首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jang IC  Oh SJ  Seo JS  Choi WB  Song SI  Kim CH  Kim YS  Seo HS  Choi YD  Nahm BH  Kim JK 《Plant physiology》2003,131(2):516-524
Trehalose plays an important role in stress tolerance in plants. Trehalose-producing, transgenic rice (Oryza sativa) plants were generated by the introduction of a gene encoding a bifunctional fusion (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of Escherichia coli, under the control of the maize (Zea mays) ubiquitin promoter (Ubi1). The high catalytic efficiency (Seo et al., 2000) of the fusion enzyme and the single-gene engineering strategy make this an attractive candidate for high-level production of trehalose; it has the added advantage of reducing the accumulation of potentially deleterious T-6-P. The trehalose levels in leaf and seed extracts from Ubi1::TPSP plants were increased up to 1.076 mg g fresh weight(-1). This level was 200-fold higher than that of transgenic tobacco (Nicotiana tabacum) plants transformed independently with either TPS or TPP expression cassettes. The carbohydrate profiles were significantly altered in the seeds, but not in the leaves, of Ubi1::TPSP plants. It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and root morphology was altered. Interestingly, our Ubi1::TPSP plants showed no growth inhibition or visible phenotypic alterations despite the high-level production of trehalose. Moreover, trehalose accumulation in Ubi1::TPSP plants resulted in increased tolerance to drought, salt, and cold, as shown by chlorophyll fluorescence and growth inhibition analyses. Thus, our results suggest that trehalose acts as a global protectant against abiotic stress, and that rice is more tolerant to trehalose synthesis than dicots.  相似文献   

2.
The role of the disaccharide trehalose, its biosynthesis pathways and their regulation in Archaea are still ambiguous. In Thermoproteus tenax a fused trehalose-6-phosphate synthase/phosphatase (TPSP), consisting of an N-terminal trehalose-6-phosphate synthase (TPS) and a C-terminal trehalose-6-phosphate phosphatase (TPP) domain, was identified. The tpsp gene is organized in an operon with a putative glycosyltransferase (GT) and a putative mechanosensitive channel (MSC). The T. tenax TPSP exhibits high phosphatase activity, but requires activation by the co-expressed GT for bifunctional synthase-phosphatase activity. The GT mediated activation of TPS activity relies on the fusion of both, TPS and TPP domain, in the TPSP enzyme. Activation is mediated by complex-formation in vivo as indicated by yeast two-hybrid and crude extract analysis. In combination with first evidence for MSC activity the results suggest a sophisticated stress response involving TPSP, GT and MSC in T. tenax and probably in other Thermoproteales species. The monophyletic prokaryotic TPSP proteins likely originated via a single fusion event in the Bacteroidetes with subsequent horizontal gene transfers to other Bacteria and Archaea. Furthermore, evidence for the origin of eukaryotic TPSP fusions via HGT from prokaryotes and therefore a monophyletic origin of eukaryotic and prokaryotic fused TPSPs is presented. This is the first report of a prokaryotic, archaeal trehalose synthase complex exhibiting a much more simple composition than the eukaryotic complex described in yeast. Thus, complex formation and a complex-associated regulatory potential might represent a more general feature of trehalose synthesizing proteins.  相似文献   

3.
The genes for trehalose synthesis in Thermus thermophilus RQ-1, namely otsA [trehalose-phosphate synthase (TPS)], otsB [trehalose-phosphate phosphatase (TPP)], and treS [trehalose synthase (maltose converting) (TreS)] genes are structurally linked. The TPS/TPP pathway plays a role in osmoadaptation, since mutants unable to synthesize trehalose via this pathway were less osmotolerant, in trehalose-deprived medium, than the wild-type strain. The otsA and otsB genes have now been individually cloned and overexpressed in Escherichia coli and the corresponding recombinant enzymes purified. The apparent molecular masses of TPS and TPP were 52 and 26 kDa, respectively. The recombinant TPS utilized UDP-glucose, TDP-glucose, ADP-glucose, or GDP-glucose, in this order as glucosyl donors, and glucose-6-phosphate as the glucosyl acceptor to produce trehalose-6-phosphate (T6P). The recombinant TPP catalyzed the dephosphorylation of T6P to trehalose. This enzyme also dephosphorylated G6P, and this activity was enhanced by NDP-glucose. TPS had an optimal activity at about 98°C and pH near 6.0; TPP had a maximal activity near 70°C and at pH 7.0. The enzymes were extremely thermostable: at 100°C, TPS had a half-life of 31 min, and TPP had a half-life of 40 min. The enzymes did not require the presence of divalent cations for activity; however, the presence of Co2+ and Mg2+ stimulates both TPS and TPP. This is the first report of the characterization of TPS and TPP from a thermophilic organism.  相似文献   

