首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acid oil, which is a by-product in vegetable oil refining, mainly contains free fatty acids (FFAs) and acylglycerols, and is a candidate of materials for production of biodiesel fuel. A mixture (acid oil model) of refined FFAs and vegetable oil was recently reported to be converted to fatty acid methyl esters (FAMEs) at >98% conversion by a two-step reaction system comprising methyl esterification of FFAs and methanolysis of acylglycerols using immobilized Candida antarctica lipase. The two-step system was thus applied to conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel. Under similar conditions that were determined by using acid oil model, however, the lipase was unstable and was not durable for repeated use. The inactivation of the lipase was successfully avoided by addition of excess amounts of methanol (MeOH) in the first-step reaction, and by addition of vegetable oil and glycerol in the second-step reaction. Hence, the first-step reaction was conducted by shaking a mixture of 66 wt% acid oil (77.9 wt% FFAs, 10.8 wt% acylglycerols) and 34 wt% MeOH with 1 wt% immobilized lipase, to convert FFAs to their methyl esters. The second-step reaction was performed by shaking a mixture of 52.3 wt% dehydrated first-step product (79.7 wt% FAMEs, 9.7 wt% acylglycerols), 42.2 wt% rapeseed oil, and 5.5 wt% MeOH using 6 wt% immobilized lipase in the presence of additional 10 wt% glycerol, to convert acylglycerols to FAMEs. The resulting product was composed of 91.1 wt% FAMEs, 0.6 wt% FFAs, 0.8 wt% triacylglycerols, 2.3 wt% diacylglycerols, and 5.2 wt% other compounds. Even though each step of reaction was repeated every 24 h by transferring the immobilized lipase to the fresh substrate mixture, the composition was maintained for >100 cycles.  相似文献   

2.
The present study explores the production of biodiesel, a sustainable replacement for depleting fossil fuel by utilizing microbial oil, which was procured from Yarrowia lipolytica employing chicken tallow as the carbon substrate. Chicken tallow, yeast extract, and MgSO4·7H2O were screened for biomass production through Plackett–Burman design. Further, Box–Behnken design analysis was performed, and the optimal concentration of the medium variables was found to be 20 g/L of chicken tallow, 7.0 g/L of yeast extract, and 0.45 g/L of MgSO4·7H2O.The various parameters viz., pH (6), temperature (30 °C), RPM (150), inoculum volume (5%, v/v), and C/N ratio (100) were optimized for maximal biomass and lipid yield, and lipid content. Nile red-stained cells were observed for intracellular lipid bodies using fluorescence microscopy, and its fluorescence intensity was measured bythe flow cytometer. The dimorphic transition and substrate assimilation of Y. lipolytica were analyzed using scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR). Batch kinetic studies revealed the concomitant synthesis of microbial lipid (4.16 g/L), lipase (43 U/mL), and biosurfactant (1.41 g/L). The GC-MS analysis of microbial oil presented the fatty acid profile as oleic acid (49.15%), palmitic acid (29.83%), stearic acid (11.43%), linoleic acid (3.83%), palmitoleic acid (3.77%), and myristic acid (1.32%).  相似文献   

3.
In the last few years, biodiesel has emerged as one of the most potential renewable energy to replace current petrol-derived diesel. It is a renewable, biodegradable and non-toxic fuel which can be easily produced through transesterification reaction. However, current commercial usage of refined vegetable oils for biodiesel production is impractical and uneconomical due to high feedstock cost and priority as food resources. Low-grade oil, typically waste cooking oil can be a better alternative; however, the high free fatty acids (FFA) content in waste cooking oil has become the main drawback for this potential feedstock. Therefore, this review paper is aimed to give an overview on the current status of biodiesel production and the potential of waste cooking oil as an alternative feedstock. Advantages and limitations of using homogeneous, heterogeneous and enzymatic transesterification on oil with high FFA (mostly waste cooking oil) are discussed in detail. It was found that using heterogeneous acid catalyst and enzyme are the best option to produce biodiesel from oil with high FFA as compared to the current commercial homogeneous base-catalyzed process. However, these heterogeneous acid and enzyme catalyze system still suffers from serious mass transfer limitation problems and therefore are not favorable for industrial application. Nevertheless, towards the end of this review paper, a few latest technological developments that have the potential to overcome the mass transfer limitation problem such as oscillatory flow reactor (OFR), ultrasonication, microwave reactor and co-solvent are reviewed. With proper research focus and development, waste cooking oil can indeed become the next ideal feedstock for biodiesel.  相似文献   

