01). Mean (+/- S.D.) day of follicular wave emergence (FWE) was earlier (P < 0.0001) and less variable (P < 0.0001) in EP- (3.6 +/- 0.5 d) than in EN- (5.7 +/- 1.5 d) treated heifers. Intervals from implant removal to estrus (P < 0.001) and ovulation (P < 0.01) were shorter in EN- (45.7 +/- 11.7 and 74.3 +/- 12.6 h, respectively) than in EP- (56.4 +/- 14.1 and 83.3 +/- 17.0 h, respectively) treated heifers. Experiment 2 compared the efficacy of EP versus EN in synchronizing FWE for superovulation in SMB-implanted cows. At random stages of the estrous cycle, Holstein cows (n = 78) received two SMB implants (Day 0) and were randomly assigned to receive EN on Day 0 or EP on Day 1. Folltropin-V treatments were initiated on the evening of Day 5, with PGF in the morning and evening of Day 8, when SMB were removed. Cows were inseminated after the onset of estrus and embryos were recovered 7 d later. Non-lactating cows had more CL (16.7 +/- 11.3 versus 8.3 +/- 4.9) and total ova/embryos (14.7 +/- 9.5 versus 7.9 +/- 4.6) than lactating cows (P < 0.05). EP-treated cows tended (P = 0.09) to yield more transferable embryos (5.6 +/- 5.2) than EN-treated cows (4.0 +/- 3.7). Experiment 3 compared the effect of dose of EV on ovarian follicle and CL growth profiles and synchrony of estrus and ovulation in CIDR-treated beef cows (n = 43). At random stages of the estrous cycle (Day 0), cows received a CIDR and no further treatment (Control), or an injection of 1, 2, or 5 mg im of EV. On Day 7, CIDR were removed and cows received PGF. Follicular wave emergence occurred within 7 d in 7/10 Control cows and 31/32 EV-treated cows (P < 0.05). In responding cows, interval from treatment to FWE was longer (P < 0.05) in those treated with 5 mg EV (4.8 +/- 1.2 d) than in those treated with 1 mg (3.2 +/- 0.9 d) or 2 mg (3.4 +/- 0.8 d) EV, while Control cows were intermediate (3.8 +/- 2.0 d). Diameter of the dominant follicle was smaller (P < 0.05) at CIDR removal and tended (P = 0.08) to be smaller just prior to ovulation in the 5 mg EV group (8.5 +/- 2.2 and 13.2 +/- 0.6 mm, respectively) than in the Control (11.8 +/- 4.6 and 15.5 +/- 2.9 mm, respectively) or 1mg EV (11.7 +/- 2.5 and 15.1 +/- 2.2 mm, respectively) groups, with the 2mg EV group (10.7 +/- 1.5 and 14.3 +/- 1.7 mm, respectively) intermediate. Diameter of the dominant follicle at CIDR removal was less variable (P < 0.01) in the 2 and 5mg EV groups than in the Control group, and intermediate in the 1mg EV group. In summary, treatment with 5mg EV resulted in a longer and more variable interval to follicular wave emergence than treatment with 5mg estradiol-17beta, which affected preovulatory dominant follicle size following progestin removal, and may have also affected superstimulatory response in Holstein cows. Additionally, 5 mg EV appeared to induce luteolysis in heifers, reducing the interval to ovulation following norgestomet removal. Conversely, intervals to, and synchrony of, follicular wave emergence, estrus and ovulation following treatment with 1 or 2 mg EV suggested that reduced doses of EV may be more useful for the synchronization of follicular wave emergence in progestogen-treated cattle.  相似文献   