4.
Trehalose-6-phosphate (T6P), an intermediate in the trehalose biosynthesis pathway, is emerging as an important regulator of plant metabolism and development. T6P levels are potentially modulated by a group of trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) homologues. In this study, we have isolated 11 TPS genes encoding proteins with both TPS and TPP domains, from rice. Functional complement assays performed in yeast tps1 and tps2 mutants, revealed that only OsTPS1 encodes an active TPS enzyme and no OsTPS protein possesses TPP activity. By using a yeast two-hybrid analysis, a complicated interaction network occurred among OsTPS proteins, and the TPS domain might be essential for this interaction to occur. The interaction between OsTPS1 and OsTPS8 in vivo was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays. Furthermore, our gel filtration assay showed that there may exist two forms of OsTPS1 (OsTPS1a and OsTPS1b) with different elution profiles in rice. OsTPS1b was particularly cofractionated with OsTPS5 and OsTPS8 in the 360 kDa complex, while OsTPS1a was predominantly incorporated into the complexes larger than 360 kDa. Collectively, these results suggest that OsTPS family members may form trehalose-6-phosphate synthase complexes and therefore potentially modify T6P levels to regulate plant development.  相似文献   

5.
Axenically grown Arabidopsis thaliana plants were analysed for the occurrence of trehalose. Using gas chromatography-mass spectrometry (GC-MS) analysis, trehalose was unambiguously identified in extracts from Arabidopsis inflorescences. In a variety of organisms, the synthesis of trehalose is catalysed by trehalose-6-phosphate synthase (TPS; EC 2.4.1.15) and trehalose-6-phosphate phosphatase (TPP; EC 3.1.3.12). Based on EST (expressed sequence tag) sequences, three full-length Arabidopsis cDNAs whose predicted protein sequences show extensive homologies to known TPS and TPP proteins were amplified by RACE-PCR. The expression of the corresponding genes, AtTPSA, AtTPSB and AtTPSC, and of the previously described TPS gene, AtTPS1, was analysed by quantitative RT-PCR. All of the genes were expressed in the rosette leaves, stems and flowers of Arabidopsis plants and, to a lower extent, in the roots. To study the role of the Arabidopsis genes, the AtTPSA and AtTPSC cDNAs were expressed in Saccharomyces cerevisiae mutants deficient in trehalose synthesis. In contrast to AtTPS1, expression of AtTPSA and AtTPSC in the tps1 mutant lacking TPS activity did not complement trehalose formation after heat shock or growth on glucose. In addition, no TPP function could be identified for AtTPSA and AtTPSC in complementation studies with the S. cerevisiae tps2 mutant lacking TPP activity. The results indicate that while AtTPS1 is involved in the formation of trehalose in Arabidopsis, some of the Arabidopsis genes with homologies to known TPS/TPP genes encode proteins lacking catalytic activity in trehalose synthesis.  相似文献   

