首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasmid R64 thin pilus identified as a type IV pilus.   总被引:12,自引:5,他引:7       下载免费PDF全文
The entire nucleotide sequence of the pil region of the IncI1 plasmid R64 was determined. Analysis of the sequence indicated that 14 genes, designated pilI through pilV, are involved in the formation of the R64 thin pilus. Protein products of eight pil genes were identified by the maxicell procedure. The pilN product was shown to be a lipoprotein by an experiment using globomycin. A computer search revealed that several R64 pil genes have amino acid sequence homology with proteins involved in type IV pilus biogenesis, protein secretion, and transformation competence. The pilS and pilV products were suggested to be prepilins for the R64 thin pilus, and the pilU product appears to be a prepilin peptidase. These results suggest that the R64 thin pilus belongs to the type IV family, specifically group IVB, of pili. The requirement of the pilR and pilU genes for R64 liquid mating was demonstrated by constructing their frameshift mutations. Comparison of three type IVB pilus biogenesis systems, the pil system of R64, the toxin-coregulated pilus (tcp) system of Vibrio cholerae, and the bundle-forming pilus (bfp) system of enteropathogenic Escherichia coli, suggests that they have evolved from a common ancestral gene system.  相似文献   

2.
The IncI1 plasmid R64 produces two kinds of sex pili: a thin pilus and a thick pilus. The thin pilus, which belongs to the type IV family, is required only for liquid matings. Fourteen genes, pilI to -V, were found in the DNA region responsible for the biogenesis of the R64 thin pilus (S.-R. Kim and T. Komano, J. Bacteriol. 179:3594-3603, 1997). In this study, we introduced frameshift mutations into each of the 14 pil genes to test their requirement for R64 thin pilus biogenesis. From the analyses of extracellular secretion of thin pili and transfer frequency in liquid matings, we found that 12 genes, pilK to -V, are required for the formation of the thin pilus. Complementation experiments excluded the possible polar effects of each mutation on the expression of downstream genes. Two genes, traBC, were previously shown to be required for the expression of the pil genes. In addition, the rci gene is responsible for modulating the structure and function of the R64 thin pilus via the DNA rearrangement of the shufflon. Altogether, 15 genes, traBC, pilK through pilV, and rci, are essential for R64 thin pilus formation and function.  相似文献   

3.
Attachment to host cells via adhesive surface structures is a prerequisite for the pathogenesis of many bacteria. Uropathogenic Escherichia coli assemble P and type 1 pili for attachment to the host urothelium. Assembly of these pili requires the conserved chaperone/usher pathway, in which a periplasmic chaperone controls the folding of pilus subunits and an outer membrane usher provides a platform for pilus assembly and secretion. The usher has differential affinity for pilus subunits, with highest affinity for the tip‐localized adhesin. Here, we identify residues F21 and R652 of the P pilus usher PapC as functioning in the differential affinity of the usher. R652 is important for high‐affinity binding to the adhesin whereas F21 is important for limiting affinity for the PapA major rod subunit. PapC mutants in these residues are specifically defective for pilus assembly in the presence of PapA, demonstrating that differential affinity of the usher is required for assembly of complete pili. Analysis of PapG deletion mutants demonstrated that the adhesin is not required to initiate P pilus biogenesis. Thus, the differential affinity of the usher may be critical to ensure assembly of functional pilus fibres.  相似文献   

