首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Media for induction of somatic embryogenesis from immature cotyledonary tissues ofAzadirachta indica (Neem) were determined. Callus was initiated on Murashige and Skoog medium supplemented with 0.5 mg·liter−1 of indol-3 acetic acid, 1.0 mg·liter−1 of 6-benzyl amino purine, and 1000 mg·liter−1 of casein hydrolysate. Effect of kinetin was also studied for embryo induction. Carbohydrate source in the form of sucrose and glucose alone and in combination was tested for embryogenic efficiency. Seventy percent embryos showed germination. Healthy plants were potted in sand and soil. Histologic studies confirmed indirect somatic embryogenesis.  相似文献   

2.
Summary Haworthia comptoniana specimens were cultured to determine how benzyladenine (BA) level and in vitro selection for shoot and callus production affected regeneration capacity and plant phenotype. Leaf explants were cultured on Murashige and Skoog medium containing 0 to 10 mg·liter−1 of BA. The highest number of shoots was obtained with 0.5 mg·liter−1 of BA.H. comptoniana stock cultures (hc) maintained with 0.5 mg·liter−1 of BA produced clumps of small shoots interspersed with friable, white, tan, and green callus. A clump of very large shoots was isolated and designated cell line Rhc; it differed from the original hc culture in shoot size, the lack of callus growth, and higher water content. A line of green callus (designated Gc), a line of white callus (Wc), and a line of soft tan callus (Tc) were also isolated from hc. Optimal BA levels for shoot regeneration from lines Gc and Wc were 2 and 5 mg·liter−1, respectively. No normal shoots could be regenerated from Tc. The phenotypes of these cell lines remained stable for 24 subculture generations. The hc line that initially required BA for growth became hormone autotrophic whereas the other lines did not. Culturing using Gelrite and sealing vessels with parafilm promoted vitrification of the hc line. Culturing using GIBCO agar and unsealed vessels reduced vitrification. The ex-vitro greenhouse survival rates for hc and Rhc plantlets were 10 and 80%, respectively. The large size of the Rhc shoots apparently resulted in significantly higher survival rates under greenhouse conditions, but did not result in any phenotypic whole plant changes.  相似文献   

3.
Summary An efficient protocol for in vitro propagation of an aromatic and medicinal herb Ocimum basilicum L. (sweet basil) through axillary shoot proliferation from nodal explants, collected from field-grown plants, is described. High frequency bud break and maximum number of axillary shoot formation was induced in the nodal explants on Murashige and Skoog (1962) medium (MS) containing N6-benzyladenine (BA). The nodal explants required the presence of BA at a higher concentration (1.0 mg·l−1, 4.4 μM) at the initial stage of bud break; however, further growth and proliferation required transfer to a medium containing BA at a relatively low concentration (0.25 mg·gl−1, 1.1 μM). Gibberellic (GA3) at 0.4 mg·l−1 (1.2 μM) added to the medium along with BA (1.0 mg·l−1, 4.4 μM) markedly enhanced the frequency of bud break. The shoot clumps that were maintained on the proliferating medium for longer durations, developed inflorescences and flowered in vitro. The shoots formed in vitro were rooted on half-strength MS supplemented with 1.0 mg·l−1 (5.0 μM) indole-3-butyric acid (IBA). Rooted plantlets were successfully acclimated in vermi-compost inside a growth chamber and eventually established in soil. All regenerated plants were identical to the donor plants with respect to vegetative and floral morphology.  相似文献   

4.
A protocol was developed for plant regeneration of Melia azedarach L. by in vitro culture of apical meristem (0.5 mm in length). The influence of six clones was investigated. The culture procedure comprised two sequential steps: 1) Induction of shoots by in vitro culture of axillary buds from adult trees (10–15 years old) by culture on Murashige and Skoog (1962) medium (MS) supplemented with 0.5 mg·dm−3 BAP (6-benzylaminopurine), 0.1 mg·dm−3 IBA (indolebutyric acid), and 0.1 mg·dm−3 GA3 (gibberellic acid). The Multiplication of the regenerated shoots was achieved in MS + 0.5 mg·dm−3 BAP + 0.1 mg·dm−3 GA3. 2) In vitro culture of the apical meristems from the regenerated shoots in MS medium (0.7 %) supplemented with various combinations of BAP and IBA. Maximum shoot proliferation was obtained on MS medium supplemented with 0.5 mg·dm−3 BAP and 0.1 mg·dm−3 IBA. Regenerated shoots were rooted on MS + 3.5 mg·dm−3 IBA (4 days) followed by subculture on MS lacking growth regulators (30 days). Complete plants were transferred to soil.  相似文献   