9.
A series of experiments was conducted to determine why ovariectomized heifers exhibit estrus after they are treated with the estrus synchronization product, Syncro-Mate B(*) (SMB). In Experiment 1, 23 of 40 (58%) ovariectomized heifers exhibited estrus after treatment with SMB. The mean concentration of estradiol-17beta (E(2)) in serum was lower (P < 0.001) before treatment than after implant removal in ovariectomized heifers treated with SMB. Six of 10 heifers from which serum was collected to determine concentrations of LH exhibited estrus and 5 of 6 had a surge of LH in serum after implant removal. In Experiment 2, when no estradiol valerate (EV) was given or when the norgestomet implant period was extended from 9 to 18 d, no heifer exhibited estrus after implant removal. The mean concentration of E(2) for 3 d after implant removal was lower (P < 0.001) in ovariectomized heifers with implants for 18 d versus those with implants for 9 d and was also lower (P < 0.001) in ovariectomized heifers treated only with norgestomet compared with those receiving the standard SMB treatment. When estradiol-17beta was substituted for EV in the SMB treatment, serum E(2) was lower (P < 0.001) after implant removal than in heifers receiving the standard SMB treatment. Experiment 3 demonstrated that combining a norgestomet implant or implant plus a 3-mg injection of norgestomet with EV did not alter concentrations of E(2) in serum on the days when synchronized estrus would be expected following SMB treatment. The results indicate that the SMB-induced estrus in ovariectomized heifers is dependent upon EV in the SMB treatment. Apparently, EV elevates the concentration of E(2) in serum, and the E(2) remains sufficiently high to induce estrus after implant removal.  相似文献   

10.
Eleven ovariectomized Hereford x Simmental cows and 10 ovariectomized crossbred heifers (primarily Angus and Hereford) were given the Syncro-Mate B (SMB) estrous synchronization treatment. The SMB treatment consisted of a 2 ml i.m. injection containing 5 mg of estradiol valerate and 3 mg of norgestomet plus a hydron ear implant containing 6 mg of norgestomet. The ear implant was removed 9 d later. Cows and heifers were considered in estrus only if they stood for mounting by a herdmate or a bull. Observations for estrus were made four or six times each day for 3 d after implant removal. The 21 animals were used in eight trials. Each trial involved 9 or 11 cows or 5 or 10 heifers. Four days to three weeks elapsed between implant removal and implant insertion for the next trial. No ovariectomized cow or heifer was observed in estrus for 21 d before treatment with SMB. In the eight trials, 3 of 9, 7 of 9 and 6 of 11 cows exhibited estrus, whereas 5 of 10, 1 of 5, 3 of 5, 3 of 5 and 5 of 5 heifers exhibited estrus after treatment. When data were pooled, 16 of 29 (55.2%) cows and 17 of 30 (56.7%) heifers exhibited estrus after treatment. Our data indicate that the SMB treatment can induce estrus in cows and heifers, independently of the ovaries.  相似文献   

11.
Follicular development and ovulation were examined in superovulated Nubian and Nubian-cross dairy goats following prostaglandin F(2alpha) (PGF(2alpha)) and/or gonadotropin releasing hormone (GnRH) treatment. Estrus was synchronized with Synchromate-B((R)) implants. Superovulation was induced with follicle stimulating hormone (FSH) and augmented with GnRH and/or PGF(2alpha). The PGF(2alpha) treatment was administered on Day 2 of superovulation. Implants were removed from all goats on Day 3 of superovulation. The GnRH treatment was administered 24 h after implant removal. All does were exposed to fertile males for 48 h at the time of GnRH injection. Surgical embryo recovery and ovarian response evaluation were conducted 64 to 78.5 h after implant removal. The number of ovulations was higher with GnRH treatment (18.5 +/- 7; x +/- SEM) than that in the controls (5.3 +/- 4.1; P < 0.05). There were fewer follicles in the GnRH-treated does than in the untreated does (10.9 +/- 2.9 vs 22.1 +/- 3.2; P < 0.05). The number of follicles smaller than 4 mm in diameter (5.8 +/- 0.8) did not differ between treatments. The GnRH-treated does had fewer 4- to 8-mm follicles (4.2 +/- 2.0 vs 9.1 +/- 1.6; P < 0.05) and fewer follicles larger than 8 mm (0.7 +/- 1.4 vs 7.3 +/- 1.6; P < 0.01) than the controls. Predicted times for 1- and 2-cell embryo recoveries were 68.5 and 73.7 h following implant removal, respectively. This study demonstrates that GnRH is an effective supplement used with FSH superovulation regimens in dairy goats. Moreover, GnRH provides for enhanced early embryo collection for DNA microinjection studies.  相似文献   

