首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aquaporins (AQPs) play fundamental roles in water and osmolyte homeostasis by facilitating water and small solute movement across plasma membranes of epithelial, endothelial, and other tissues. AQP proteins are abundantly expressed in the mammalian kidney, where they have been shown to play essential roles in fluid balance and urine concentration. Thus far, the majority of studies on renal AQPs have been carried out in laboratory rodents and sheep; no data have been published on the expression of AQPs in kidneys of equines or other large mammals. The aim of this comparative study was to determine the expression and nephron segment localization of AQP1-4 in Equus caballus by immunoblotting and immunohistochemistry with custom-designed rabbit polyclonal antisera. AQP1 was found in apical and basolateral membranes of the proximal convoluted tubules and thin descending limbs of the loop of Henle. AQP2 expression was specifically detected in apical membranes of cortical, medullary, and papillary collecting ducts. AQP3 was expressed in basolateral membranes of cortical, medullary, and papillary collecting ducts. Immunohistochemistry also confirmed AQP4 expression in basolateral membranes of cells lining the distal convoluted and connecting tubules. Western blots revealed high expression of AQP1-4 in the equine kidney. These observations confirm that AQPs are expressed in the equine kidney and are found in similar nephron locations to mouse, rat, and human kidney. Equine renal AQP proteins are likely to be involved in acute and chronic regulation of body fluid composition and may be implicated in water balance disorders brought about by colic and endotoxemia.  相似文献   

2.
Abstract

Aquaporin (AQP) 1 and AQP 4 are members of the aquaporin water channel family that play an important role in reabsorption of water from the renal tubular fluid to concentrate urine. Studies of renal AQPs have been performed in human, rodents, sheep, dogs and horses. We studied nephron segment-specific expression of AQP 1 and AQP 4 using immunohistochemical staining on paraffin sections of bovine kidneys. AQP 1 was moderately expressed in endothelium of the cortical capillary network, vasa recta, and glomerular capillaries. AQP 4 was moderately expressed only in cytoplasm of epithelial cells in proximal tubules. We concluded that AQP 1 and AQP 4 in the bovine kidney showed some differences from other species in renal trans-epithelial water transport.  相似文献   

3.
Aquaporins (AQP) 1, 2, 3 and 4 belong to the aquaporin water channel family and play an important role in urine concentration by reabsorption of water from renal tubule fluid. Renal AQPs have not been reported in the yak (Bos grunniens), which resides in the Qinghai Tibetan Plateau. We investigated AQPs 1?4 expressions in the kidneys of Yak using immunohistochemical staining. AQP1 was expressed mainly in the basolateral and apical membranes of the proximal tubules and descending thin limb of the loop of Henle. AQP2 was detected in the apical plasma membranes of collecting ducts and distal convoluted tubules. AQP3 was located in the proximal tubule, distal tubule and collecting ducts. AQP4 was located in the collecting ducts, distal straight tubule, glomerular capillaries and peritubular capillaries. The expression pattern of AQPs 1?4 in kidney of yak was different from other species, which possibly is related to kidney function in a high altitude environment.  相似文献   

4.
We screened human kidney-derived multipotent CD133+/CD24+ ARPCs for the possible expression of all 13 aquaporin isoforms cloned in humans. Interestingly, we found that ARPCs expressed both AQP5 mRNA and mature protein. This novel finding prompted us to investigate the presence of AQP5 in situ in kidney. We report here the novel finding that AQP5 is expressed in human, rat and mouse kidney at the apical membrane of type-B intercalated cells. AQP5 is expressed in the renal cortex and completely absent from the medulla. Immunocytochemical analysis using segment- and cell type-specific markers unambiguously indicated that AQP5 is expressed throughout the collecting system at the apical membrane of type-B intercalated cells, where it co-localizes with pendrin. No basolateral AQPs were detected in type-B intercalated cells, suggesting that AQP5 is unlikely to be involved in the net trans-epithelial water reabsorption occurring in the distal tubule. An intriguing hypothesis is that AQP5 may serve an osmosensor for the composition of the fluid coming from the thick ascending limb. Future studies will unravel the physiological role of AQP5 in the kidney.  相似文献   