5.
Summary Currently,Cereus peruvianus plants can be rapidly clonedin vitro via adventitious organogenesis using callus cultures; however, somaclonal variation is a problem. A method is described herein using lateral bud explants to produce multiple shoots for clonal propagation. Apical and lateral explants were cultured on MS (Murashige and Skoog, 1962) media with factorial combinations of the auxins indole-3-acetic acid (IAA), 1-naphthaleneacetic acid (NAA), and cytokinins 6-ben-zyladenine (BA) and N-(2-furanyl-methyl)-1-purine-6 amine (kinetin) at the concentrations 0.0, 0.01, 0.1, 1.0 mg“l−1. Positive results were obtained from the lateral explants in all conditions tested, but apical explants did not respond toin vitro multiplication ofC. peruvianus cactus at all growth regulator combinations tested. Formation of axillary shoots inC. peruvianus seems most frequent in medium containing BA at 1.0 mg·l−1 (4.44 μM) and IAA or NAA at 1.0 mg·l−1 (5.71 μM or 5.37 μM respectively), but the frequency of shoot formation in the BA or kinetin and NAA or IAA combinations indicated that any of the combinations tested can be used for multiplication ofC. peruvianus plants regenerated from callus tissue culture. Root formation occurred in all (100%) of the cactus shoots after 9 wk in the same culture medium. All the cacti that developed at the different auxin and cytokin combinations continued growth after transfer to a potting mix of red earth (Paleudult) and ground river sand (1∶1).  相似文献   

6.
Calli were induced from mature caryopses of timothy grass (Phleum pratense L.) on MS medium (Murashige and Skoog 1962) supplemented with 500 mg·dm−3 casein hydrolysate and 5 mg·dm−3 2,4-D (2,4-dicholorophenoxyacetic acid) or 2 mg·dm−3 dicamba (3,6-dichloro-o-anisic acid). Twelve-week-old calli were passaged on media with reduced levels of auxins (2 mg·dm−3 2,4-D or 1 mg·dm−3 dicamba). Tissues induced on medium with 2,4-D were transferred on medium with 2,4-D and on medium with dicamba; parallely calli initiated on medium with dicamba were passaged on medium with 2,4-D or dicamba. Calli from various media sequences were used to establish cell suspension cultures in media containing 2 mg·dm−3 2,4-D or 1 mg·dm−3 dicamba. An assessment of regeneration ability of calli was made on MS medium containing 0.2 mg·dm−3 kinetin. Callus tissue induced and/or subcultured on any of the media with 2,4-D did not regenerate plants while dicamba added to the media was the effective stimulator of regenerability. In the presence of 2,4-D calli and suspensions produced a jelly-like extracellular matrix. In cell suspension this phenomenon was observed 4–5 days after each passage. The measurements of electric potential of calli, growing on MS medium with kinetin were performed. Non-regenerating callus areas had an electric potential close to 0 mV while parts of tissue with meristematic centres were characterized by lower values of electric potential.  相似文献   