4.
Location of the antigenic determinants of conjugative F-like pili   总被引:4,自引:3,他引:1       下载免费PDF全文
The amino terminus of the pilin protein constitutes the major epitope of F-like conjugative pili studied to date (F, ColB2, R1-19, R100-1, and pED208). Anti-pED208 pilus antibodies were passed through a CNBr-Sepharose affinity column linked to bovine serum albumin which was conjugated to a synthetic peptide, AcP(1-12), containing the major epitope at the amino terminus of pED208 pilin. This allowed the separation of two classes of antibodies; one was specific for the amino terminus and bound to the column, while the other, which recognizes a second epitope on the pilus, did not bind to the column. In addition, antibodies were raised against two amino-terminal peptide-bovine serum albumin conjugates [AcP(1-8) and AcP(1-12)] to ensure a source of pure, high-titer antibodies directed against the amino terminus. The location of these antibodies on intact pili was assayed by immunoelectron microscopy with a protein A-gold technique. The amino terminus-specific antibodies did not bind to the sides of the pili but appeared to be associated with the pilus tip. In addition, these antibodies were found to bind to the vesicle-like structure at the base of the pilus. The anti-pilus antibodies not specific for the amino terminus (unbound immunoglobulin G) were found to bind to the sides of the pilus. Anti-F and anti-ColB2 pilus antibodies bound to the sides of F, ColB2, and R1-19 pili, which have only their secondary epitope in common. The carboxyl-terminal lysine of R1-19 pilin prevents the absorption of anti-F plus antiserum but not anti-ColB2 pilus antiserum to the sides of the pilus, presumably by interfering with the recognition of this secondary epitope.  相似文献   

5.
The F-pilus has been implicated in recipient cell recognition during the establishment of a stable mating pair before conjugation as well as forming part of the conjugative pore for DNA transfer. The F-pilus is the site of attachment of the filamentous phages (M13, f1 and fd), which attach to the F-pilus tip, and the RNA phages, R17 and Qbeta, which attach to different sites exposed on the sides of the pilus. R17 has been shown to undergo eclipse, or capsid release, outside the cell on pili attached to cells. New and existing mutants of traA combined with natural variants of F-pilin were assayed for pilin stability and processing, pilus elongation, transfer, phage sensitivity and R17 eclipse. Phenotypes of these mutants indicated that the F-pilin subunit contains specific regions that can be associated with pilus assembly, phage sensitivity and DNA transport. Mutations involving lysines and phenylalanines within residues 45-60 suggest that these residues might participate in transmitting a signal down the length of the pilus that initiates DNA transfer or R17 eclipse.  相似文献   

6.
Mutants resistant to the donor-specific bacteriophage R17 were isolated from Hfr and Flac-containing strains of Escherichia coli K-12. Thirty-five mutants were examined for the presence of F pili by electron microscopy. The pilus morphology was studied, as were the abilities of the cells to retract their pili and to synthesize new pili. Measurements were made of the efficiency of the conjugal deoxyribonucleic acid transfer and of M13 and R17 phage infection. All mutants had noticeable defects in pilus production, structure, or function. Mutants were found which produced unusually long pili, displayed wide variations in the number of pili per cell, and were deficient in pilus retraction and synthesis. Evidence is presented that there may be two pathways of pilus retraction.  相似文献   

7.
Variant pili produced by mutants of the Flac plasmid   总被引:2,自引:0,他引:2  
Transfer-proficient Flac mutants with reduced abilities to plate various F-specific phages were isolated, either by selection after mutagenesis, or as revertants of Flac traA mutants. In many of the mutants pilus-related properties were altered, including physical adsorption of R17 phage, the number of pili per cell and the outgrowth/retraction equilibrium. Complementation studies showed that the mutations were in traA, suggesting that specific alterations in the amino-acid sequence of the pilin subunit protein were responsible for the altered pilus properties. Complementation between the Flac traA mutants and the derepressed plasmid R100-1 restored phage sensitivity in some cases, suggesting that the incorporation of both mutant and R100-1 subunits into the pilus structure may result in conformational changes which increase the capacity of the pilus to interact with phages.  相似文献   