6.
A trehalose-6-phosphate phosphatase (TPP) gene, otsB, from a psychrotrophic bacterium, Arthrobacter strain A3, was identified. The product of this otsB gene is 266 amino acids in length with a calculated molecular weight of 27,873 Da. The protein was expressed in Escherichia coli and purified to apparent homogeneity. The purified recombinant TPP catalyzed the dephosphorylation of trehalose-6-phosphate to form trehalose and showed a broad optimum pH range from 5.0 to 7.5. This enzyme also showed an absolute requirement for Mg(2+) or Co(2+) for catalytic activity. The recombinant TPP had a maximum activity at 30 °C and maintained activity over a temperature range of 4-30 °C. TPP was generally heat-labile, losing 70 % of its activity when subjected to heat treatment at 50 °C for 6 min. Kinetic analysis of the Arthrobacter strain A3 TPP showed ~tenfold lower K (m) values when compared with values derived from other bacterial TPP enzymes. The highest k (cat)/K (m) value was 37.5 mM(-1) s(-1) (repeated three times), which is much higher than values published for mesophilic E. coli TPP, indicating that the Arthrobacter strain A3 TPP possessed excellent catalytic activity at low temperatures. Accordingly, these characteristics suggest that the TPP from the Arthrobacter strain A3 is a new cold-adapted enzyme. In addition, this is the first report characterizing the enzymatic properties of a TPP from a psychrotrophic organism.  相似文献   

7.
A protein of about 800 kDa with trehalose-6-phosphate synthase (TPS) and trehalose-6-phosphate phosphatase (TPP) activity was purified from bakers' yeast. This TPS/P complex contained 57, 86 and 93 kDa polypeptides. The 86 and 93 kDa polypeptides both appeared to be derived from a polypeptide of at least 115 kDa in the native enzyme. A TPS-activator (a dimer of 58 kDa subunits) was also purified. It decreased the Michaelis constants for both UDP-glucose (three-fold) and glucose 6-phosphate (G6P) (4.5-fold), and increased TPS activity at 5 mM-UDP-glucose/10 mM-G6P about three-fold. It did not affect TPP activity. The purification of TPS/P included an endogenous proteolytic step that increased TPS activity about three-fold and abolished its requirement for TPS-activator, but did not change TPP activity. This activation was accompanied by a decrease of some 20 kDa in the molecular mass of a cluster of SDS-PAGE bands at about 115 kDa recognized by antiserum to pure TPS/P, but by no change in the 57 kDa band. Phosphate inhibited TPS activity (Ki about 5 mM), but increased TPP activity about six-fold (Ka about 4 mM). Phosphate (6 mM) stimulated the synthesis of trehalose from G6P and UDP-glucose and decreased the accumulation of trehalose 6-phosphate.  相似文献   

8.
Zhang N  Wang F  Meng X  Luo S  Li Q  Dong H  Xu Z  Song R 《Molecular biology reports》2011,38(4):2241-2248
Dunaliella is a group of green algae with exceptional stress tolerance capability, and is considered as an important model organism for stress tolerance study. Here we cloned a TPS (trehalose-6-phosphate synthase) gene from Dunaliella viridis and designated it as DvTPS (D. viridis trehalose-6-phosphate synthase/phosphatase).The DvTPS cDNA contained an ORF of 2793?bp encoding 930?aa. DvTPS had both TPS and TPP domain and belonged to the Group II TPS/TPP fusion gene family. Southern blots showed it has a single copy in the genome. Genome sequence analysis revealed that it has 18 exons and 17 introns. DvTPS had a constitutive high expression level under various NaCl culture conditions, however, could be induced by salt shock. Promoter analysis indicated there were ten STREs (stress response element) in its promoter region, giving a possible explanation of its inducible expression pattern upon salt shock. Yeast functional complementation analysis showed that DvTPS had neither TPS nor TPP activity. However, DvTPS could improve the salt tolerance of yeast salt sensitive mutant G19. Our results indicated that despite DvTPS showed significant similarity with TPS/TPP, its real biological function is still remained to be revealed.  相似文献   

9.
Abstract A Saccharomyces cerevisiae gene for trehalose-6-phosphate synthase (TPS1) was sequenced. The gene appeared to code for a protein of 495 amino acid residues, giving the protein a molecular mass of 56 kDa. The TPS1 gene was able to restore both osmotolerance and trehalose accumulation during salt stress in an Escherichia coli strain mutated in the otsA gene encoding trehalose-6-phosphate synthase. Complementation studies with E. coli galU mutants showed that the TPS1-encoded trehalose-6-phosphate synthase is UDP-glucose-dependent. Sequence analysis and data base searches showed that TPS1 is allelic to GGS1, byp1, cif1 and fdp1 . A possible gene for trehalose-6-phosphate synthase in Methanobacterium thermoautotrophicum was identified.  相似文献   

