首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Isolated neuronal cell bodies and astroglia of young (15–20-day-old) rat brains were both found to contain small concentrations of a variety of glycosphingolipids, including glucosylceramide, galactosylceramide, sulphatide, dihexosylceramide and gangliosides. These sphingolipids, plus sphingomyelin, were isolated, quantitated and their fatty acid and long chain base patterns determined. These data were compared to similar data obtained on these lipids isolated from whole brain and myelin of rats of the same age range. Glucosylceramide was found in an amount equal to galactosylceramide in neurons, and accounted for 35 per cent of the total monohexosylceramide in astroglia. Dihexosylceramide was present in nearly the same amount as sulphatide in both cell types. The sphingolipids of each cell type had characteristic fatty acid patterns. Generally the whole brain fatty acid patterns resembled those of astroglial lipids rather than neuronal lipids. In no case did the cell sphingolipid fatty acids resemble those of myelin. However, the galactosylceramide and sulphatides of both cells had unsubstituted and α-hydroxy acids, both of which had appreciable quantities of C24 acids. The ganglioside fatty acids of each cell type were similar and not unusual, but were quite different from those of glucosylceramide and dihexosylceramide; the latter having appreciable quantities of 16:0 and acids longer than 18:0. The ganglioside patterns of these cells were similar and only slightly different from that of whole brain. Long chain bases of sphingolipids were mainly C18-sphingosine in both cell types, and those of ganglioside and sphingomyelin contained small amounts of C20-sphingosine.  相似文献   

2.
Lipid composition was determined for different regions of rabbit nervous tissue. In the white matter of adult rabbit, the ratio between cholesterol, phospholipids and sphingolipids was quite constant. Among the subclasses of phospholipids, phosphatidylcholine and sphingomyelin tended to compensate for each other as constituents of myelin, as did galactosphingolipids and sphingomyelin amongst the sphingolipids. The brain was rich in phosphatidylcholine and gakactosphingolipids, while peripheral nerves (PN) were rich in sphingomyelin. The spinal cord showed a composition intermediate between the brain and PN. The sphingolipid to phosphatidylcholine ratio seems to be useful as a myelin maturation index applicable to both CNS and PN. The rostral part of the CNS showed a high ratio of molecular species of cerebroside with α-hydroxy fatty acids to those with unsubstituted fatty acids (CH/CN). The caudal part of the CNS had a high concentration of cerebrosides with C24-monoenoic fatty acids, so that there was an inverse relationship between CH/CN and C24:1/C24:0 for different regions of CNS. The present data show that the lipid composition as well as the fatty acid composition of myelin-specific lipids are influenced by neural differentiation and development or by neuroglial relationships.  相似文献   

3.
LIPID COMPOSITION OF OPTIC NERVE MYELIN   总被引:1,自引:0,他引:1  
Abstract— Myelin was isolated from bovine optic nerves by differential ultracentrifugation and its lipid composition was analysed. Optic nerve myelin contained 76·3 per cent lipid. The major lipids were cholesterol, ethanolamine glycerophosphatides (EGP) and cerebroside. Serine glycerophosphatides (SGP), sphingomyelin and cerebroside sulphate were present in smaller proportions. EGP and SGP contained 34·6 and 0·5 per cent aldehydes. The major fatty aldehydes were palmitaldehyde, stearaldehyde and octadecenaldehyde. The fatty acids of EGP, SGP and choline glycerophosphatides (CGP) were chiefly 16:0, 18:0 and 18:1, with small proportions of 20 and 22 carbon polyunsaturates. The sphingolipids contained predominantly saturated and monounsaturated fatty acids of chain lengths of 20–26 carbon atoms. Optic nerve myelin and white matter myelin resembled one another closely in overall lipid composition and in the fatty acid compositions of their constituent lipids. Optic nerve myelin and white matter myelin are chemically similar membranes, but both of these differ in their lipid composition from spinal root myelin.  相似文献   