7.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

8.
Summary Several rose species (Rosa rugosa, R. wichuraiana, R. setigera, R. laevigata, R. banksiae, R. roxburghii, R. odorata) and interspecific hybrids were cultured to determine the appropriate concentrations of nutrients and growth regulators for shoot proliferation and root initiation. Cultured shoot tips and lateral buds from different genotypes proliferated multiple shoots on a basal medium [Murashige and Skoog (MS) salts, vitamins, glycine, sucrose, and agar] supplemented with 0 μM to 17.8 μM (4 mg·l−1) 6-benzyladenine (BA) and 0 μM to 0.54 μM (0.1 mg·l−1) naphthalene, acetic acid (NAA). The ability of the explants to proliferate shoots and initiate roots was affected by the genotype, the nodal position of the explant, the strength of the MS basal salts, and the growth regulators used. The buds nearest the apex exhibited the slowest rate of development. Most species had the highest shoot proliferation when cultured on basal MS medium supplemented with 8.9 μM (2 mg·l−1) BA, but the degree varied by species. Root development was enhanced by lowering the concentration of MS salts. With difficult-to-root species, rooting was improved by supplementing the media with 11.4 μM (2 mg·l−1) indole-3-acetic acid (IAA) or by giving them a 7-d dark treatment at 10°C.  相似文献   

9.
Summary Nodal explants from hop were exposed to plant growth regulators to determine suitable media for initiation from axillary buds and subsequent micropropagation. Efficient culture establishment (96.6% of explants) was achieved on Murashige and Skoog (MS) medium (modified to contain 1 mg l−1 thiamine hydrochloride) supplemented with 0.57 μM indoleacetic acid (IAA) and 2.22 μM 6-benzylaminopurine (BA). Subsequent transfer of explants to treatments containing an auxin ([1-naphthaleneacetic acid], NAA or IAA) and BA, 6-[γ,γ-dimethylallylamino]purine (2iP), kinetin (KIN) or thidiazuron (N-phenyl-N′-1,2,3-thidiazol-5-ylurea [TDZ]) resulted in significantly different amounts of multiplication. Optimal TDZ-supplemented media elicited a greater than threefold increase in the number of shoots and nodes generated per explant compared to optimal media containing BA, 2iP and KIN. Shoots were successfully rooted using half-strength MS supplemented with 5.71 μM IAA and 4.9 μM indolebutyric acid (IBA), and regenerated plants were successfully transferred to soi. An overall micropropagation schedule, which can be implemented into hop commercialization programs, includes: (i) establishment in MS with 0.57 μM IAA and 2.22 μM BA; (ii) multiplication in MS with 0.57 μM IAA and 2.27 μM TDZ; (iii) elongation in MS; and (iv) rooting in half-strength MS with 5.71 μM IAA and 4.9 μM IBA.  相似文献   

10.
Callus selection (CS) and the flamingo-bill explant (FB) methods were evaluated for efficacy in transformation for celery. Agrobacterium tumefaciens strains EHA105 and GV3101, each with the bar gene under the promoters NOS (pGPTV-BAR) or 35S (pDHB321.1), were used. Leaf explants were inoculated and co-cultivated for 2 d in the dark. Calluses emerged on the explants on callus medium (C), Murashige and Skoog (MS) medium + 2,4-Dichlorophenoxyacetic acid (2,4-D) (2.3 μM) + kinetin (2.8 μM) + timentin (300 mg·l−1). Calluses 4- to 6-wk-old were selected for glufosinate (GS) resistance by a two step method. First, calluses were transferred to C medium + GS 0.35, 0.5, 1, 2, 5, or 10 mg·l−1; calluses formed only with 0, 0.35 and 0.5 mg·l−1 GS. All growing calluses from 0 and 0.35 mg·l−1 and a few from 0.5 mg·l−1, were divided and placed back on C + GS 0.35–0.5 mg·l−1 for another 5–6 wk. Second, tolerant clones were again divided and placed on C + GS 1–50 mg·l−1. When cultivar XP85 was inoculated with both strains, using pGPTVBAR, 19 glufosinate resistant (GR) callus clones were selected, but shoots regenerated only for strain EHA105 inoculations. When both of the strains (each with pDHB321.1) were inoculated on cv. XP166, 3 and 12 GR calluses occurred for EHA105 and GV3101, respectively. Using CS, a total of 34 GR callus clones were selected, and shoots were regenerated from over 50% of them on Gamborg B5 medium + 6-(γ, γ-dimethylallylamino) purine 2ip (4.9 μM) + naphthaleneacetic acid (NAA; 1.6 μM) and rooted on MS in 5–6 mo total time. Conversely, using FB with inoculation by GV3101/pDHB321.1 on cv. XP166 yielded putative transgenic celery plants confirmed by polymerase chain reaction (PCR) in just 6 wk. Transformation of the bar gene into celery was confirmed by PCR for 5 and 6 CS and FB lines, respectively. Southern blot analyses indicated 1–2 copies in CS lines and 1 copy in FB lines. Herbicide assays on whole plants with 100 and 300 mg·l−1 glufosinate indicated a range of low to high tolerance for lines derived by both methods. The bar gene was found to be Mendelian inherited in one self-fertile CS derived line.  相似文献   