10.
Shima S  Matsui H  Tahara S  Imai R 《The FEBS journal》2007,274(5):1192-1201
Substantial levels of trehalose accumulate in bacteria, fungi, and invertebrates, where it serves as a storage carbohydrate or as a protectant against environmental stresses. In higher plants, trehalose is detected at fairly low levels; therefore, a regulatory or signaling function has been proposed for this molecule. In many organisms, trehalose-6-phosphate phosphatase is the enzyme governing the final step of trehalose biosynthesis. Here we report that OsTPP1 and OsTPP2 are the two major trehalose-6-phosphate phosphatase genes expressed in vegetative tissues of rice. Similar to results obtained from our previous OsTPP1 study, complementation analysis of a yeast trehalose-6-phosphate phosphatase mutant and activity measurement of the recombinant protein demonstrated that OsTPP2 encodes a functional trehalose-6-phosphate phosphatase enzyme. OsTPP2 expression is transiently induced in response to chilling and other abiotic stresses. Enzymatic characterization of recombinant OsTPP1 and OsTPP2 revealed stringent substrate specificity for trehalose 6-phosphate and about 10 times lower K(m) values for trehalose 6-phosphate as compared with trehalose-6-phosphate phosphatase enzymes from microorganisms. OsTPP1 and OsTPP2 also clearly contrasted with microbial enzymes, in that they are generally unstable, almost completely losing activity when subjected to heat treatment at 50 degrees C for 4 min. These characteristics of rice trehalose-6-phosphate phosphatase enzymes are consistent with very low cellular substrate concentration and tightly regulated gene expression. These data also support a plant-specific function of trehalose biosynthesis in response to environmental stresses.  相似文献   

11.
12.
How plants relate their requirements for energy with the reducing power necessary to fuel growth is not understood. The activated glucose forms and NADPH are key precursors in pathways yielding, respectively, energy and reducing power for anabolic metabolism. Moreover, they are substrates or allosteric regulators of trehalose-phosphate synthase (TPS1) in fungi and probably also in plants. TPS1 synthesizes the signalling metabolite trehalose-6-phosphate (T6P) and, therefore, has the potential to relate reducing power with energy metabolism to fuel growth. A working model is discussed where trehalose-6-phosphate (T6P) inhibition of SnRK1 is part of a growth-regulating loop in young and metabolically active heterotrophic plant tissues. SnRK1 is the Snf1 Related Kinase 1 and the plant homologue of the AMP-dependent protein kinase of animals, a central energy gauge. T6P accumulation in response to high sucrose levels in a cell inhibits SnRK1 activity, thus promoting anabolic processes and growth. When T6P levels drop due to low glucose-6-phosphate, uridine-diphosphoglucose, and altered NADPH or due to restricted TPS1 activity, active SnRK1 promotes catabolic processes required to respond to energy and carbon deprivation. The model explains why too little or too much T6P has been found to be growth inhibitory: Arabidopsis thaliana embryos and seedlings without TPS1 are growth arrested and Arabidopsis seedlings accumulating T6P on a trehalose medium are growth arrested. Finally, the insight gained with respect to the possible role of T6P metabolism, where it is known to alter developmental and environmental responses of plants, is discussed.  相似文献   

13.
14.
In yeast, trehalose-6-phosphate synthase is a key enzyme for trehalose biosynthesis, encoded by the structural gene TPS1. Trehalose affects sugar metabolism as well as osmoprotection against several environmental stresses, such as heat and desiccation. The TPS1 gene of Saccharomyces cerevisiae was engineered under the control of the CaMV 35S promoter for constitutive expression in transgenic potato plants by Ti-plasmid of Agrobacterium-mediated transformation. The resulting TPS1 transgenic potato plants exhibited various morphological phenotypes in culture tubes, ranging from normal to severely retarded growth, including dwarfish growth, yellowish lancet-shaped leaves, and aberrant root development. However, the plants recovered from these negative growth effects when grown in a soil mixture. The TPS1 transgenic potato plants showed significantly increased drought resistance. These results suggest that the production of trehalose not only affects plant development but also improves drought tolerance.  相似文献   