12.
The use of exogenous progestagens for estrus synchronization in cattle can result in a persistent dominant follicle which is associated with reduced fertility. We examined whether the LHRH agonist, deslorelin, would prevent the formation of a persistent follicle in heifers synchronized with norgestomet. The estrous cycles of heifers were synchronized with cloprostenol, and on Day 7 of the ensuing cycle the heifers received one of the following treatments for 10 d: Group C (n = 5), untreated control; Group N (n = 6), injection of a luteolytic dose of cloprostenol on Days 7 and 8 and implant of norgestomet from Day 7 to Day 17 (i.e. typical 10-day norgestomet implant period); Group D (n = 6), injection of cloprostenol on Days 7 and 8 and implants of deslorelin from Day 7 to Day 17; Group ND (n = 6), injections of cloprostenol and both norgestomet and deslorelin implants as above. Follicle growth was monitored using ultrasonography. Group-N heifers showed continued follicle growth and had larger follicles on Day 17 of the cycle than Group-C heifers (16.8 +/- 1.6 and 10.4 +/- 1.6 mm). Follicle growth for Group-D and ND heifers was similar and variable, and seemed to depend on follicle status at the initiation of treatment. Heifers with follicles of 5 to 10 mm (n = 9) in diameter either showed no follicle growth (2 9 ) or developed large follicles (7 9 ), while heifers with follicles approximately 12 mm (n = 3) in diameter showed follicle atresia with no further significant growth. On Day 17, size of the largest follicle was similar for Group-ND (14.3 +/- 2.9) and Group-D (16.8 +/- 1.6) heifers. Heifers in Group N showed estrous behavior 1.8 +/- 0.2 d after treatment, whereas heifers in Groups D and ND did not show estrus for 2 to 4 wk. The results show that combined treatment with progestagen and an LHRH agonist does not consistently prevent the development of a persistent dominant follicle and that return to estrus can be delayed after treatment with an LHRH agonist.  相似文献   

13.
The objective of this research was to determine the effect of sterile service on estrus duration in multiparous and nulliparous dairy goats. Twenty Nubian goats (10 multiparous and 10 nulliparous) were randomly assigned to of 4 treatment groups (n = 5 animals per group). Group MNS, multiparous without service; Group MS, multiparous with service; Group NNS, nulliparous without service and Group NS, nulliparous with service. Estrus was synchronized by utilization of fluorogestone acetate intravaginal pessaries (40 mg.) over a 12-day period plus 250 IU, i.m. of pregnant mare serum gonadotropin (PMSG) at pessary removal. Estrus was detected with the aid of a vasectomized buck for 5 days after pessary removal for 6-hour intervals (0600, 1200, 1800 and 2400 hours). In the groups that were not serviced the teaser was equipped with an apron and was only allowed to mount. In the serviced groups, the teaser was permitted to mount and service each female on 2 occasions during the first 12 hours of estrus. Estrus initiation for Groups NNS, NS, MNS and MS were (mean +/- SD) 61.5 +/- 29.5, 61.2 +/- 35.4, 63.0 +/- 22.2 and 69.6 +/- 32.5 hours, respectively (P>0.05). Estrus duration for the same groups were (mean +/- SD) 42.0 +/- 12.0, 30.0 +/- 6.0, 42.0 +/- 7.3 and 28.8 +/- 10.7 hours, respectively. These results show that estrus duration was shortened by serving (P<0.01), and that there were no differences between multiparous and nulliparous goats with or without serving (P>0.05). It is concluded that estrus duration in goats is shortened by serving and that no differences in duration exist between multiparous and nulliparous.  相似文献   