11.
Summary Plant regeneration through direct somatic embryogenesis was achieved from root segments derived from in vitro shoots of Rauvolfia micrantha Hook. f. (Apocynaceae) grown for 6 wk in half-strength Murashige and Skoog (MS) medium with 3% sucrose, 100 mgl−1 myo-inositol, and 0.5 mgl−1 α-naphthaleneacetic acid (NAA). The effects of photoperiod and plant growth regulators (PGRs) in half-strength MS medium were studied for the rapid and maximum induction of somatic embryos. The characteristic globular or heart-shaped stages of somatic embryogenesis were not found and cotyledonary stage embryos occasionally appeared without the intervention of callus in total darkness and 16-h photoperiod. Root segments cultured in the medium containing 0.1 mgl−1 NAA and 0.2 mgl−1 6-benzyladenine (BA) under 16-h photoperiod showed the maximum frequency (39%) of embryogenesis. The frequency of embryo formation was increased to 63% when they were cultured in medium with 0.1 mgl−1 NAA and 0.2 mgl−1 BA in the dark for 4wk, then grown under the 16-h photoperiod. Explants with developing embryos developed into plants after transfer to half-strength MS medium supplemented with 0.1 mgl−1 BA and 0.05 mgl−1 NAA. The well-developed plants were hardened and most plants (80%) survived and were phenotypically similar to the mother plants.  相似文献   

12.
A liquid meristematic root primordia culture (RPC) of Solanum lycopersicoides Dun. based on persistent rhizogenesis in a modified Murashige and Skoog (1962) medium supplemented with NAA (15 mg·l−1) or 2,4-D (1 mg·l−1) was described. The meristematic clumps (2–3 mm in diameter) originating from NAA supplemented medium were capable of regenerating plants through the callus stage (up to 70 %). Efficient direct plant regeneration (up to 21 %) was possible from numerous single globular-shaped root primordia (RP) structures liberated from the parental aggregates in 2,4-D supplemented proliferation medium without NH4NO3 and with a 2.5 fold increase in KNO3. The RP converted into plantlets (artificial seedlings) on solid or liquid media without growth growth regulators through the unipolar followed by the mace-shaped bipolar structure stages. The use of apical shoot bud, root apices or root segments as a primary explants brought about RPC induction and plant regeneration. The plants derived from 2 years old culture were phenotypically identical to their parental S. lycopersicoides plants and possessed the same ploidy.  相似文献   

13.
Callus cultures of Tabernaemontana persicariaefolia, (Apocynaceae), an endangered species endemic to the Mascarene Islands, were established from leaf explants on MS medium containing either 5 mg·l−1 2,4-D and 0.5 mg·l−1 BA or 5 mg·l−1 2,4-D, 0.5 mg·l−1 BA and 200 mg·l−1 DFMO. Histological studies showed regenerating nodules resembling globular embryos in calli after 4 weeks on the DFMO medium. Green shoot formation was achieved by sequential subculture of the induced calli on media with gradually decreasing 2,4-D concentrations (5→1→0 mg·l−1). Regeneration was greatly stimulated in the presence of DFMO. The first emergence of shoots occured 3 weeks earlier than in untreated callus cultures.  相似文献   

