首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Collagenase was isolated from the culture medium of thioglycollate-stimulated mouse peritoneal exudate macrophages. The macrophage collagenase activity was inhibited by goat anti-mouse bone collagenase antibody, indicating that macrophage collagenase immunologically cross-reacts with mouse bone collagenase. The enzyme was localized in mouse peritoneal macrophages by indirect immunofluorescent antibody technique. Distinct granular fluorescence was observed intracellularly in most thioglycollate-stimulated macrophages, whereas slight or no fluorescence was observed in non-stimulated control macrophages.  相似文献   

3.
4.
Lysophosphatidylcholine (lysoPC) is a bioactive phospholipid that is involved in atherogenesis and inflammatory processes. However, the present understanding of mechanisms whereby lysophosphatidylcholine exerts its pathophysiological actions is incomplete. In the present work, we show that lysoPC stimulates phospholipase D (PLD) activity in mouse peritoneal macrophages. PLD activation leads to the generation of important second messengers such as phosphatidic acid, lysophosphatidic acid, and diacylglycerol, all of which can regulate cellular responses involved in atherogenesis and inflammation. The activation of PLD by lysoPC was attenuated by down-regulation of protein kinase C activity with prolonged incubation with 100 nm of 4beta-phorbol 12-myristate 13-acetate (PMA). Preincubation of the macrophages with the tyrosine kinase inhibitor genistein also decreased the stimulation of PLD by lysoPC, while pretreatment with orthovanadate, which inhibits tyrosine phosphatases, enhanced basal and lysoPC-stimulated PLD activity. The activation of PLD by lysoPC was attenuated by the platelet activating factor (PAF) receptor antagonist WEB-2086, suggesting a role for PAF receptor activation in this process. Furthermore, acetylation of lysoPC substantially increased its potency in activating PLD, suggesting that a cellular metabolite of lysoPC such as 1-acyl 2-acetyl PC might be responsible for at least part of the effect of lysoPC on PLD.  相似文献   

5.
A calcium-dependent phospholipase A2 with half-maximal activity at approx. 0.7 microM free Ca2+ has been identified in the cytosolic fraction from macrophages. The enzyme eluted as a 70 kDa protein upon gel chromatography and showed increased activity after 10 min pretreatment of the cells with 10 nM phorbol myristate acetate. No significant activity could be detected in the membrane fraction. The enzyme hydrolyzed arachidonic acid-containing phosphatidylcholine and -ethanolamine as well as phosphatidylinositol. The release of arachidonic acid in the in vitro assay was inhibited in a dose-dependent manner by nordihydroguaiaretic acid and quercetin that are also potent inhibitors of the mobilization of arachidonic acid in intact macrophages.  相似文献   

6.
The effects of extracellular ATP on inositol phospholipid breakdown and synthesis of eicosanoids were studied in mouse peritoneal macrophages. Addition of ATP to intact cells labelled with [3H]inositol stimulated a rapid (within 10 s) formation of inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate. In parallel there was also a substantial accumulation of inositol 1,3,4-trisphosphate and the monophosphate and bisphosphate derivatives of inositol. Within 10 s after the addition of 30 microM ATP there was a twofold increase in inositol trisphosphate (InsP3), which declined over 2 min. The ED50 for ATP-stimulated generation of InsP3 was approximately 12 microM. ADP and GTP showed only weak effects on InsP3 formation, while AMP and adenosine were completely ineffective at 30 microM. Furthermore, the rank order of potency of ATP analogues was ATP greater than ATP[S] greater than AdoPP[NH]P = AdoPP[CH2]P greater than AdoP[CH2]PP thus, indicating the presence of a P2y-purinergic receptor. Cells labelled with [3H]arachidonic acid showed a 50% increase of label in 1,2-diacylglycerol after 15 s upon stimulation with ATP. In parallel to the stimulation of inositol phospholipid hydrolysis, ATP also caused a marked synthesis of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4) in mouse peritoneal macrophages. The rank order of potency of ATP analogues was identical with that of InsP3 generation. The effect on eicosanoid synthesis could be mimicked by the calcium ionophore A23187 and the phorbol ester 12-O-tetradecanoylphorbol 13-acetate. These results suggest that ATP-induced activation of P2y-purinergic receptors in mouse peritoneal macrophages triggers inositol phospholipid breakdown and eicosanoid synthesis.  相似文献   