14.
The present study evaluated the effect of the type of norgestomet ear implant (new vs. used) on the ovarian follicular response (experiment 1) and pregnancy per artificial insemination (AI) (P/AI; experiment 2) of beef heifers subjected to an estradiol plus progestin timed artificial insemination (TAI) program. In experiment 1, 57 cyclic beef heifers were randomly assigned to one of two groups according to the type (new or previously used for 9 days) of norgestomet ear (NORG) implant. At the time of NORG implant insertion, the heifers were treated with 2 mg of intramuscular estradiol benzoate. Eight days later, the NORG implants were removed, and the heifers received an intramuscular administration of 150 μg of d-cloprostenol, 300 IU of equine chorionic gonadotropin, and 0.5 mg of estradiol cypionate. The heifers had their ovaries scanned every 12 hours from the time of NORG implant removal to 96 hours after verifying the occurrence and timing of ovulation. No difference (P = 0.89) was observed in the ovulation rates between the two treatments (new = 80.0%; 24/30 vs. used = 81.5%; 22/27). However, the heifers treated with a used NORG implant had (P = 0.04) higher proportion (36.4%; 8/22) of early ovulation (between 36 and 48 hours after NORG implant removal) compared with the heifers treated with a new NORG implant (8.3%; 2/24). In experiment 2, at the beginning of the synchronization protocol, 416 beef heifers were randomly assigned into two groups, as described in the experiment 1. Two days after the NORG implant removal, the heifers were reassigned to be inseminated at 48 or 54 hours after NORG implant removal. There was an interaction (P = 0.03) between the type of NORG implant and the timing of TAI on P/AI. The timing of insemination only had an effect (P = 0.02) on the P/AI when the heifers were treated with a used NORG implant [(TAI 54 hours = 41.9% (44/105) vs. TAI 48 hours = 58.6% (58/99)]. In conclusion, beef heifers synchronized with a used NORG implant plus estradiol exhibited a higher proportion of earlier ovulations, and TAI in these heifers should be performed 48 hours after removal of used NORG implants.  相似文献   

15.
A new protocol for superovulating cattle which allows for control of the timing of ovulation after superstimulation with FSH was developed. The preovulatory LH surge was blocked with the GnRH agonist deslorelin, and ovulation was induced by injection of LH. In Experiment 1, heifers (3-yr-old) were assigned to a control group (Group 1A, n = 4) or a group with deslorelin implants (Group 1B, n = 5). On Day -7, heifers in Group 1A received a progestagen CIDR-B((R))device, while heifers in Group 1B received a CIDR-B((R))device + deslorelin implants. Both groups were superstimulated with twice daily injections of FSH (Folltropin((R))-V): Day 0, 40 mg (80 mg total dose on Day 0); Day 1, 30 mg; Day 2, 20 mg; Day 3, 10 mg. On Day 2, heifers were given PGF (a.m.) and CIDR-B((R)) devices were removed (p.m.). Three heifers in Group 1A had a LH surge and ovulated, whereas neither of these events occurred in Group 1B (with deslorelin implants) heifers. In Experiment 2, heifers (3-yr-old) were assigned to 1 of 4 equal groups (n = 6). On Day -7, heifers in Group 2A received a norgestomet implant, while heifers in Groups 2B, 2C and 2D received norgestomet + deslorelin implants. Heifers were superstimulated with FSH starting on Day 0 as in Experiment 1. On Day 2, heifers were given PGF (a.m.) and norgestomet implants were removed (p.m.). Heifers in Groups 2B to 2D were given 25 mg LH (Lutropin((R))): Group 2B, Day 4 (a.m.); Group 2C, Day 4 (p.m.); Group 2D, Day 5 (a.m.). Heifers in Group 2A were inseminated at estrus and 12 and 24 h later, while heifers in Groups 2B to 2D were inseminated at the time of respective LH injection and 12 and 24 h later. Injection of LH induced ovulation in heifers in Groups 2B to 2D. Heifers in Group 2C had similar total ova and embryos (15.2 +/- 1.4) as heifers in Group 2A (11.0 +/- 2.8) but greater (P < 0.05) numbers than heifers in Group 2B (7.0 +/- 2.3) and Group 2D (6.3 +/- 2.0). The number of transferable embryos was similar for heifers in Group 2A (5.8 +/- 1.8) and Group 2C (7.3 +/- 2.1) but lower (P < 0.05) for heifers in Group 2B (1.2 +/- 0.8) and Group 2D (1.3 +/- 1.0). The new GnRH agonist-LH protocol does not require observation of estrus, and induces ovulation in superstimulated heifers that would not have an endogenous LH surge.  相似文献   