4.
5.
The functions of vocal matching have been clarified in territorial songbirds, compositionally stable groups of birds and mammals, and species with multiple alarm or assembly signals. The functions of vocal matching are less well understood in fission/fusion species that are non-territorial, live in groups with variable composition, and lack multiple alarm signals. Here we present the results of interactive playbacks in a fission/fusion parrot species, the orange-fronted conjure (Aratinga canicularis), that provide evidence of vocal matching. A randomly selected loud contact call (chee) per trial was played to passing wild flocks and short-term captives in Costa Rica. Of the trials where subjects interacted, 30% of wild flocks and 21% of captive trials showed significantly linear or curvilinear changes in similarity between the stimulus and response chees over the course of the trial. Surprisingly, both convergent and divergent sequences were observed, and many trials lacking a single trend showed disjunct changes in stimulus–response similarity. These results suggest that chee exchanges prior to flock fusions are not simply an exchange of greetings but are more likely some form of negotiation. This would explain the presence of convergent, divergent, and variable patterns of stimulus–response similarity seen in our experiments.  相似文献   

6.
Cord-forming basidiomycetes are important decomposers of dead wood in forest ecosystems but the impact of mycophagous soil invertebrates on their mycelia are little known. Here we investigate the effects of different grazing intensities of Collembola (Folsomia candida) on mycelial foraging patterns of the saprotrophic cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor growing from beech (Fagus sylvatica) wood block inocula in dishes of non-sterile soil. Mycelial extension rate and hyphal coverage decreased with increased grazing intensity. R. bicolor was most affected, high grazing density resulting in only a few major cords remaining. Grazing of H. fasciculare often resulted in points of more rapid outgrowth as cords with a fanned margin. In grazed mycelia of P. velutina the main cords had fanned tips and lateral cords became branched. These results suggest that mycophagy by Collembola may hinder the growth of cord-forming fungi in woodlands, which might impact on the ability of these fungi to forage for and decompose dead organic material.  相似文献   

7.
The antifungal activities of anise oil, lime oil, and tangerine oil against molds identified from rubberwood surfaces (Aspergillus niger, Penicillium chrysogenum, and Penicillium sp.) were investigated. The broth dilution method was employed to determine the minimal inhibitory concentration (MIC) and minimal fungicidal concentration (MFC) using the concentration of essential oils between 20 and 200 μl ml−1. Inhibitory effects of the essential oils against those molds on rubberwood were also examined by means of the dip treatment and vacuum impregnation treatment. It was found that the MIC and MFC values for each treatment on agar were identical for all conditions examined. Anise oil was the strongest inhibitor with the MIC and MFC of 40 μl ml−1 against Penicillium sp. and A. niger, and 60 μl ml−1 against P. chrysogenum. Lime oil and tangerine oil were also effective against those molds at higher concentrations of 100–180 μl ml−1. All essential oils at the MIC and MFC provided a protection from mold growth on rubberwood for at least 12 weeks at storage conditions of 30 °C with 100% RH.  相似文献   

8.
A simple and efficient method for the synthesis of optically active γ-azidoalcohols is described. The lipase catalyzed kinetic resolutions of acetates of γ-azidoalcohols in aqueous as well as organic media have been studied. The enantiomerically pure γ-azidoalcohols obtained by the kinetic resolution in high enantiopurity have been utilized towards the synthesis of enantiomeric pairs of anti-depressant drugs, fluoxetine and duloxetine.  相似文献   

9.
Ferula glauca L. (Apiaceae), formerly believed a subspecies of Ferula communis L., but at the present considered a distinguishable species, was studied for the first time for volatiles from leaves, flowers, fruits and roots. The chemical analysis of the essential oil obtained from different populations growing in Marche (central Italy) was performed by GC-FID and GC–MS. The differences in composition detected between F. glauca and F. communis made the volatile fraction a reliable marker to distinguish between them, and confirmed the botanical data at the base of their discrimination. In particular, the oils obtained from leaves and roots, contained as major compounds (E)-caryophyllene, caryophyllene oxide, myristicin and elemicin, that can be useful as marker components. Finally, the oils contained some daucane derivatives, that were detected also in F. communis and responsible for important biological properties.  相似文献   

10.
11.
This work reports for the first time the identification of the major compounds of Pinguicula lusitanica, an endangered carnivorous plant species, using minimal amounts of plant material. A methanol extract was prepared from in vitro cultured plantlets and analyzed by HPLC–SPE–NMR/HPLC–MS. Three iridoid and five caffeoyl phenylethanoid glycosides were identified. These groups of natural compounds were previously reported in the Lentibulariaceae family and have been used as chemotaxonomic markers in related families.  相似文献   