7.
Phorbol myristate acetate (PMA) at a concentration of 0.01 microgram/ml causes an approximately threefold increase in surface area of resident, proteose-peptone-elicited, and thioglycolate-broth-elicited mouse peritoneal macrophages. Resident and proteose-peptone-elicited macrophages, cultured for 24 h in the presence of PMA, increase their pinocytic rate twofold in response to addition of PMA (0.01 microgram/ml) to the medium. Thioglycolate-broth-elicited macrophages, cultured for 24 h in the absence of PMA, immediately increase their pinocytic rate 2- to 3.5-fold in response to a single challenge with PMA (0.01 microgram/ml). Cytochalasin B, colchicine, and podophyllotoxin have only modest inhibitory effects on the basal rate of pinocytosis and on PMA-induced cellular spreading, but completely block the stimulatory effects of PMA on pinocytosis in thioglycolate- broth-elicited macrophages. Cytochalasin D markedly inhibits both basal and PMA-stimulated pinocytosis in these cells. Thus, PMA is a useful tool for studying mechanisms of macrophage spreading and for enhancing the overall rate of pinosome formation.  相似文献   

8.
Mitosis in mouse peritoneal macrophages   总被引:5,自引:0,他引:5  
  相似文献   

9.
We have established that treatment of cultured human skin fibroblasts with tropoelastin or with heterogenic peptides, obtained after organo-alkaline or leukocyte elastase hydrolysis of insoluble elastin, induces a high expression of pro-collagenase-1 (pro-matrix metalloproteinase-1 (pro-MMP-1)). The identical effect was achieved after stimulation with a VGVAPG synthetic peptide, reflecting the elastin-derived domain known to bind to the 67-kDa elastin-binding protein. This clearly indicated involvement of this receptor in the described phenomenon. This notion was further reinforced by the fact that elastin peptides-dependent MMP-1 up-regulation has not been demonstrated in cultures preincubated with 1 mm lactose, which causes shedding of the elastin-binding protein and with pertussis toxin, which blocks the elastin-binding protein-dependent signaling pathway involving G protein, phospholipase C, and protein kinase C. Moreover, we demonstrated that diverse peptides maintaining GXXPG sequences can also induce similar cellular effects as a "principal" VGVAPG ligand of the elastin receptor. Results of our biophysical studies suggest that this peculiar consensus sequence stabilizes a type VIII beta-turn in several similar, but not identical, peptides that maintain a sufficient conformation to be recognized by the elastin receptor. We have also established that GXXPG elastin-derived peptides, in addition to pro-MMP-1, cause up-regulation of pro-matrix metalloproteinase-3 (pro-stromelysin 1). Furthermore, we found that the presence of plasmin in the culture medium activated these MMP proenzymes, leading to a consequent degradation of collagen substrate. Our results may be, therefore, relevant to pathobiology of inflammation, in which elastin-derived peptides bearing the GXXPG conformation (created after leukocyte-dependent proteolysis) bind to the elastin receptor of local fibroblasts and trigger signals leading to expression and activation of MMP-1 and MMP-3, which in turn exacerbate local connective tissue damage.  相似文献   