8.
Characterization and sequence analysis of pilin from F-like plasmids.   总被引:20,自引:11,他引:9       下载免费PDF全文
Conjugative pili are expressed by derepressed plasmids and initiate cell-to-cell contact during bacterial conjugation. They are also the site of attachment for pilus-specific phages (f1, f2, and QB). In this study, the number of pili per cell and their ability to retract in the presence of cyanide was estimated for 13 derepressed plasmids. Selected pilus types were further characterized for reactivity with anti-F and anti-ColB2 pilus antisera as well as two F pilus-specific monoclonal antibodies, one of which is specific for a sequence common to most F-like pilin types (JEL92) and one which is specific for the amino terminus of F pilin (JEL93). The pilin genes from eight of these plasmids were cloned and sequenced, and the results were compared with information on F, ColB2, and pED208 pilin. Six pilus groups were defined: I, was F-like [F, pED202(R386), ColV2-K94, and ColVBtrp]; IIA was ColB2-like in sequence but had a lowered sensitivity to f1 phage due to its decreased ability for pilus retraction [pED236(ColB2) and pED203(ColB4)]; IIB was ColB2-like but retained f1 sensitivity [pED200(R124) and pED207(R538-1)]; III contained R1-19, which had a ColB2-like amino terminus but had an additional lysine residue at its carboxy terminus which may affect its phage sensitivity pattern and its antigenicity; IV was R100-1-like [R100-1 and presumably pED241(R136) and pED204(R6)] which had a unique amino-terminal sequence combined with a carboxy terminus similar to that of F. pED208(Folac) formed group V, which was multipiliated and exhibited poor pilus retraction although it retained full sensitivity to f1 phage. The pED208 pilin gene could not be cloned at this time since it shared no homology with the pilin gene of the F plasmid.  相似文献   

9.
To locate the transfer region of the 122-kiloase plasmid R64drd-11 belonging to incompatibility group I1, a series of deletion derivatives was constructed by in vitro recombinant DNA techniques followed by double homologous recombination in vivo. A plasmid designated pKK609 and bearing a 56.7-kilobase R64 sequence was the smallest transferable plasmid. A plasmid designated pKK610 and no longer possessing the 44-base-pair sequence of the R64 transfer system is located at one end. The other end of the R64 transfer region comprises a DNA segment of about 19 kilobases responsible for pilus formation. Shufflon, DNA with a novel rearrangement in R64, was found to be involved in pilus formation.  相似文献   

10.
A naturally occurring R factor with constitutive pilus synthesis is described which resembles the sex factor F in compatibility and in restricting coliphage T7. Unlike F, it is not cured during growth with acridine orange. Results suggest that the R factor produces repressor of pilus synthesis, to which the operator is insensitive (i(+)o(c)). In this respect it differs from both the F factor (i(-)o(+)) and wild-type F-like R factors (i(+)o(+)).  相似文献   

11.
Type IV pili are important for microcolony formation, biofilm formation, twitching motility, and attachment. We and others have shown that type IV pili are important for protein secretion across the outer membrane, similar to type II secretion systems. This study explored the relationship between protein secretion and pilus formation in Vibrio cholerae. The toxin-coregulated pilus (TCP), a type IV pilus required for V. cholerae pathogenesis, is necessary for the secretion of the colonization factor TcpF (T. J. Kirn, N. Bose, and R. K. Taylor, Mol. Microbiol. 49:81–92, 2003). This phenomenon is not unique to V. cholerae; secreted virulence factors that are dependent on the presence of components of the type IV pilus biogenesis apparatus for secretion have been reported with Dichelobacter nodosus (R. M. Kennan, O. P. Dhungyel, R. J. Whittington, J. R. Egerton, and J. I. Rood, J. Bacteriol. 183:4451–4458, 2001) and Francisella tularensis (A. J. Hager et al., Mol. Microbiol. 62:227–237, 2006). Using site-directed mutagenesis, we demonstrated that the secretion of TcpF is dependent on the presence of selected amino acid R groups at position five. We were unable to find other secretion determinants, suggesting that Y5 is the major secretion determinant within TcpF. We also report that proteins secreted in a type IV pilus biogenesis apparatus-dependent manner have a YXS motif within the first 15 amino acids following the Sec cleavage site. The YXS motif is not present in proteins secreted by type II secretion systems, indicating that this is unique to type IV pilus-mediated secretion. Moreover, we show that TcpF interacts with the pilin TcpA, suggesting that these proteins are secreted by the type IV pilus biogenesis system. These data provide a starting point for understanding how type IV pili can mediate secretion of virulence factors important for bacterial pathogenesis.  相似文献   