16.
Forty-five nonpregnant, nonlactating, Angus and Brangus cows were utilized to determine how long a Norgestomet ear implant would inhibit estrus when administered at various stages of an estrous cycle. All cows completed a nontreated estrous cycle to ensure normal cyclicity. At the second observed estrus (estrus = Day 1), cows were randomly allotted to be treated at metestrus (Day 3 or Day 4, n = 15); at diestrus (Day 9 or Day 10, n = 14); or at proestrus (Day 15 or Day 16, n = 16). All cows received a 2-ml intramuscular injection of 3 mg of Norgestomet accompanied by a 6-mg Norgestomet ear implant, which remained in situ for 21 days, or until individual cows were observed in estrus. Estrus was inhibited for a mean (+/- SEM) of 18.7 +/- 0.7, 19.9 +/- 0.8, and 17.0 +/- 0.8 days, respectively, when cows were treated at metestrus, diestrus, and proestrus (metestrus and diestrus vs proestrus; P < 0.05). Estrus was inhibited for an entire 21-day implantation period in 27, 50, and 38% of cows treated at metestrus, diestrus, and proestrus, respectively (P > 0.10). Norgestomet inhibited estrus in all cows for 11, 17, and 11 days after implantation when treatment was initiated at metestrus, diestrus, and proestrus, respectively (P > 0.10). These data indicate that a 6-mg Norgestomet ear implant effectively inhibits estrus in all cows for a maximum of 11 days, with some cows exhibiting estrus by Day 12 with the Norgestomet implant in situ.  相似文献   

17.
The effect of sterile service on estrus duration, fertility and prolificacy in artificially inseminated dairy goats during breeding season was studied. Nubian does (n=126) were divided into 2 equal groups: service and control. Estrus was synchronized with intravaginal sponges containing either fluorgestone acetate (FGA; 40 mg) or medroxiprogesterone acetate (MAP; 60 mg) for 12 or 14 d, respectively. Two vasectomized teaser bucks were used to detect estrus at 6-h intervals for 5 d after sponge removal (0600, 1200, 1800 and 2400 h). The teasers were fitted with aprons and permitted to mount all does in both groups, but to penetrate only the service does within the first 12 h of estrus. Does in both groups were inseminated twice at 12 and 24 h after estrus was first detected, using 1 straw per insemination containing 200 million of cooled spermatozoa from 1 buck. The semen was placed in mid-cervix. Estrus duration for the service and control does was (mean +/- SD) 29.4 +/- 6.5 and 41.8 +/- 9.6 h, respectively. Fertility for the service does was 73.7% (46/63); for control does it was 58.7% (37/63). Prolificacy was 2.1 (96/46) and 2.0 (74/37) for service and control does, respectively. Estrus duration (P<0.001) and fertility (P<0.05) differed between the service and control group, but prolificacy was similar (P>0.05). It is concluded that sterile service reduces the duration of estrus and increases fertility in artificially inseminated dairy goats.  相似文献   