10.
A prothrombinase complex of mouse peritoneal macrophages   总被引:3,自引:0,他引:3  
Addition of prothrombin to mouse peritoneal macrophages in vitro resulted in the formation of a thrombin-like enzyme, as demonstrated by use of the luminogenic peptide substrate S-2621. The prothrombinase activity was sedimented by high-speed centrifugation following homogenization of the cells and was abolished by treatment of the cells with the nonionic detergent Triton X-100 at 0.02% concentration. Moreover, the activity was drastically reduced by maintaining cultures in the presence of warfarin and, presumably due to competitive substrate inhibition, by adding S-2222, a chromogenic peptide substrate for Factor Xa. These findings suggest that prothrombin cleavage is catalyzed by Factor Xa at the macrophage surface. The generated thrombin was inhibited by antithrombin, and this reaction was accelerated by heparin with high affinity for antithrombin but not by the corresponding oligosaccharides composed of 8-14 monosaccharide units. Such oligosaccharides which are capable of accelerating the inactivation of Factor Xa by antithrombin, inhibited thrombin formation from prothrombin in the macrophage cultures, presumably by promoting inactivation by antithrombin of Factor Xa in a prothrombinase complex. Activation of the macrophage coagulation system, as proposed to occur in certain inflammatory conditions, thus may be modulated at various levels by heparin, or heparin oligosaccharides, released from mast cells.  相似文献   

11.
Type VII collagen is the major structural protein of anchoring fibrils, which are believed to be critical for epidermal-dermal adhesion in the basement membrane zone of the skin. To elucidate possible mechanisms for the turnover of this protein, we examined the capacities of two proteases, human skin collagenase, which degrades interstitial collagens, and a protease with gelatinolytic and type IV collagenase activities, to cleave type VII collagen. At temperatures below the denaturation temperature, pepsin cleaves type VII collagen into products of approximately 95 and approximately 75 kDa. Human skin collagenase cleaved type VII collagen into two stable fragments of approximately 83 and approximately 80 kDa, and the type IV collagenase (gelatinase) produced a broad band of approximately 80 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Cleavage of type VII collagen was linear with time and enzyme concentration for both enzymes. Although the Km values were similar for both enzymes, the catalytic rate of cleavage by type IV collagenase is much faster than by interstitial collagenase, and shows a greater rate of increase with increasing temperature. Sequence analysis of the cleavage products from both enzymes showed typical collagenous sequences, indicating a relaxation in the helical part of the type VII collagen molecule at physiological temperature which makes it susceptible to gelatinolytic degradation. Interstitial collagenase from both normal skin cells and cells from patients with recessive dystrophic epidermolysis bullosa, a severe hereditary blistering disease in which both an anchoring fibril defect and excessive production of collagenase can be observed, produced identical cleavage products from type VII collagen. These data suggest a pathophysiological link between increased enzyme levels and the observed decrease or absence of anchoring fibrils.  相似文献   

12.
《The Journal of cell biology》1994,124(6):1091-1102
cDNA clones for murine 92 kD type IV collagenase (gelatinase B) were generated for the determination of its primary structure and for analysis of temporal and spatial expression in vivo. The mouse enzyme has 72% sequence identity with the human counterpart, the major difference being the presence of a 16-residue segment absent from the human enzyme. In situ hybridization analyses of embryonic and postnatal mouse tissues revealed intense signals in cells of the osteoclast cell lineage. Clear expression above background was not observed in macrophages, polymorphonuclear leukocytes, monocytes, or epithelial cells which have been shown to express the gene in vitro in cell cultures. Expression of the gene was first observed at early stage of cartilage and tooth development at E13, where signals were seen transiently in surrounding mesenchymal cells. At later developmental stages and postnatally strong expression was seen in large cells at the surface of bones. These cells were presumably osteoclasts as their location correlated with that of TRAP positive cells. Signals above background were not observed in a number of other tissues studied. The results represent the first demonstration of a highly osteoclast specific extracellular proteinase. The results suggest that during normal development of embryonic organs the 92-kD type IV collagenase does not have a major role in basement membrane degradation, but is rather mainly used for the turnover of bone matrix, possibly as a gelatinase required for the removal of denatured collagen fragments (gelatin) generated by interstitial collagenase.  相似文献   