4.
Mice that are genetically deficient in UDP-galactose: ceramide galactosyltransferase are unable to synthesize galactosylceramide. Consequently, sulfatide, which can be synthesized only by sulfation of galactosylceramide, is also totally absent in affected mouse brain. -Hydroxy fatty acid-containing glucosylceramide partially replaces the missing galactosylceramide. A substantial proportion of sphingomyelin, which normally contains only non-hydroxy fatty acids, also contains -hydroxy fatty acids. These findings indicate that -hydroxy fatty acid-containing ceramide normally present only in galactosylceramide and sulfatide is diverted to other compounds because they cannot be synthesized into galactosylceramide due to the lack of the galactosyltransferase. We have examined brain gangliosides in order to determine if -hydroxy fatty acid-containing glucosylceramide present in an abnormally high concentration is also incorporated into gangliosides. The brain ganglioside composition, however, is entirely normal in both the total amount and molecular distribution in these mice. One feasible explanation is that UDP-galactose: glucosylceramide galactosyltransferase does not recognize -hydroxy fatty acid-containing glucosylceramide as acceptor. This analytical finding is consistent with the relative sparing of gray matter in the affected mice and provides an insight into sphingolipid metabolism in the mouse brain.  相似文献   

5.
Abstract— Cerebrosides, sulphatides and sphingomyelin were isolated from bovine CNS myelin and from myelin-free axons derived from myelinated axons. The fatty acid composition of each sphingolipid was determined by gas-liquid chromatography of the fatty acid methyl esters. In each case the fatty acids of the axonal sphingolipids were of shorter average chain length than those from the corresponding myelin lipids. These differences, however, were small and the fatty acids of the axonal cerebrosides and sulphatides were similar in average chain length to those reported previously for bovine myelin. The principal unsubstituted acid of both cerebroside and sulphatide from axons was 24: 1, with the total long chain acids (> C18) amounting to 80 and 85 per cent, respectively. The corresponding figures for myelin galactolipids were 94 and 95 per cent long chain acids. The principal α-hydroxy acid of both axonal galactolipids was 24 h:0, with cerebroside having 80 per cent and sulphatide 92 per cent long chain acids, compared to the figures of 87 and 97 per cent for the corresponding myelin lipids. In axonal sphingomyelin the major acid was 18:0 (compared to 24:1 in myelin) and the long chain acids were 61 per cent of the total vs 76 per cent of the total for myelin sphingomyelin. The non-identity of axonal and myelin sphingolipid fatty acids substantiates the belief that they are intrinsic axonal constituents. These findings do not rule out the possibility of a close metabolic relationship between the sphingolipids of the axon and its myelin sheath.  相似文献   

6.
Membrane lipids of human peripheral nerve and spinal cord.   总被引:4,自引:0,他引:4  
Major membrane lipids were determined in specimens of human peripheral nerve (cauda equina) and spinal cord of 10 subjects aged 20-70 years. The same lipids were also assayed in myelin from the same tissues isolated with two different procedures and in myelin of cauda equina from 3 subjects aged 17-91 years isolated with a third method. The concentrations (mean and standard deviation) of phospholipids were 90 +/- 11 and 96 +/- 9 nmol/g fresh weight; of cholesterol 70 +/- 15 and 101 +/- 16; of cerebroside 19 +/- 3 and 41 +/- 7; of sulfatide 10 +/- 1 and 11 +/- l; and of gangliosides 0.80 +/- 0.08 and 0.40 +/- 0.05 N in cauda equina and spinal cord, respectively. The proportion of ethanolamine phosphoglyceride was lower and that of sphingomyelin higher in cauda equina than in spinal cord. The myelin of peripheral nerve and spinal cord contained almost the same proportions of lipids as the whole tissue. The protein-bound sialic acid content was 3-fold higher than the lipid-bound sialic acid content in cauda myelin. The fatty acid patterns of choline, ethanolamine, inositol and serine phosphoglycerides of spinal cord and its myelin, were very similar to those of cerebral white matter, while the phosphoglycerides of cauda equina had higher proportions of monoenoic acids and lower proportions of polyunsaturated fatty acids. The fatty acid patterns of sphingomyelin, cerebroside and sulfatide of spinal cord were similar to those of cerebral white matter, while those of cauda equina contained significantly more saturated fatty acids. This suggests that the lipid and fatty acid compositions of peripheral nerve are particularly suitable for the formation of a tightly packed myelin membrane which can be a powerful shield against infections and other injuries.  相似文献   