12.
Effects of Collembola (Protaphorura fimata) on the development of wheat (Triticum aestivum) and the reproduction of aphids (Rhopalosiphum padi) were investigated at different soil nutrient concentrations in a laboratory experiment. Fertilization with N and NPK increased biomass and nitrogen content of wheat, aphid reproduction and abundance of Collembola. Presence of Collembola tended to decrease biomass of leaves and ears, and caused a delayed ear production of the plants. Aphid reproduction was significantly reduced in the presence of Collembola (−14%) and most pronounced in fertilizer treatments. We suggest that the reduction of aphid reproduction is caused by Collembola-mediated changes in resource allocation and growth of wheat.  相似文献   

13.
The production of labeled brominated metabolites with radioactive 82Br in Laurencia species was investigated as part of a study of the biosynthesis of halogenated metabolites from species belonging to the red algal genus Laurencia (Rhodomelaceae, Ceramiales). Radiobromide [82Br], thin-layer chromatography (TLC), and TLC–autoradioluminography (ARLG) were used. When cultured in artificial seawater medium (ASP12NTA including Na82Br) under 16:8 h light:dark (LD) illumination cycles for 24 h, each of the strains of Laurencia, Laurencia japonensis Abe et Masuda, Laurencia nipponica Yamada (laurencin-producing race and laureatin-producing race), and Laurencia okamurae Yamada, produced species- (or race-) specific 82Br-containing metabolites. In the case of the laurencin-producing race of L. nipponica, laurencin and deacetyllaurencin were found to be produced in approximately 1:1 ratio, though laurencin is the major metabolite in the wild sample. Furthermore, when cultured in the dark, the production rates of brominated metabolites in Laurencia spp. were found to be diminished. The present study strongly indicates that the use of radiobromine [82Br] in combination with the TLC–ARLG method is an effective approach for investigating the biosynthesis of brominated metabolites in Laurencia.  相似文献   

14.
Interactions between a granulovirus (HbGV), a tachinid parasitoidAmetadoria misella,and their host, the western grapeleaf skeletonizerHarrisina brillians,were investigated. In field populations, the occurrence ofA. misellain HbGV-infectedH. brillianspupae was less frequent than would have been expected by random assortment of the virus and the parasitoid. Furthermore, enzyme-linked immunosorbent assay detected granulovirus less frequently and in lower concentrations in parasitized pupae than in nonparasitized pupae. Finally, in the host pupae that tested positive for virus, parasitoids were more likely to survive pupation than hosts. When laboratory-rearedH. brillianslarvae were exposed to naturally occurringA. misellain a field experiment, the parasitoid oviposited more often in older than in younger host larvae and more often in healthy than in HbGV-infected host larvae. These results are consistent with the hypothesis that selective oviposition byA. misellaleads to reduced overlap of the parasitoid and HbGV in hosts, resulting in greater parasitoid survival.  相似文献   

15.
The use of waste materials as feedstock for biosynthesis of valuable compounds has been an intensive area of research aiming at diminishing the consumption of non-renewable materials. In this study, P. putida KT2440 was employed as a cell factory for the bioconversion of waste vegetable oil into medium-chain-length Polyhydroxyalkanoates. In the presence of the waste oil this environmental strain is capable of secreting enzymes with lipase activities that enhance the bioavailability of this hydrophobic carbon substrate. It was also found that the oxygen transfer coefficient is directly correlated with high PHA levels in KT2440 cells when metabolizing the waste frying oil. By knocking out the tctA gene, encoding for an enzyme of the tripartite carboxylate transport system, an enhanced intracellular level of mcl-PHA was found in the engineered strain when grown on fatty acids. Batch bioreactors showed that the KT2440 strain produced 1.01 (g⋅L−1) of PHA whereas the engineered ΔtctA P. putida strain synthesized 1.91 (g⋅L−1) after 72 h cultivation on 20 (g⋅L−1) of waste oil, resulting in a nearly 2-fold increment in the PHA volumetric productivity. Taken together, this work contributes to accelerate the pace of development for efficient bioconversion of waste vegetable oils into sustainable biopolymers.  相似文献   