5.
6.
7.
Aquaporins (AQPs) are water channel proteins that participate in water transport. In the principal cells of the kidney collecting duct, water reabsorption is mediated by the combined action of AQP2 in the apical membrane and both AQP3 and AQP4 in the basolateral membrane, and the expression of AQP2 and AQP3 is regulated by antidiuretic hormone and water restriction. The effect of hypertonicity on AQP3 expression in Madin-Darby canine kidney (MDCK) epithelial cells was investigated by exposing the cells to hypertonic medium containing raffinose or NaCl. Northern blot and immunoblot analyses revealed that the amounts of AQP3 mRNA and AQP3 protein, respectively, were markedly increased by exposure of cells to hypertonicity. These effects were maximal at 12 and 24 h, respectively. Immunofluorescence and immunoelectron microscopy also demonstrated that the abundance of AQP3 protein was increased in cells incubated in hypertonic medium and that the protein was localized at the basolateral plasma membrane. These results indicate that the expression of AQP3 is upregulated by hypertonicity.  相似文献   

8.
In mammals, the regulation of water homeostasis is mediated by the aquaporin-1 (AQP1) water channel, which localizes to the basolateral and apical membranes of the early nephron segment, and AQP2, which is translocated from intracellular vesicles to the apical membrane of collecting duct cells after vasopressin stimulation. Because a similar localization and regulation are observed in transfected Madin-Darby Canine Kidney (MDCK) cells, we investigated which segments of AQP2 are important for its routing to forskolin-sensitive vesicles and the apical membrane through analysis of AQP1-AQP2 chimeras. AQP1 with the entire COOH tail of AQP2 was constitutively localized in the apical membrane, whereas chimeras with shorter COOH tail segments of AQP2 were localized in the apical and basolateral membrane. AQP1 with the NH2 tail of AQP2 was constitutively localized in both plasma membranes, whereas AQP1 with the NH2 and COOH tail of AQP2 was sorted to intracellular vesicles and translocated to the apical membrane with forskolin. These data indicate that region N220-S229 is essential for localization of AQP2 in the apical membrane and that the NH2 and COOH tail of AQP2 are essential for trafficking of AQP2 to intracellular vesicles and its shuttling to and from the apical membrane. routing signals; chimera; Madin-Darby canine kidney cells; regulated trafficking  相似文献   

9.
测定了大耳猬血清及尿中多种无机离子和尿素氮等指标,并应用免疫组织化学方法观察了AQP1、AQP2在肾脏的表达.大耳猬血清钠、氯含量较高;而尿液中以钾、钠、氯及尿素氮含量较高.尿液中主要离子浓度高于血清,较为浓缩,尿素氮、钾排泄能力较强.AQP1免疫反应阳性表达于近曲小管上皮和髓袢细段,AQP2主要表达于集合管上皮细胞.因此,AQP1、AQP2可能在大耳猬肾脏水重吸收及尿液浓缩过程中具有重要作用.  相似文献   

10.
Immunohistochemical localization of aquaporins in the human inner ear   总被引:3,自引:0,他引:3  
We report the immunolocalization of aquaporins (AQPs) 1, 4, and 6 in the human auditory and vestibular endorgans. A rapid protocol was applied to audiovestibular endorgans microdissected from postmortem human temporal bones from six subjects (ages ranging from 75 to 97 years) with no history of audiovestibular disease. Temporal bones were fixed in formalin, and the endorgans were immediately microdissected. Cryostat sections were obtained from audiovestibular endorgans and were subjected to double-immunohistochemical staining with antibodies against AQPs and several cellular markers. In the human cochlea, AQP1 immunoreactivity was localized to the fibrocytes of the spiral ligament and the sub-basilar tympanic cells; AQP4 immunoreactivity was localized to the outer sulcus cells, Hensen’s cells, and Claudius’ cells; AQP6 immunoreactivity was localized to the apical portion of interdental cells in the spiral limbus. In the vestibular endorgans (macula utriculi and cristae), AQP1 was localized to fibrocytes and blood vessels of the underlying stroma and trabecular perilymphatic tissue; AQP4 immunoreactivity was localized to the basal pole of vestibular supporting cells; AQP6 was localized to the apical portion of vestibular supporting cells. Cochlear and vestibular hair cells and nerve fibers were not immunoreactive for any AQP. Supporting cells were identified with antibodies against glial fibrilar acidic protein. Nerve fibers and terminals were identified with antibodies against neurofilaments and Na+K+ATPase. The high degree of conservation of AQP expression in the human inner ear suggests that AQPs play a critical role in inner ear water homeostasis. The National Institutes of Health (grants AG09693-10, DC005224, 00140-02, and DC05187-01) supported this work.  相似文献   

11.
Localization and trafficking of aquaporin 2 in the kidney   总被引:2,自引:1,他引:1  
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood-brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.  相似文献   