7.
2-Hydroxy fatty acids are relatively minor species of membrane lipids found almost exclusively as N-acyl chains of sphingolipids. In mammals, 2-hydroxy sphingolipids are uniquely abundant in myelin galactosylceramide and sulfatide. Despite the well-documented abundance of 2-hydroxy galactolipids in the nervous system, the enzymatic process of the 2-hydroxylation is not fully understood. To fill this gap, we have identified a human fatty acid 2-hydroxylase gene (FA2H) that is highly expressed in brain. In this report, we test the hypothesis that FA2H is the major fatty acid 2-hydroxylase in mouse brain and that free 2-hydroxy fatty acids are formed as precursors of myelin 2-hydroxy galactolipids. The fatty acid compositions of galactolipids in neonatal mouse brain gradually changed during the course of myelination. The relative ratio of 2-hydroxy versus nonhydroxy galactolipids was very low at 2 days of age ( approximately 8% of total galactolipids) and increased 6- to 8-fold by 30 days of age. During this period, free 2-hydroxy fatty acid levels in mouse brain increased 5- to 9-fold, and their composition was reflected in the fatty acids in galactolipids, consistent with a precursor-product relationship. The changes in free 2-hydroxy fatty acid levels coincided with fatty acid 2-hydroxylase activity and with the upregulation of FA2H expression. Furthermore, mouse brain fatty acid 2-hydroxylase activity was inhibited by anti-FA2H antibodies. Together, these data provide evidence that FA2H is the major fatty acid 2-hydroxylase in brain and that 2-hydroxylation of free fatty acids is the first step in the synthesis of 2-hydroxy galactolipids.  相似文献   

8.
COMPARISON OF THE FATTY ACIDS OF LIPIDS OF SUBCELLULAR BRAIN FRACTIONS   总被引:6,自引:3,他引:3  
Abstract— Rat brain grey and white matter were fractionated to yield myelin, nerve terminal, synaptic vesicle, nerve terminal 'ghost', and microsomal fractions of white and grey matter. Ester-type glycolipids were found in all fractions except myelin, while cerebrosides occurred in significant concentrations only in myelin and white microsomes. Comparison of the fatty acid profile of the ethanolamine- and serine-containing phospholipids showed marked differences between myelin and the particles from grey matter, while the microsomes of white matter were of intermediate composition. Docosahexaenoic acid, a minor acid in myelin, was a major fatty acid in microsomes of grey and white matter. The fatty acid composition of sphingomyelin was distinctly different in the fractions derived from grey and white matter, clustering about stearate and nervonate in the latter, but only about stearate in the grey. Marked differences in the positional distribution of fatty acids were seen within phosphatidyl choline from myelin and nerve terminals. Ribonucleic acid was found in nerve terminal and synaptic vesicle fractions. The sphingosine found in the ganglioside from microsomes of both grey and white matter was similar with respect to distribution of the C18 and C20 homologues.
The possibility is discussed that microsomes furnish characteristic lipids for the synthesis or renewal of specific membranes, and that these lipids are accumulated somewhat before being released.  相似文献   

