首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Specific chromatin characteristics, especially the modification status of the core histone proteins, are associated with active and inactive genes. There is growing evidence that genes that respond to environmental or developmental signals may possess distinct chromatin marks. Using a T cell model and both genome-wide and gene-focused approaches, we examined the chromatin characteristics of genes that respond to T cell activation.

Results

To facilitate comparison of genes with similar basal expression levels, we used expression-profiling data to bin genes according to their basal expression levels. We found that inducible genes in the lower basal expression bins, especially rapidly induced primary response genes, were more likely than their non-responsive counterparts to display the histone modifications of active genes, have RNA polymerase II (Pol II) at their promoters and show evidence of ongoing basal elongation. There was little or no evidence for the presence of active chromatin marks in the absence of promoter Pol II on these inducible genes. In addition, we identified a subgroup of genes with active promoter chromatin marks and promoter Pol II but no evidence of elongation. Following T cell activation, we find little evidence for a major shift in the active chromatin signature around inducible gene promoters but many genes recruit more Pol II and show increased evidence of elongation.

Conclusions

These results suggest that the majority of inducible genes are primed for activation by having an active chromatin signature and promoter Pol II with or without ongoing elongation.  相似文献   

2.

Background

Specific chromatin characteristics, especially the modification status of the core histone proteins, are associated with active and inactive genes. There is growing evidence that genes that respond to environmental or developmental signals may possess distinct chromatin marks. Using a T cell model and both genome-wide and gene-focused approaches, we examined the chromatin characteristics of genes that respond to T cell activation.

Results

To facilitate comparison of genes with similar basal expression levels, we used expression-profiling data to bin genes according to their basal expression levels. We found that inducible genes in the lower basal expression bins, especially rapidly induced primary response genes, were more likely than their non-responsive counterparts to display the histone modifications of active genes, have RNA polymerase II (Pol II) at their promoters and show evidence of ongoing basal elongation. There was little or no evidence for the presence of active chromatin marks in the absence of promoter Pol II on these inducible genes. In addition, we identified a subgroup of genes with active promoter chromatin marks and promoter Pol II but no evidence of elongation. Following T cell activation, we find little evidence for a major shift in the active chromatin signature around inducible gene promoters but many genes recruit more Pol II and show increased evidence of elongation.

Conclusions

These results suggest that the majority of inducible genes are primed for activation by having an active chromatin signature and promoter Pol II with or without ongoing elongation.  相似文献   

3.
Increasing evidence shows that promoters and enhancers could be related to 3D chromatin structure, thus affecting cellular functions. Except for their roles in forming canonical chromatin loops, promoters and enhancers have not been well studied regarding the maintenance of broad chromatin organization. Here, we focused on the active promoters/enhancers predicted to form many 3D contacts with other active promoters/enhancers (referred to as hotspots) and identified dozens of loci essential for cell growth and survival through CRISPR screening. We found that the deletion of an essential hotspot could lead to changes in broad chromatin organization and the expression of distal genes. We showed that the essentiality of hotspots does not result from their association with individual genes that are essential for cell viability but rather from their association with multiple dysregulated non-essential genes to synergistically impact cell fitness.  相似文献   

4.
5.
In eukaryotes, neighboring genes can be packaged together in specific chromatin structures that ensure their coordinated expression. Examples of such multi-gene chromatin domains are well-documented, but a global view of the chromatin organization of eukaryotic genomes is lacking. To systematically identify multi-gene chromatin domains, we constructed a compendium of genome-scale binding maps for a broad panel of chromatin-associated proteins in Drosophila melanogaster. Next, we computationally analyzed this compendium for evidence of multi-gene chromatin domains using a novel statistical segmentation algorithm. We find that at least 50% of all fly genes are organized into chromatin domains, which often consist of dozens of genes. The domains are characterized by various known and novel combinations of chromatin proteins. The genes in many of the domains are coregulated during development and tend to have similar biological functions. Furthermore, during evolution fewer chromosomal rearrangements occur inside chromatin domains than outside domains. Our results indicate that a substantial portion of the Drosophila genome is packaged into functionally coherent, multi-gene chromatin domains. This has broad mechanistic implications for gene regulation and genome evolution.  相似文献   