12.
The assembly of adhesive pili in Gram-negative bacteria is modulated by specialized periplasmic chaperone systems. PapD is the prototype member of the superfamily of periplasmic pilus chaperones. Previously, the alignment of chaperone sequences superimposed on the three dimensional structure of PapD revealed the presence of invariant, conserved and variable amino acids. Representative residues that protruded into the PapD cleft were targeted for site directed mutagenesis to investigate the pilus protein binding site of the chaperone. The ability of PapD to bind to fiber-forming pilus subunit proteins to prevent their participation in misassembly interactions depended on the invariant, solvent-exposed arginine-8 (R8) cleft residue. This residue was also essential for the interaction between PapD and a minor pilus adaptor protein. A mutation in the conserved methionine-172 (M172) cleft residue abolished PapD function when this mutant protein was expressed below a critical threshold level. In contrast, radical changes in the variable residue glutamic acid-167 (E167) had little or no effect on PapD function. These studies provide the first molecular details of how a periplasmic pilus chaperone binds to nascently translocated pilus subunits to guide their assembly into adhesive pili.  相似文献   

13.
Mobilization of plasmid RSF1010 by the IncW plasmid R388 requires the genes involved in W pilus synthesis plus trwB. traG of the IncP plasmid RP4 can substitute for trwB in RSF1010 mobilization by R388 but not in self-transfer of R388. This result suggests a dual specificity of TrwB-like proteins in conjugation. The same genetic requirements were found for R388 to mobilize the unrelated plasmid ColE1.  相似文献   

14.
The transfer inhibition systems of 28 Fin+ plasmids have been characterized, using Flac mutants insensitive to inhibition by R100 or R62. All F-like plasmids (except R455) and one N group plasmid determined systems analogous to that of R100; this is designated the FinOP system. None of these plasmids could supply a FinP component of the transfer inhibitor able to replace that of F itself. In addition to the FinOP and R62 transfer inhibition systems described previously, new systems were encoded by the F-like plasmid R455, the I-like plasmid JR66a, and the group X plasmid R485. Besides inhibiting F transfer, JR66a also inhibited F pilus formation and surface exclusion, whereas R485 inhibited only pilus formation and R455 inhibited neither. All three R factors inhibited transfer of J-independent Flac elements, indicating that they act directly on one or more genes (or products) of the transfer operon, rather than directly via traJ. The tral products and transfer origin sequences of two Fin+ F-like plasmids, ColB2 and R124, appear to have similar specificities to those of F itself.  相似文献   

15.
Coordination of Sex Pili with their Specifying R Factors   总被引:2,自引:0,他引:2  
A single bacterial cell can simultaneously carry both F-like (fi+) and I-like (fi?) R factors and, when the R factors are de-repressed, most cells produce both F-like and I-like sex pili. These pili can be distinguished immunologically and by their capacity to adsorb different phages1. The F pilus is the receptor for RNA phages such as MS2 and filamentous DNA phages such as M13. The I pilus is the receptor for other filamentous DNA phages such as If1 and If2. Electron microscopy suggests that these filamentous DNA phages, both F-specific and I-specific, adsorb to the tip of the pilus2,3.  相似文献   

16.
The complete conjugal transfer gene region of the IncW plasmid R388 has been cloned in multicopy vector plasmids and mapped to a contiguous 14.9-kilobase segment by insertion mutagenesis. The fertility of the cloned region could still be inhibited by a coresident IncP plasmid. The transfer region has been dissected into two regions, one involved in pilus synthesis and assembly (PILW), and the other involved in conjugal DNA metabolism (MOBW). They have been separately cloned. PILW also contains the genes involved in entry exclusion. MOBW contains oriT and the gene products required for efficient mobilization by PILW. MOBW plasmids could also be mobilized efficiently by PILN, the specific pilus of the IncN plasmid pCU1, but not by PILP, the specific pilus of the IncP plasmid RP1.  相似文献   