9.
The neutral sphingolipids and gangliosides were isolated from 62- and 63-day-old chicken livers and characterized. The total concentration of neutral sphingolipids was 59 nmol/g of liver, and that of gangliosides was 330 nmol/g of liver. The major neutral sphingolipids were free ceramide, galactosylceramide, glucosylceramide, lactosylceramide, galabiosylceramide, and Forssman glycolipid. Galactosylceramide was the most abundant and free ceramide was the second most abundant. The major gangliosides were sialosylgalactosylceramide (GM4) and sialosyllactosylceramide (GM3), each of which contained only N-acetylneuraminic acid as a sialic acid. Sphingosine (d18:1) was a major long-chain base in all the sphingolipids. Considerable amounts of 2-hydroxy fatty acids were present in free ceramide, galactosylceramide, and GM4.  相似文献   

10.
Fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is an enzyme responsible for the de novo synthesis of sphingolipids containing 2-hydroxy fatty acids. 2-Hydroxy sphingolipids are highly abundant in the brain, as major myelin galactolipids (galactosylceramide and sulfatide) contain a uniquely high proportion ( approximately 50%) of 2-hydroxy fatty acids. Other tissues, such as epidermis, epithelia of the digestive tract, and certain cancers, also contain 2-hydroxy sphingolipids. The physiological significance of the 2-hydroxylation on N-acyl chains of subsets of sphingolipids is poorly understood. To study the roles of FA2H and 2-hydroxy sphingolipids in various tissues, we developed a highly sensitive in vitro FA2H assay. FA2H-dependent fatty acid 2-hydroxylation requires an electron transfer system, which was reconstituted in vitro with an NADPH regeneration system and purified NADPH:cytochrome P-450 reductase. A substrate [3,3,5,5-D(4)]tetracosanoic acid was solubilized in alpha-cyclodextrin solution, and the 2-hydroxylated product was quantified by gas chromatography-mass spectrometry after conversion to a trimethylsilyl ether derivative. When the microsomes of FA2H-transfected COS7 cells were incubated with the electron transfer system and deuterated tetracosanoic acid, deuterated 2-hydroxy tetracosanoic acid was formed in a time- and protein-dependent manner. With this method, FA2H activities were reproducibly measured in murine brains and tissue culture cell lines.  相似文献   

11.
Abstract— Activity of cholesterol ester hydrolase localized almost exclusively in the myelin sheath (Eto & Suzuki , 1973a) was greatly affected by exogenous lipids added to the assay mixture. With isolated myelin as the enzyme source, phosphatidylserine was most effective in stimulating the activity. Other phospholipids were less effective. Efhanolamine phospholipid was slightly inhibitory and lysolecithin was strongly inhibitory. Differences in the fatty acid composition did not appear to account for such different effects. Glucosylceramide, galactosylceramide and digalactosylceramide were stimulatory while sulfatide, ganglioside and its asialo-derivative were inhibitory. Saturated fatty acids were generally stimulatory while corresponding unsaturated acids were strongly inhibitory. In order for exogenous lipids to be effective they had to be added to the assay mixture as free dispersion. When heat-inactivated myelin was used as the lipid source, no effect was observed, while equivalent amounts of a whole white matter lipid mixture was effective. Although phosphatidylserine was the most effective activator among the lipids tested, it could not completely replace sodium taurocholate present in the standard assay system. When isolated myelin was stored frozen, the activity of the enzyme declined gradually in the standard system without additional lipids. The stimulating effect of phosphatidylserine was greater for such partially inactivated enzyme sources, although it did not completely restore the activity to that of fresh preparations. When myelin was fractionated into basic protein, proteolipid protein and the high molecular weight acidic protein (Wolfgram) fractions, the last fraction contained most of the recovered activity. However, Wolfgram protein was less active than the intact myelin when assayed without additional lipid. The addition of phosphatidylserine completely restored the activity of this partially delipidated preparation.  相似文献   