13.
The transmembrane heparan sulfate proteoglycan syndecan-1 was identified from a human placenta cDNA library by the expression cloning method as a gene product that interacts with membrane type matrix metalloproteinase-1 (MT1-MMP). Co-expression of MT1-MMP with syndecan-1 in HEK293T cells promoted syndecan-1 shedding, and concentration of cell-associated syndecan-1 was reduced. Treatment of cells with MMP inhibitor BB-94 or tissue inhibitor of MMP (TIMP)-2 but not TIMP-1 interfered with the syndecan-1 shedding promoted by MT1-MMP expression. In contrast, syndecan-1 shedding induced by 12-O-tetradecanoylphorbol-13-acetate treatment was inhibited by BB-94 but not by either TIMP-1 or TIMP-2. Shedding of syndecan-1 was also induced by MT3-MMP but not by other MT-MMPs. Recombinant syndecan-1 core protein was shown to be cleaved by recombinant MT1-MMP or MT3-MMP preferentially at the Gly245-Leu246 peptide bond. HT1080 fibrosarcoma cells stably transfected with the syndecan-1 cDNA (HT1080/SDC), which express endogenous MT1-MMP, spontaneously shed syndecan-1. Migration of HT1080/SDC cells on collagen-coated dishes was significantly slower than that of control HT1080 cells. Treatment of HT1080/SDC cells with BB-94 or TIMP-2 induced accumulation of syndecan-1 on the cell surface, concomitant with further retardation of cell migration. Substitution of Gly245 of syndecan-1 with Leu significantly reduced shedding from HT1080/SDC cells and cell migration. These results suggest that the shedding of syndecan-1 promoted by MT1-MMP through the preferential cleavage of Gly245-Leu246 peptide bond stimulates cell migration.  相似文献   

14.
15.
We have previously shown the expression of group X secretory phospholipase A(2) (sPLA(2)-X) in mouse splenic macrophages and its powerful potency for releasing fatty acids from various intact cell membranes. Here, we examined the potency of sPLA(2)-X in the production of lipid mediators in murine peritoneal macrophages. Mouse sPLA(2)-X was found to induce a marked release of fatty acids including arachidonic acid and linoleic acid, which contrasted with little, if any, release by the action of group IB and IIA sPLA(2)s. In resting macrophages, sPLA(2)-X elicited a modest production of prostaglandin E(2) and thromboxane A(2). After the induction of cyclooxygenase-2 (COX-2) by pretreatment with lipopolysaccharide, a dramatic increase in the production of these eicosanoids was observed in sPLA(2)-X-treated macrophages, which was completely blocked by the addition of either the specific sPLA(2) inhibitor indoxam or the COX inhibitor indomethacin. In accordance with its higher hydrolyzing activity toward phosphatidylcholine, mouse sPLA(2)-X induced a potent production of lysophosphatidylcholine. These findings strongly suggest that sPLA(2)-X plays a critical role in the production of various lipid mediators from macrophages. These events might be relevant to the progression of various pathological states, including chronic inflammation and atherosclerosis.  相似文献   

16.
G-CSF is a hemopoietic growth factor involved in granulocytic differentiation of progenitor cells. In this study, we investigated the effects of PGE2 on G-CSF production in murine peritoneal neutrophils in vitro and in vivo. PGE2 augmented LPS-primed G-CSF release from peritoneal neutrophils. This augmentation was mimicked by a type E prostanoid receptor (EP)2-selective agonist but not by other EP-specific agonists. Indeed, the effect of PGE2 on G-CSF release was abolished in neutrophils isolated from EP2-deficient mice. PGE2 and an EP2 agonist have the ability to stimulate G-CSF gene expression even in the absence of LPS. In the casein-induced peritonitis model, the appearance of G-CSF in the casein-injected peritoneal cavity associated well with the timing of neutrophil infiltration as well as PGE2 levels in exudates, with a peak value at 6 h postinjection. Inhibition of endogenous PG synthesis by indomethacin resulted in a marked decrease in G-CSF content and neutrophil number in the peritoneal cavity. Moreover, EP2-deficient mice exhibited a strikingly reduced G-CSF content in peritoneal exudates with comparable responses in neutrophil migration and local PGE2 production at 6 h postinjection. These results suggest that the PGE2-EP2 system contributes to the local production of G-CSF during acute inflammation.  相似文献   