12.
13.
The vomeronasal organ comprises a pair of narrow tubes in the mammalian nasal septum, serving as a chemosensory system for pheromones. We examined the expression and localization of water channel aquaporins (AQPs) in the rat vomeronasal organ. AQP1 was localized in blood vessels, being particularly abundant in cavernous tissues of the nonsensory mucosa. AQP5 was found in the apical membrane of the gland acinar cells in the vomeronasal organ. AQP3 was detected in the basal cells of the nonsensory epithelium, whereas it was absent in the sensory epithelium. AQP4 was found in both the sensory and the nonsensory epithelia. Interestingly, AQP4 was highly concentrated in the sensory cells of the sensory epithelium. Immunoelectron microscopic examination clearly showed that AQP4 was localized at the plasma membrane in the cell body and lateral membrane of the dendrite, except for the microvillous apical membrane. Nerve fiber bundles emanating from neuronal sensory cells were positive for AQP4, whereby the plasma membrane of each axon was positive for AQP4. These observations clearly show that neuronal sensory cells in the vomeronasal organ are unique in that they express abundant AQP4 at their plasma membrane. This is in marked contrast to the olfactory and central nervous systems, where AQPs are not detectable in neurons, and instead, AQP4 is abundant in the supporting cells and astrocytes surrounding them. The present findings suggest a unique water-handling feature in neuronal sensory cells in the vomeronasal organ.  相似文献   

14.
The amniotic membrane encloses the amniotic fluid and plays roles in the regulation of amniotic fluid flux through the intramembranous pathway during pregnancy. Aquaporins (AQPs) 1, 3, 8, and 9 are expressed in amniotic membranes. AQPs are water channel proteins that facilitate the rapid flux of water or small molecules across the plasma membrane. Recently, additional roles of AQPs in facilitating cell migration, proliferation, and apoptosis have been suggested, with AQPs being distributed in the appropriate subcellular regions for their functions. The cellular and subcellular distributions of AQPs in the amniotic membrane however remain unclear. We have examined the cellular and subcellular localization of AQPs in amniotic membranes during pregnancy in mice. After embryonic day 12 (E12), AQP1 was distributed in the plasma membrane of finely branched cell processes in the amniotic fibroblasts. AQP3 was present in both epithelial cells and fibroblasts between E10 and E12. The distribution of AQP3 in the epithelial cells dynamically changed as follows: at E14 in the lateral membrane and apical junction; at E16 in the lateral membrane alone; at E17 in the lateral membrane and cytoplasm. AQP8 was expressed in the epithelial cells and complementarily localized in the apical junction and the lateral membrane. AQP9 was detected only in the apoptotic cells of the epithelium. These cellular and subcellular localizations of amniotic AQPs indicate that each AQP plays distinct functional roles, such as in water and urea transport, cell migration, cell proliferation, and apoptosis, for amniotic fluid homeostasis or tissue remodeling of amniotic membranes.  相似文献   

15.
16.
Distribution of AQP2 and AQP3 water channels in human tissue microarrays   总被引:5,自引:0,他引:5  
SummaryThe objective of this investigation was to use semi-quantitative immunohistochemistry to determine the distribution and expression levels of AQP2 and AQP3 proteins in normal human Tissue MicroArrays. Expression of the vasopressin regulated AQP2 was observed in a limited number of tissues. AQP2 was prominent in the apical and subapical plasma membranes of cortical and medullary renal collecting ducts. Surprisingly, weak AQP2 immunoreactivity was also noted in pancreatic islets, fallopian tubes and peripheral nerves. AQP2 was also localized to selected parts of the central nervous system (ependymal cell layer, subcortical white matter, hippocampus, spinal cord) and selected cells in the gastrointestinal system (antral and oxyntic gastric mucosa, small intestine and colon). These findings corroborate the restricted tissue distribution of AQP2. AQP3 was strongly expressed in many of the human tissues examined particularly in basolateral membranes of the distal nephron (medullary collecting ducts), distal colon, upper airway epithelia, transitional epithelium of the urinary bladder, tracheal, bronchial and nasopharyngeal epithelium, stratified squamous epithelial cells of the esophagus, and anus. AQP3 was moderately expressed in basolateral membranes of prostatic tubuloalveolar epithelium, pancreatic ducts, uterine endometrium, choroid plexus, articular chondrocytes, subchondral osteoblasts and synovium. Low AQP3 levels were also detected in skeletal muscle, cardiac muscle, gastric pits, seminiferous tubules, lymphoid vessels, salivary and endocrine glands, amniotic membranes, placenta and ovary. The abundance of basolateral AQP3 in epithelial tissues and its expression in many non-epithelial cells suggests that this aquaglyceroporin is a major participant in barrier hydration and water and osmolyte homeostasis in the human body.http://www.ncbi.nlm.nih.gov/IEB/Research/Acembly/index.html, NCBI AceView, July 2003  相似文献   