12.
Myelin in the mammalian nervous system has a high concentration of galactolipids [galactosylceramide (GalCer) and sulfatide] with 2-hydroxy fatty acids. We recently reported that fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is the major fatty acid 2-hydroxylase in the mouse brain. In this report, we show that FA2H also plays a major role in the formation of 2-hydroxy galactolipids in the peripheral nervous system. FA2H mRNA and FA2H activity in the neonatal rat sciatic nerve increased rapidly during developmental myelination. The contents of 2-hydroxy fatty acids were approximately 5% of total galactolipid fatty acids at 4 days of age and increased to 60% in GalCer and to 35% in sulfatides at 60 days of age. The chain length of galactolipid fatty acids also increased significantly during myelination. FA2H expression in cultured rat Schwann cells was highly increased in response to dibutyryl cyclic AMP, which stimulates Schwann cell differentiation and upregulates myelin genes, such as UDP-galactose:ceramide galactosyltransferase and protein zero. These observations indicate that FA2H is a myelination-associated gene. FA2H-directed RNA interference (RNAi) by short-hairpin RNA expression resulted in a reduction of cellular 2-hydroxy fatty acids and 2-hydroxy GalCer in D6P2T Schwannoma cells, providing direct evidence that FA2H-dependent fatty acid 2-hydroxylation is required for the formation of 2-hydroxy galactolipids in peripheral nerve myelin. Interestingly, FA2H-directed RNAi enhanced the migration of D6P2T cells, suggesting that, in addition to their structural role in myelin, 2-hydroxy lipids may greatly influence the migratory properties of Schwann cells.  相似文献   

13.
Abstract: Morphological and biochemical studies were performed on the CNS of neurologically affected NCTR Balb/C mouse. Histological and electron microscopic techniques demonstrated severe myelin deficiency in the affected brains. Neither the presence of lipid-containing macrophages nor reactive gliosis was apparent. Analysis of myelin-associated lipids and proteins revealed prominent depletion of galactocerebroside, sulfatide, and proteolipid proteins. In contrast to the scarcity of myelin specific constituents a marked accumulation of GM2 and GM3 gangliosides and several neutral glycolipids, i.e., glucocerebroside, lactosylceramide, gangliotriaosylceramide, and gangliotetraosylceramide were found in affected CNS. These abnormalities were already apparent in 12-day-old pups as well as in 65-day-old mice. A significant deficit in the proportion of long-chain fatty acids (C24), notable in both normal and α-hydroxy acids of cerebrosides from affected white matter, was measured. The lack of reactive gliosis, the observed depletion of galactocerebroside and sulfatide at the early age of 12 days, and the relative decrease in long-chain fatty acids in affected CNS strongly suggest a defect in myelinogenesis in this mutant rather than a secondary process of myelin breakdown.  相似文献   

14.
The full assignment of 1H and 13C NMR signals of galactosylceramide 3-sulfate (galactosyl sulfatide) and 1H signals of galactosylceramide 6-sulfate was achieved by using 1H-1H DQF-COSY and 1H-13C heteronuclear COSY. Analyses were performed on a mixture of galactosyl sulfatides with four representative ceramide types consisting of a combination of non-hydroxy or 2-hydroxy fatty acids and sphingenine or 4D-hydroxysphinganine (trihydroxysphinganine) as the long-chain bases. The 1H and 13C NMR parameters of galactosyl sulfatide with 4-hydroxysphinganine as well as 13C signals of complex lipids with 4-hydroxysphinganine were elucidated for the first time. Not only sulfation of the galactosyl residue, but also modification of the aglycon, including hydroxylation of fatty acids and hydration of the double bond in sphingoid bases, altered the chemical shifts substantially. In addition, the unique long-range coupling constants, 4J(H,H) and 5J(H,H), in the galactosyl residue of galactosyl sulfatide could be determined.  相似文献   