15.
《Fungal biology》2023,127(3):918-926
The disaccharide trehalose has long been recognized for its role as a stress solute, but in recent years some of the protective effects previously ascribed to trehalose have been suggested to arise from a function of the trehalose biosynthesis enzyme trehalose-6-phosphate (T6P) synthase that is distinct from its catalytic activity. In this study, we use the maize pathogenic fungus Fusarium verticillioides as a model to explore the relative contributions of trehalose itself and a putative secondary function of T6P synthase in protection against stress as well as to understand why, as shown in a previous study, deletion of the TPS1 gene coding for T6P synthase reduces pathogenicity against maize. We report that a TPS1-deletion mutant of F. verticillioides is compromised in its ability to withstand exposure to oxidative stress meant to simulate the oxidative burst phase of maize defense and experiences more ROS-induced lipid damage than the wild-type strain. Eliminating T6P synthase expression also reduces resistance to desiccation, but not resistance to phenolic acids. Expression of catalytically-inactive T6P synthase in the TPS1-deletion mutant leads to a partial rescue of the oxidative and desiccation stress-sensitive phenotypes, suggesting the importance of a T6P synthase function that is independent of its role in trehalose synthesis.  相似文献   

16.
In many organisms, trehalose protects against several environmental stresses, such as heat, desiccation, and salt, probably by stabilizing protein structures and lipid membranes. Trehalose synthesis in yeast is mediated by a complex of trehalose-6-phosphate synthase (TPS1) and trehalose-6-phosphate phosphatase (TPS2). In this study, genes encoding TPS1 and TPS2 were isolated from Zygosaccharomyces rouxii (designated ZrTPS1 and ZrTPS2, respectively). They were functionally identified by their complementation of the tps1 and tps2 yeast deletion mutants, which are unable to grow on glucose medium and with heat, respectively. Full-length ZrTPS1 cDNA is composed of 1476 nucleotides encoding a protein of 492 amino acids with a molecular mass of 56 kDa. ZrTPS2 cDNA consists of 2843 nucleotides with an open reading frame of 2700 bp, which encodes a polypeptide of 900 amino acids with a molecular mass of 104 kDa. The amino acid sequence encoded by ZrTPS1 has relatively high homology with TPS1 of Saccharomyces cerevisiae and Schizosaccharomyces pombe, compared with TPS2. Western blot analysis showed that the antibody against S. cerevisiae TPS1 recognizes ZrTPS1. Under normal growth conditions, ZrTPS1 and ZrTPS2 were highly and constitutively expressed, unlike S. cerevisiae TPS1 and TPS2. Salt stress and heat stress reduced the expression of the ZrTPS1 and ZrTPS2 genes, respectively.  相似文献   

17.
The trehalose biosynthesis pathway has recently received attention for therapeutic intervention combating infectious diseases caused by bacteria, helminths or fungi. Trehalose-6-phosphate phosphatase (TPP) is a key enzyme of the most common trehalose biosynthesis pathway and a particularly attractive target owing to the toxicity of accumulated trehalose-6-phosphate in pathogens.Here, we characterised TPP-like proteins from bacterial pathogens implicated in nosocomial infections in terms of their steady-state kinetics as well as pH- and metal-dependency of their enzymatic activity. Analysis of the steady-state kinetics of recombinantly expressed enzymes from Acinetobacter baumannii, Corynebacterium diphtheriae and Pseudomonas stutzeri yielded similar kinetic parameters as those of other reported bacterial TPPs. In contrast to nematode TPPs, the divalent metal ion appears to be bound only weakly in the active site of bacterial TPPs, allowing the exchange of the resident magnesium ion with other metal ions. Enzymatic activity comparable to the wild-type enzyme was observed for the TPP from P. stutzeri with manganese, cobalt and nickel. Analysis of the enzymatic activity of S. maltophilia TPP active site mutants provides evidence for the involvement of four canonical aspartate residues as well as a strictly conserved histidine residue of TPP-like proteins from bacteria in the enzyme mechanism. That histidine residue is a member of an interconnected network of five conserved residues in the active site of bacterial TPPs which likely constitute one or more functional units, directly or indirectly cooperating to enhance different aspects of the catalytic activity.  相似文献   