17.
Fc fragments of human IgG can stimulate resident mouse macrophages in culture to secret collagenase, to increase PGE2 secretion, and to decrease the secretion of lysozyme. Active synthesis and secretion were shown by the progressive accumulation of these products in the extracellular medium and inhibition of secretion by cycloheximide. A dose-dependent effect of Fc fragments was demonstrable. Brief exposure of cells to Fc fragments was sufficient to cause the macrophages to secrete collagenase and large amounts of PGE2 for prolonged periods of time, suggesting that a sustained activation rather than temporary modulation of the cells had occurred. Con A had similar effects on macrophage secretory activity. These findings indicate that proteins that bind to specific macrophage plasma membrane receptors may stimulate the secretion of products that promote the inflammatory response.  相似文献   

18.
Peritoneal resident macrophages from mice are sensitive to inhibition by cyclosporin A (CsA) of phorbol 12-myristate 13-acetate (PMA)-stimulated oxidative burst. Inhibition was assessed in terms of superoxide anion (O2.-) and H2O2 production. Key findings were as follows. (a) CsA inhibited in a dose-dependent manner the production of O2.- when cells were stimulated with PMA. CsA did not alter the respiratory burst induced by other stimuli (zymosan, concanavalin A and fMet-Leu-Phe). It was verified that CsA itself had no scavenger effect. (b) A concomitant decrease in H2O2 liberation following CsA exposure was found. This inhibition was observed both in the initial rate of synthesis and in the accumulation after 15 min of incubation. (c) NADPH oxidase activity in the crude supernatant was unaffected by the previous incubation of macrophages with CsA. CsA does not inhibit glucose transport measured as 14CO2 production. (d) The production of O2.- was strongly dependent on the glucose concentration. Sodium oleate also stimulated O2.- production in resident macrophages. These data might be correlated with the inhibitory effect of CsA upon other functions of macrophages.  相似文献   

19.
20.
Analysis of basigin-null mice has shown that basigin is involved in several important physiological processes including reproductive, immune, and neural activities (Igakura et al., 1998, Dev Biol 194:152-165). However, its molecular mechanism of action in these processes has not yet been established. Our objective here is to determine whether basigin has functional properties similar to its apparent human tumor cell homolog, EMMPRIN, i.e., the ability to stimulate matrix metalloproteinase (MMP) production in fibroblasts (Guo et al. 1997, J Biol Chem 272:24-27). Mouse cells express two major forms of basigin that differ in their degree of glycosylation (molecular weights: 45 and 58 kDa) but, in similar fashion to human EMMPRIN, mouse tumor cells express higher levels of basigin than normal cells. We have used three different methods to show that basigin stimulates MMP expression in fibroblasts. First, recombinant basigin was partially purified from transfected CHO cells by affinity chromatography. This basigin preparation stimulates production of MMPs on addition to fibroblasts in culture. Second, co-culture of basigin-transfected CHO cells with fibroblasts gives rise to increased expression of MMPs as compared to control co-cultures. Third, we employed a novel approach in which a recombinant basigin adenovirus was constructed and used to infect the target fibroblasts, so that mutual stimulation between neighboring fibroblasts would be expected to result. In this method also, basigin stimulates production of MMPs. Finally, we showed that addition of basigin or EMMPRIN antibody, respectively, to recombinant basigin or EMMPRIN adenovirus-infected cells augments stimulation of MMP synthesis, implying that cross-linking of basigin/EMMPRIN in the membrane enhances activity. We conclude that murine basigin and human EMMPRIN have similar MMP-inducing activities and are functional homologs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号