15.
Abstract: White matter and active plaque tissue from adrenoleukodystrophy (ALD) patients were analysed for lipid class and fatty acid compositions and the results compared with white matter from normal brain. ALD white matter was characterized by increased levels of cholesteryl esters and decreased levels of phosphatidylethanola- mine, including phosphatidylethanolamine plasmalogen, in comparison with normal brain white matter. In addition to even higher levels of cholesteryl esters, ALD plaque tissue had reduced levels of cerebrosides as well as phosphati-dylethanolamines. The loss of phosphatidylethanolamine plasmalogen is indicative of early demyelination. Total lipid from ALD white matter and ALD plaque tissue contained nearly five times and seven times, respectively, more 26:0 than total lipid from normal brain white matter. The 26:0 in ALD white matter was elevated in all lipid classes except phosphatidylinositol, but was located mainly in cerebrosides, phosphatidylcholine, sphingomyelin, and sulfatides. Most of the 26:0 in ALD plaque tissue was present in cholesteryl esters, followed by phosphatidylcholine and sphingomyelin, with reduced amounts in cerebrosides as compared with ALD white matter. The results are consistent with an initial accumulation of very-long-chain fatty acids in ALD white matter, primarily in sphingolipids and phosphatidylcholine, and subsequent accumulation of very-long- chain fatty acids in cholesteryl esters during demyelination. In addition, it was notable that the sphingolipids, especially sphingomyelin in ALD brain, had decreased levels of 24:1 and increased levels of 18:0, as well as increased levels of very-long-chain fatty acids. The extent to which the data shed light on mechanisms of demyelination in ALD is discussed.  相似文献   

16.
The sphingolipids galactosylceramide and sulfatide are important for the formation and maintenance of myelin. Transgenic mice overexpressing the galactosylceramide synthesizing enzyme UDP-galactose:ceramide galactosyltransferase in oligodendrocytes display an up to four-fold increase in UDP-galactose:ceramide galactosyltransferase activity, which correlates with an increase in its products monogalactosyl diglyceride and non-hydroxy fatty acid-containing galactosylceramide. Surprisingly, however, we observed a concomitant decrease in alpha-hydroxylated galactosylceramide such that total galactosylceramide in transgenic mice was almost unaltered. These data suggest that UDP-galactose:ceramide galactosyltransferase activity does not limit total galactosylceramide level. Furthermore, the predominance of alpha-hydroxylated galactosylceramide appeared to be determined by the extent to which non-hydroxylated ceramide was galactosylated rather than by the higher affinity of UDP-galactose:ceramide galactosyltransferase for alpha-hydroxy fatty acid ceramide. The protein composition of myelin was unchanged with the exception of significant up-regulation of the myelin and lymphocyte protein. Transgenic mice were able to form myelin, which, however, was apparently unstable and uncompacted. These mice developed a progressive hindlimb paralysis and demyelination in the CNS, demonstrating that tight control of UDP-galactose:ceramide galactosyltransferase expression is essential for myelin maintenance.  相似文献   

17.
Abstract— Lipid composition has been determined in brain frontal lobe gray and white matter from a 5-month-old patient who died from Menkes' disease, and from a normal control patient of the same age.
Total cholesterol and the amount of cholesterol esters were significantly increased in the case of Menkes' disease, whereas the values for free cholesterol were nearly unchanged.
In white matter a decrease in total galactolipids was observed in the pathological brain.
The values for total phospholipids were unchanged for the tissues, but the ratio between phosphatidylcholines and phosphatidylethanolamines (including ethanolamineplasmalogens) in white matter from the patient seemed increased. The fatty acid pattern of phosphatidylethanolamines (including ethanolamineplasmalogens), phosphatidylcholines and sphingomyelin were similar to those of the normal control. Phosphatidylethanolamines from pathological tissues contained 25–30 per cent polyunsaturated fatty acids with four, five or six double bonds.  相似文献   