14.
Summary A protocol for in vitro shoot regeneration from cotyledon explants of Citrullus lanatus (Thunb.) Matsum. & Nakai cv. Sugar Baby is described. The cotyledons excised from 7-d-old aseptic seedlings showed the highest percentage of shoots on Murashige and Skoog (MS) + N6-benzyladenine (BA; 3.0 μM) + N6-[2-isopentenyl] adenine (2iP; 3.0 μM) and MS + BA (3.0 μM) + indole-3-acetic acid (IAA; 3.0 μM). Whereas the latter medium induced shoot regeneration after the callusing of the explant, the former stimulated direct shoot formation. The regenerated shoots were rooted and the resulting plants were established in earthen pots with 55% success.  相似文献   

15.
Summary The purpose of this study was to developin vitro techniques for conserving wild and endemic species ofCeropegia by mass multiplication for subsequent reintroduction in their natural habitat. Micropropagation involving a combination of axillary bud culture, shoot multiplication, somatic embryogenesis andin vitro tuber formation forCeropegia jainii, a rare plant of the Indian sub continent,C. bulbosa var.bulbosa andC. bulbosa var.lushii, common species, was developed. Nodal explants from all species were cultured on 0.5 MS medium with 8.8 μM (2 mg·l−1) N6-benzyl aminopurine (BA) to regenerate the axillary buds. These produced multiple shoots when transferred to multiplication medium consisting of 0.5 MS medium with 2.2 μM (0.5 mg·l−1) BA, or microtubers when transferred to 0.5 MS medium with 22.2 μM (5 mg·l−1) BA and 23.2 μM (5 mg·l−1) kinetin.In vitro flowering occurred inC. jainii and not in the other two varieties when the plants were cultured on multiplication media with spermine at 0.25 μM (50 μg·l−1) as an additive. Shoot pieces produced callus on MS medium with 9.05 μM (2 mg·l−1) 2,4-dichlorophenoxy acetic acid. Regeneration of the calli by somatic embryogenesis was achieved when they were transferred to 0.5 MS medium with 2.2 μM (0.5 mg·l−1) BA. Rooting of the shoots was possible both byin vitro andex vitro means.  相似文献   

16.
Experiments were carried out with three-year-old embryogenic suspension culture of Gentiana pannonica Scop. The initial explant for the suspension determinated both the embryogenic character and embryo production. Cultures were initiated by culture of hypocotyl, cotyledon and root explants on MS (Murashige and Skoog 1962) medium supplemented with 1.0 mg·l−1 Kinetin and 0.5 mg·l−1 2,4-D, later transferred and maintained in liquid MS medium with 1.0 mg·l−1 Dicamba, 0.1 mg·l−1 NAA, 2.0 mg·l−1 BAP and 80.0 mg·l−1 AS. Regeneration medium included 0.0–1.0 mg·l−1 GA3+0.0−2.0 mg·l−1 Kin.+0.0−160 mg·l−1 AS. In these culture conditions, the effect of the explant was found to be the most important factor. The curve of growth, growth coefficient and % of participation of various size aggregates differed in the studied suspensions. Flow cytometry revealed various DNA content in nuclei from praembryogenic mass depending on the explant origin. To complete embryogenesis the medium was changed from liquid to solidified in the presence of the same plant growth regulators combination required. The most embryogenic culture appeared hypocotyl-derived and it yielded the highest number of somatic embryos. The suspension culture originating from root proliferated the highest number of embryogenic cell clusters but did not produce embryos for fraction 120–450 μm. One hundred mg of suspension of the fraction that was larger than 450 μm yielded 309, 175, 123 embryos for the following suspensions: root-, cotyledon-, hypocotyl-derived, respectively. Almost 50 % of non-deformed fully developed embryos from all studied suspensions passed conversion into germling stage and finally plants were regenerated.  相似文献   