18.
Field trials were designed to evaluate use of norgestomet treatment to induce ovulatory estrus in non-cycling buffalo cows and heifers during low breeding season. Twenty-five buffalo cows and 50 heifers under village management were given a 9-day treatment with a polymer implant containing 6 mg norgestomet with IM injections of 5 mg estradiol valerate + 3 mg norgestomet at the time of implantation and 600 IU PMSG when the implant was removed. Fifty animals served as controls without any treatment. Seventy-four treated animals showed estrus during the period between 36 to 80 hours after removal of the implant. Twenty-five buffalo cows and 40 heifers that could be further followed up were inseminated twice at 8-hour intervals, 12 hrs after induction of estrus with chilled semen by recto-vaginal method. Of these, 15 (23.1%) conceived, 9 (36%) among buffalo cows and 6 (15%) among heifers. Fourteen buffalo cows and 30 heifers that did not conceive manifested cyclic estrus at an interval of 22.4 and 20.6 days. The conception rate in the cyclic estrus was 57% and 23.3%, respectively, for buffalo cows and heifers. The overall conception rate over two inseminations was 46.2%, 68% in buffalo cows and 32.5% in heifers. In the control group, five (10%) showed spontaneous estrus and two (40%) conceived during the period of the experiment.  相似文献   

19.
Fifty-five heifers were synchronized with norgestomet and estradiol valerate and artificially inseminated approximately 48 h after the removal of norgestomet implants. Ten days after Al, 15 of the heifers were ovariectomized and then two 15 mg norgestomet/silicone implants were implanted subcutaneously on the convex surface of the ear. The norgestomet/silicone implants were changed every 55 +/-4 d (mean range) thereafter, and the last set of implants was removed 273 d after Al. At 44 d after Al, 65% (26/40) of the control heifers and 53% (8/1 5) of the ovariectomized heifers with norgestomet implants were pregnant (P > 0.10). Two pregnancies were lost in ovariectomized heifers treated with norgestomet (44 to 96 d after Al) and a third pregnancy failed in a heifer that lost 1 of 2 implants 65 to 96 d after Al. Ninety-six days after Al implants were removed from 2 pregnant ovariectomized heifers with norgestomet implants. These 2 heifers were open at 116 d after Al. All 3 ovariectomized heifers with norgestomet implants pregnant at 273 d after Al calved an average of 41 h after the removal of the last set of norgestomet/silicone implants. Dystocia (P < 0.05), retention of fetal membranes (P < 0.01), and calf mortality (P < 0.01) were higher for the ovariectomized heifers with norgestomet implants than for the control heifers.  相似文献   

20.
Romano JE 《Theriogenology》1994,41(6):1273-1277
The object of this research was to study the effect of sterile service number on estrus duration in dairy goats. Twenty-four Nubian goats (20 nulliparous and 4 multiparous) were randomly assigned to 1 of 4 treatment groups (n = 6 animals per group). The following Groups were formed: no service (GS-0); 1 service (GS-1); 2 services (GS-2); 3 services (GS-3). Estrus was synchronized by using fluorogestone acetate intravaginal pessaries (40 mg) over a 12-d period plus 400 IU im pregnant mare serum gonadotropin (PMSG) at pessary removal. Estrus was detected by using a vasectomized buck at 6-h intervals over 5 d after pessary removal (at 0600, 1200, 1800 and 2400 h). In the GS-0 group the teaser was outfitted with an apron and was permitted to mount. In the GS-1, GS-2 and GS-3 groups, the teaser was permitted to mount and service 1, 2 and 3 times, respectively, within the first 12 h after initiation of estrus. The duration of estrus for the 4 groups (GS-0, GS-1, GS-2 and GS-3) was (mean +/- SD) 41.0 +/- 5.9, 24.0 +/- 5.4, 22.0 +/- 4.9 and 22.0 +/- 7.2 h, respectively. These results show differences between the serviced groups and the nonserviced group (P<0.01), but they fail to show differences among the serviced groups (P>0.05). It is concluded that sterile service shortens estrus duration and that service number (1, 2 or 3) does not affect estrus duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号