18.
Lipids of chicken epidermis   总被引:1,自引:0,他引:1  
The lipids from chicken epidermis were analyzed by a combination of quantitative thin-layer and gas-liquid chromatography and by chemical and spectroscopic methods. The lipid groups present included wax diesters (34%), triglycerides (32%), sterols (11%), phospholipids (11%), nonphosphorus-containing sphingolipids (3%), beta-D-glucosylsterols (3%), 6-O-acyl-beta-D-glucosylsterols (2%), steryl esters (1%), cholesteryl sulfate (1%), and free fatty acids (1%). The major phospholipids were phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin, and the sphingolipids included ceramides, glucosylceramides, O-acylceramides, and O-acylglucosylceramides. Glucosylsterols and acylglucosylsterols have not been found in mammalian skin, and may be relevant to the evolutionary history of the epidermal water barrier. The wax diesters contained mainly 16-, 18-, and 20-carbon saturated fatty acids esterified to 20- through 24-carbon threo and erythro 2,3-diols, while the chicken epidermal triglycerides contained some very long-chain (26-40 carbon) saturated fatty acids. These wax diesters and unusual triglycerides may be of significance in human health.  相似文献   

19.
In the central nervous system, oligodendroglia elaborate extensive quantities of membranes to form the multilamellar myelin sheath. Whether the production of extensive networks of processes by oligodendroglia in culture is a similar type of phenomenon as the formation of myelin is an unanswered question. Rat oligodendroglia, prepared by a modification of a differential shaking and plating method, elaborate extensive processes in culture. In contrast, bovine oligodendroglia, obtained by a bulk-isolation method, produce whorls of membrane lamellae, adjacent to the cell soma. The incorporation of various radiolabeled substrates into specific lipids was compared with the two cell types. It was found that rat oligodendroglia do produce myelin specific lipids, but at a lower level than bovine oligodendroglia which are actively synthesizing myelin lipids, especially cerebrosides, from a variety of substrates. Interestingly sulfatides are produced at a higher level in the cells not producing myelin, rat oligodendroglia. Other lipids that are associated with myelination (cerebrosides with -hydroxy fatty acids and phosphatidylinositides) are produced at higher levels in bovine oligodendroglia. Thus it appears that the extension of processes by oligodendroglia in culture is a different phenomenon than the production of myelin membranes and requires lower levels of myelin lipids.  相似文献   

20.
Abstract— Phospholipids and sphingolipids from brains of normal and Jimpy mice were isolated in a pure form by thin-layer chromatographic procedures. The fatty acid composition of the major phospholipids, i.e. ethanolamine glycerophospholipids, serine glycerophospholipids, choline glycerophospholipids and inositol glycerophospholipids, as well as sphingomyelin, cerebrosides and sulphatides was determined by gas-liquid chromatography. A specific fatty acid pattern for each of the four glycerophospholipids was found. The fatty acid composition of inositol glycerophospholipid, which has not previously been studied in mouse brain, was characterized by a high concentration of arachidonic acid. After 16 days of age, fatty acid analysis showed definite differences between the phospholipids from normal and mutant brains. A small increase of polyunsaturated fatty acids in glycerophospholipids of ethanolamine, serine and choline from the Jimpy central nervous system was found, which has been explained by the myelin deficiency. Sphingomyelin, cerebrosides and sulphatide analyses showed a wide distribution of saturated and mono-unsaturated fatty acids in both normal and mutant mice. A reduction in the amount of long-chain fatty acids was demonstrated in mutant brain sphingolipids; in sulphatides and cerebrosides, the amount of non-hydroxy fatty acids was reduced to a greater extent than in sphingomyelin. The distribution of fatty acids in sphingolipids from the myelin and microsomal fractions was also investigated in both types of mice. Cerebrosides were characterized by a high content of long-chain fatty acids in myelin as well as in microsomes. Sulphatides and sphingomyelin, on the other hand, showed a higher content of medium-chain fatty acids in microsomes than in myelin. In the mutant brain, the amount of long-chain fatty acids was reduced in both subcellular fractions. The deviation from normal in the pattern of fatty acid distribution in Jimpy brain is discussed in relation to the current concepts of glycolipid biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号