6.
Summary The macronuclear chromatin of Oxytrichia nova consists of chromatin fragments which are fully soluble in 0.2 mM EDTA and whose DNA length varies from 500–25 000 bp. The DNA migrates electrophoretically as a series of discrete bands, with specific genes present in only one or a few bands. The chromatin fragments are composed of nucleosomes and migrate electrophoretically in proportion to their DNA length. These results suggest schemes for the fractionation of undigested chromatin in order to enrich for specific genes, facilitating analysis of changes in chromatin structure associated with changes in gene expression.  相似文献   

7.
8.
9.
10.
11.
12.
13.
14.
There is much evidence indicating the importance in gene regulation of the positions of nucleosomes with respect to DNA sequence. Low resolution chromatin structures have been described for many genes, but there is a dearth of detailed high resolution chromatin structures. In the cases where they are available, high resolution maps have revealed much more complex chromatin structures, with multiple alternative nucleosome positions. The discovery that ATP-dependent chromatin remodelling machines are recruited to genes, with their ability to mobilise nucleosomes on DNA and to alter nucleosomal conformation, emphasises the necessity for obtaining high resolution nucleosome maps, so that the details of these remodelling reactions can be defined in vivo. Here, we describe protocols for purifying plasmid chromatin from cells of the yeast Saccharomyces cerevisiae and for mapping nucleosome positions on the plasmid using the monomer extension mapping method. This method requires purified chromatin, but is capable of mapping relatively long stretches of chromatin in great detail. Typically, it reveals very complex chromatin structures.  相似文献   

15.
Wu X  Shi Z  Cui M  Han M  Ruvkun G 《PLoS genetics》2012,8(3):e1002542
The retinoblastoma (Rb) tumor suppressor acts with a number of chromatin cofactors in a wide range of species to suppress cell proliferation. The Caenorhabditis elegans retinoblastoma gene and many of these cofactors, called synMuv B genes, were identified in genetic screens for cell lineage defects caused by growth factor misexpression. Mutations in many synMuv B genes, including lin-35/Rb, also cause somatic misexpression of the germline RNA processing P granules and enhanced RNAi. We show here that multiple small RNA components, including a set of germline-specific Argonaute genes, are misexpressed in the soma of many synMuv B mutant animals, revealing one node for enhanced RNAi. Distinct classes of synMuv B mutants differ in the subcellular architecture of their misexpressed P granules, their profile of misexpressed small RNA and P granule genes, as well as their enhancement of RNAi and the related silencing of transgenes. These differences define three classes of synMuv B genes, representing three chromatin complexes: a LIN-35/Rb-containing DRM core complex, a SUMO-recruited Mec complex, and a synMuv B heterochromatin complex, suggesting that intersecting chromatin pathways regulate the repression of small RNA and P granule genes in the soma and the potency of RNAi. Consistent with this, the DRM complex and the synMuv B heterochromatin complex were genetically additive and displayed distinct antagonistic interactions with the MES-4 histone methyltransferase and the MRG-1 chromodomain protein, two germline chromatin regulators required for the synMuv phenotype and the somatic misexpression of P granule components. Thus intersecting synMuv B chromatin pathways conspire with synMuv B suppressor chromatin factors to regulate the expression of small RNA pathway genes, which enables heightened RNAi response. Regulation of small RNA pathway genes by human retinoblastoma may also underlie its role as a tumor suppressor gene.  相似文献   

16.
Which mechanisms regulate nuclear plasticity? Part of the answer to that question lies in understanding how genes are expressed and regulated in the context of chromatin structure. It is now clear that the genes are regulated in discrete and controlled stages, from packaging into chromatin to their localization within the nucleus. Whereas the genetic information provides the framework for the manufacture of all proteins necessary to create a living cell, chromatin structure controls how, where, and when the genetic information should be used. In this minireview, I summarize the main characteristics of chromatin structure and highlight some of the modifications usually associated with the regulation of gene expression.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号