17.
Summary Two protocols for clonal propagation of kurrat (Allium ampeloprasum var.kurrat) using explants from the basal plates of mature plants are described. In direct formation, explants were cultured in Murashige and Skoog (MS) medium and supplemented with either benzyladenine at 0.0 or 4.4 μM, or supplemented with 7.0 μM benzyladenine and 0.1 μM naphthaleneacetic acid. Shoots appeared after 4 wk of culture. In the two-step procedure, explants were cultured first on MS medium supplemented with 1.4 μM 2,4-dichlorophenoxyacetic acid and 1.4 μM kinetin, and incubated in the dark for 4 wk. They were then transferred to MS medium supplemented with 4.4 μM benzyladenine for shoot formation. All shoots were rooted on MS medium containing 5 g·liter−1 activated charcoal. Normal viable plants were successfully established in soil.  相似文献   

18.
Flower buds, cotyledons and hypocotyls of Pharbitis nil were used as plant material. Flower buds (1–2 mm long) were excised from 3-week-old plants, grown in soil. Cotyledons of 7-day-old sterile seedlings were cut into 25 mm2 squares cotyledons whereas hypocotyls were cut to 1 mm long fragments. Explants were transferred into Petri dishes containing the Murashige and Skoog medium (MS), supplemented with either BA (11 μM·L−1) alone or BA (22 μM·L−1) and NAA (0.55 μM·L−1), and different sugars: sucrose, fructose, glucose, mannose or sorbitol (autoclaved or filter-sterilized). Addition of glucose instead of sucrose to the medium stimulated the induction of callus on flower buds and cotyledonary explants, but inhibited its growth on fragments of hypocotyls. The medium supplemented with fructose (especially filter-sterilized) stimulated the development of flower elements. Organogenesis of shoots and roots on explants was also observed. Flower buds and hypocotyls were able to regenerate both organs. Addition of fructose or glucose to the medium stimulated the organogenesis of shoots, whereas root organogenesis was inhibited on all explants used. Sorbitol strongly inhibited both induction of callus and organogenesis on all explants used.  相似文献   

19.
Two different morphogenetic pathways, adventitious bud and corm-like structure (CLS), were observed on organogenic calli derived from the petioles of Amorphophallus albus in vitro. The organogenic calli was established via culture of petiole segments on Murashige and Skoog (MS) medium supplemented with 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 1.0 mg l−1 6-benzyladenine (BA) and subculture of the petiole-derived calli on MS medium with 0.5 mg l−1 NAA and 0.5 mg l−1 BA. These organogenic calli were used to induce morphogenesis via culture on MS medium with various concentrations of NAA and BA. BA alone favoured adventitious bud differentiation (57.0 ± 8.3% at maximum) from the organogenic calli but inhibited CLS formation. In the presence of NAA and BA, both adventitious bud and CLS were observed in a same culture system. The maximum CLS formation (71.2 ± 9.3%) were found on MS medium with 0.5 mg l−1 NAA and 2.0 mg l−1 BA, associated with 26.7 ± 8.6% adventitious bud differentiation. A small part of the adventitious buds developed into normal shoots which needed rooting culture phase to form complete plants. About 80% survival rate was obtained with these plants after transplantation to soil. More than 90% of the CLSs produced complete plants with shoots and root systems, regardless of the rooting media tested. Transplantation of the CLS-derived plants to soil gave 100% survival rate. Histological observations revealed both the two morphogenetic events originated from the meristematic cells located in superficial layers of callus tissue.  相似文献   

20.
This study reports a protocol for successful micropropagation of Penthorum chinense using nodal explants on Murashige and Skoog (MS) medium supplemented with 6-benzyladenine (BA) or kinetin (Kn). The presence of BA promoted a higher rate of shoot multiplication than Kn. Maximum multiple shoot formation was observed in 59.2% of nodal explants cultured on MS medium supplemented with 2.0 mg l−1 BA after 6 wk. After subculture for 4 wk, the maximum number of shoots (6.4) was obtained on a medium with 2.0 mg l−1 BA, but shoots were too short and not suitable for micropropagation. The taller shoots that regenerated in the presence of lower BA concentration (1.0 mg l−1) were selected for root induction study. Most shoots (98.8%) rooted in the presence of 0.5 mg l−1 indole-3-acetic acid after 3 wk, with each shoot forming an average of 10.0 roots. Plantlets were transferred to soil and successfully acclimatized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号