16.
The interaction between bacteria and phytoplankton is increasingly becoming recognised as an important factor in the physiology of toxin production and the dynamics of harmful algal blooms (HABs). Bacteria can play a direct or indirect role in the production of biotoxins once solely attributed to microalgae. Evidence implicating bacteria as an autonomous source paralytic shellfish poisoning biotoxins raises the question of autonomous bacterial toxigenesis of the neurotoxin domoic acid (DA), the cause of amnesic shellfish poisoning. Here, we examine whether the previously observed bacterial enhancement of DA production by Pseudo-nitzschia multiseries (Hasle) Hasle may be attributable to independent biotoxin production by the extra-cellular bacteria associated with this diatom. The growth and toxicity of six cultures of xenic P. multiseries clone CLN-1 were followed for 24 days. Up to day 14 (mid-stationary phase), DA production was not statistically different among culture flasks. On day 14, P. multiseries cells were removed by gentle filtration from a set of triplicate flasks, leaving the bacteria in the filtrate. Following the removal of the algal cells, DA in the filtrate ceased to increase. Instead, DA levels continuously declined. A follow-up experiment determined that this was likely caused by photodegradation rather than by bacterial degradation. We conclude that after removing P. multiseries cells, the extra-cellular bacteria remaining in the filtrate were incapable of autonomous DA toxigenesis, even in the presence of P. multiseries exudates. However, scanning electron microscopy revealed that P. multiseries cells harboured epiphytic bacteria, the importance of which can still not be ruled out in DA production.  相似文献   

17.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

18.
The production of biosurfactant by Bacillus subtilis LSFM-05 was carried out using raw glycerol, obtained from a vegetable oil biodiesel plant in Brazil, as the sole carbon source. Production of the biosurfactant was carried out in a 15-L bench-top fermentor and the surfactant was obtained from the foam produced. The crude surfactant was purified by silica gel column chromatography with a yield of 230 mg of the purified biosurfactant per liter of foam. TLC, IR spectroscopy, 1H and 13C NMR and Fourier transform ion cyclotron resonance mass spectrometry with electrospray ionization (ESI-FTMS) were used to characterize the purified surfactant. The isolated surfactant was identified as a surfactin lipopeptide. MS/MS data identified the amino acid sequence as GluOMe-Leu-Leu-Asp-Val-Leu-Leu and showed that the fatty acid moiety contained 14 carbons in iso, anteiso or normal configurations. The critical micelle concentration of the C14/Leu7 surfactin was 70 μM, with emulsification efficiency after 24 h (E24) of 67.6% against crude oil. Raw glycerol represents an abundant and renewable carbon source and provides an opportunity for reducing the cost of biosurfactant production and may add value to biodiesel production by creating new commercial applications for this by-product.  相似文献   

19.
Manganese peroxidases (MnP) from Phanerochaete chrysosporium and Bjerkandera sp. BOS55 were immobilised in glutaraldehyde–agarose gels. Four different strategies were considered concerning the activation of the support (low or high density) and the ionic strength (low or high). In terms of immobilisation rate and yield, better results were obtained when low ionic strength conditions and high density activated support (75 μEq/ml) were used. Immobilisation proceeds initially with an ionic adsorption which facilitates the further covalent attachment of the enzyme to the support. An almost complete immobilisation has been attained in a very short period (0.5–2 h). Immobilisation maintained a high percentage of MnP activity for long periods of time (activity levels of 50–60% after more than 1 year at room temperature storage). Other desirable effects such as increased thermostability at 50–60 °C for MnP from Bjerkandera and higher resistance to high H2O2 concentrations for MnP for P. chrysosporium were also obtained. This latter is quite an interesting feature because it avoids the inactivation of the enzyme in the presence of an unbalanced concentration of H2O2. The improved characteristics of the immobilised MnP make its application in several fields such as the enzymatic oxidation of hardly degradable compounds more feasible.  相似文献   

20.
Success in biological weed control programs depends upon the ability of host-specific herbivores to suppress populations of their host plant. While pre-release predictions of field host range (i.e., specificity) appear widely accurate, predictions about which agent or agent combination may suppress plant populations have lately been compared to predictions in a lottery. The history of weed biocontrol does not offer immediately obvious approaches to improve the lottery model, however, pre-release assessments of the impact of different herbivore densities on the invasive plant may provide an opportunity to improve predictions of success. In this paper, we report on the impact of the leaf beetle Galerucella birmanica on growth and reproduction of water chestnut, Trapa natans, in the native range in China. At low herbivore densities (10–50 larvae/rosette), plants compensated for leaf herbivory by increasing leaf production at the expense of reproductive effort. Inoculating >50 first instar larvae per rosette greatly suppressed biomass production and plants were unable to grow when three or more G. birmanica pairs were released per seven rosettes. In the native range, similar densities are found in the field, resulting in complete defoliation of T. natans. Our study indicates that G. birmanica feeding has significant negative impacts on T. natans. This chrysomelid species appears to be a promising biological control agent and we would predict that the species will be able to attain sufficiently high populations to control its host plant—if approved for release in North America.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号