17.
Water deprivation or arginine vasotocin upregulates aquaporin-2 (AQP2) expression in apical and subapical regions of medullary collecting duct (CD) cells of Coturnix coturnix quail (q) kidneys. We therefore aimed to determine whether the CD has AQPs mediating water exit from the intracellular to the extracellular (interstitial) space. Using a homologue cloning technique, we isolated two distinct qAQP4 cDNAs from quail medullary cones; long (L, open reading frames) and short (S) cDNA encoded 335 (qAQP4-L) and 301 (qAQP4-S) amino acids with, respectively, 80% and 87% identity to human long- and short-form AQP4. qAQP4-S is identical to qAQP4-L from the second initiation site. Both isoforms have two NPA motifs, but lack cysteine at the known mercury-sensitive site. qAQP4-L and qAQP4-S are expressed in membranes of Xenopus laevis oocytes, but both failed to increase the water permeability (P(f)) of oocytes exposed to a hypotonic solution. Glutamate (Q242) replacement with histidine did not increase P(f). With conventional RT-PCR and real-time PCR, qAQP4-L/S mRNA signals were detected in the brain, lung, heart, intestine, adrenal gland, skeletal muscle, liver, and kidney (higher in medulla than in cortical region). qAQP4-L mRNA was detected only in the brain and adrenal gland. Orthogonal arrays of intramembranous particles were not detected in quail CDs. The results suggest that although qAQP4-L and qAQP4-S have high homology to mammalian AQP4, their physiological function may be different.  相似文献   

18.
19.
Fluid movement through uterine cell membranes is crucial, as it can modulate the tissue imbibition pattern in the different phases of the estrous cycle. To gain insight into the mechanisms underlying steroid-controlled water handling, the presence and distribution of aquaporins (AQPs), integral membrane channel proteins permitting rapid passive water movement, was explored in bitch uterine tissues. Immunohistochemistry and Western immunoblot analysis were used to study the presence of AQP1, AQP2, and AQP5 in the layers of the bitch uterine wall during the different estrous phases. Presence of endothelial nitric oxide-generating enzyme NO synthase (NOS3) was also investigated, as it is known that the vasodilator NOS3 might be involved in the development of uterine edema. The results demonstrated the following: (1) AQP1, AQP2, and AQP5 were present in the uterus of cycling bitches. (2) AQP1 was localized within uterine mesometrial, myometrial, and endometrial blood vessels and in the circular and longitudinal layers of myometrium. AQP1 localization and expression were unaffected by the estrous cycle. (3) The estrogenic milieu was probably at the basis of AQP2 expression in the glandular and luminal epithelium of the endometrium. (4) AQP5 water channels were present in the apical plasma membrane of uterine epithelial cells in coincidence with plasma progesterone increase. (5) NOS3 was localized in the myometrial and epithelial tissues as well as in blood vessels indicating a contribution of this vasoactive peptide to the uterine imbibition processes. Thus, we can hypothesize that a functional and distinctive collaboration exists among diverse AQPs in water handling during the different functional uterine phases.  相似文献   

20.
Avian kidneys have loopless and looped nephrons; a countercurrent multiplier mechanism operates in the latter by NaCl recycling. We identified an aquaporin-2 (AQP2) homolog in apical/subapical regions of cortical and medullary collecting duct (CD) cells in kidneys of Japanese quail (q), Coturnix japonica. We investigated whether undernutrition during the embryonic/maturation period retards kidney and AQP2 development in quail and programs impaired volume regulation in adults. Protocols included 1) time course and 2) effects of 5-10% egg white withdrawal (EwW) or 48-h post-hatch food deprivation (FD) on nephron growth and qAQP2 mRNA expression, and 3) effects of EwW and FD on qAQP2 mRNA responses to 72-h water deprivation in adults. In metanephric kidneys, qAQP2 mRNA is expressed in medullary CDs at embryonic day 10; distribution and intensity increase during maturation. The number and size of glomeruli continue to increase after birth, whereas nephrogenic zones decrease. In EwW embryos, qAQP2 mRNA expression is initially delayed, then restored; birth weight and hatching rate are lower than in controls. Adults from EwW embryos and FD chicks have fewer (P < 0.01) glomeruli. Water deprivation reduces body weight more in EwW birds than in controls. The results suggest that qAQP2 evolved in metanephric kidneys and that undernutrition may retard nephrogenesis, leading to impaired adult water homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号