17.
H-pilus assembly kinetics determined by electron microscopy.   总被引:3,自引:3,他引:0       下载免费PDF全文
The kinetics of pilus outgrowth were examined for Escherichia coli containing pDT1942, a TnlacZ insertion derivative of the IncHI1 plasmid R27, which was derepressed for transfer. IncHI1 plasmids are thermosensitive for transfer. The pili specified by pDT1942 were examined by transmission electron microscopy after the pilus had been labeled with the H-pilus-specific bacteriophage Hgal, which had been inactivated with RNase A. H pili were extended by extrusion from the cell surface and not by the addition of pilin subunits to the pilus tip. After pili were removed by vortexing, the outgrowth of full-length pili (2 microns long) required 20 min. H pili expressed at the transfer optimal temperature (27 degrees C) remained stable after incubation at the transfer inhibitory temperature (37 degrees C), but the formation of mating aggregates was inhibited at 37 degrees C. Within 1 min of exposure of the host cell to a heat stimulus of 50 degrees C, pili vanished. Pili were observed in straight and flexible forms with a field emission scanning electron microscope, which may indicate a dynamic role for the pilus in conjugation.  相似文献   

18.
F and R100-1 are closely related, derepressed, conjugative plasmids from the IncFI and IncFII incompatibility groups, respectively. Heteroduplex mapping and genetic analyses have revealed that the transfer regions are extremely similar between the two plasmids. Plasmid specificity can occur at the level of relaxosome formation, regulation, and surface exclusion between the two transfer systems. There are also differences in pilus serology, pilus-specific phage sensitivity, and requirements for OmpA and lipopolysaccharide components in the recipient cell. These phenotypic differences were exploited in this study to yield new information about the mechanism of pilus synthesis, mating pair stabilization, and surface and/or entry exclusion, which are collectively involved in mating pair formation (Mpf). The sequence of the remainder of the transfer region of R100-1 (trbA to traS) has been completed, and the complete sequence is compared to that of F. The differences between the two transfer regions include insertions and deletions, gene duplications, and mosaicism within genes, although the genes essential for Mpf are conserved in both plasmids. F+ cells carrying defined mutations in each of the Mpf genes were complemented with the homologous genes from R100-1. Our results indicate that the specificity in recipient cell recognition and entry exclusion are mediated by TraN and TraG, respectively, and not by the pilus.  相似文献   

19.
Agrobacterium VirB7, VirB9, and VirB10 form a "core complex" during biogenesis of the VirB/VirD4 type IV secretion system (T4SS). VirB10 spans the cell envelope and, in response to sensing of ATP energy consumption by the VirB/D4 ATPases, undergoes a conformational change required for DNA transfer across the outer membrane (OM). Here, we tested a model in which VirB10 regulates substrate passage by screening for mutations that allow for unregulated release of the VirE2 secretion substrate to the cell surface independently of target cell contact. One mutation, G272R, conferred VirE2 release and also rendered VirB10 conformationally insensitive to cellular ATP depletion. Strikingly, G272R did not affect substrate transfer to target cells (Tra(+)) but did block pilus production (Pil(-)). The G272R mutant strain displayed enhanced sensitivity to vancomycin and SDS but did not nonspecifically release periplasmic proteins or VirE2 truncated of its secretion signal. G272 is highly conserved among VirB10 homologs, including pKM101 TraF, and in the TraF X-ray structure the corresponding Gly residue is positioned near an α-helical domain termed the antenna projection (AP), which is implicated in formation of the OM pore. A partial AP deletion mutation (ΔAP) also confers a Tra(+) Pil(-) phenotype; however, this mutation did not allow VirE2 surface exposure but instead allowed the release of pilin monomers or short oligomers to the milieu. We propose that (i) G272R disrupts a gating mechanism in the core chamber that regulates substrate passage across the OM and (ii) the G272R and ΔAP mutations block pilus production at distinct steps of the pilus biogenesis pathway.  相似文献   

20.
Clumping of bacteria containing R factors derepressed for pilus synthesis interfered with the separation of cells and minicells. Mucoid derivatives of these bacteria provided the means of preventing clumping and allowing a good separation. This method may be generally useful in dealing with autoagglutination of bacterial cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号