18.
A cosmid carrying the orIA gene from Aspergillus nidulans was identified by complementation of an orlA1 mutant strain with DNA from the pKBY2 cosmid library. An orlA1 complementing fragment from the cosmid was sequenced. orlA encodes a predicted polypeptide of 227 amino acids (26 360 Da) that is homologous to a 211-amino-acid domain from the polypeptide encoded by the Saccharomyces cerevisiae TPS2 gene and to almost the entire Escherichia coli of otsB-encoded polypeptide. TPS2 and otsB each specify a trehalose-6-phosphate phosphatase, an enzyme that is necessary for trehalose synthesis. orlA disruptants accumulate trehalose-6-phosphate and have reduced trehalose-6-phosphatate phosphatase levels, indicating that the gene encodes a tre-halose-6-phosphatate phosphatase. Disruptants have a nearly-wild-type morphology at 32°C. When germinated at 42°C, the conidia and hyphae from disruptants are chitin deficient, swell excessively, and lyse. The lysis is almost completely remedied by osmotic stabilizers and is partially remedied by N-acetylglucosamine (GlcNAc). The activity of glutamine:fructose-6-phosphate amido-transferase (GFAT), the first enzyme unique to aminosugar synthesis, is reduced and is labile in orIA disruption strains. The findings are consistent with the hypothesis that trehalose-6-phosphate reduces the temperature stability of GFAT and other enzymes of chitin metabolism at elevated temperatures. The results extend to filamentous organisms the observation that mutations in fungal trehalose synthesis are highly pleiotropic and affect aspects of carbohydrate metabolism that are not directly related to trehalose synthesis.  相似文献   

19.
Trehalose is a non-reducing disaccharide of glucose that functions as a protectant in the stabilization of biological structures and enhances the tolerance of organisms to abiotic stress. In the present study, we report on the expression of the Grifolafrondosa Fr. trehalose synthase (TSase) gene for manipulating abiotic stress tolerance in tobacco (Nicotiana tabaccum L.). The expression of the transgene was under the control of two tandem copies of the CaMV35S promoter and was transferred into tobacco by Agrobacterium tumefaciens EHA105. Compared with non-transgenic plants, transgenic plants were able to accumulate high levels of products of trehalose, which were increased up to 2.126-2.556 mg/g FW, although levels were undetectable in non-transgenic plants. This level of trehalose in transgenic plants was 400-fold higher than that of transgenic tobacco plants cotransformed with Escherichia coli TPS and TPP on independent expression cassettes, twofold higher than that of transgenic rice plants transformed with a bifunctional fusion gene (TPSP) of the trehalose-6-phosphate (T-6-P) synthase (TPS) and T-6-P phosphatase (TPP) of E. coli, and 12-fold higher than that of transgenic tobacco plants transformed the yeast TPS1 gene.It has been reported that transgenic plants with E. coli TPS and/or TPP were severely stunted and had morphological alterations of their roots. Interestingly, our transgenic plants have obvious morphological changes, including thick and deep-coloured leaves, but show no growth inhibition; moreover, these morphological changes can restore to normal type in T2 progenies. Trehalose accumulation in 35S-35S:TSase plants resulted in increased tolerance to drought and salt, as shown by the results of tests on drought, salt tolerance, and drought physiological indices, such as water content in excised leaves, malondialdehyde content, chlorophyll a and b contents, and the activity of superoxide dismutase and peroxidase in excised leaves. These results suggest that transgenic plants transformed with the TSase gene can accumulate high levels of trehalose and have enhanced tolerance to drought and salt.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号