首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Both cytogenetically visible and cryptic deletions of the terminal region of chromosome 22q are associated with a clinical phenotype including mental retardation, delay in expressive speech development, hypotonia, normal to accelerated growth and minor facial dysmorphic features. The genes responsible for the development of the phenotype have not yet been identified, but a distal localization is probable, since the cytogenetically visible and the cryptic deletions show a similar pattern of symptoms. We report a 33-year-old woman with a submicroscopic 22q13 deletion, mild mental retardation, speech delay, autistic symptoms and mild facial dysmorphic features. The deletion was mapped by FISH using cosmid probes from terminal 22q13, and the size of the deletion was estimated to be 100 kb. Three genes are affected by the deletion in this patient. ACR and RABL2B are deleted and proSAP2 is disrupted. This observation, together with recently published data, supports the notion that proSAP2 is the most important contributor to the 22q13 deletion phenotype.  相似文献   

2.
Hypoplastic left heart syndrome(HLHS) refers to the abnormal development of the left-sided cardiac structures, resulting in obstruction to blood flow from the left ventricular outflow tract. In addition, the syndrome includes underdevelopment of the left ventricle, aorta, and aortic arch, as well as mitral atresia or stenosis. HLHS has been reported to occur in approximately 0.016 to 0.036% of all live births. Newborn infants with the condition generally are born at full term and initially appear healthy. As the arterial duct closes, the systemic perfusion becomes decreased, resulting in hypoxemia, acidosis, and shock. Usually, no heart murmur, or a non-specific heart murmur, may be detected. The second heart sound is loud and single because of aortic atresia. Often the liver is enlarged secondary to congestive heart failure. The embryologic cause of the disease, as in the case of most congenital cardiac defects, is not fully known. The most useful diagnostic modality is the echocardiogram. The syndrome can be diagnosed by fetal echocardiography between 18 and 22 weeks of gestation. Differential diagnosis includes other left-sided obstructive lesions where the systemic circulation is dependent on ductal flow (critical aortic stenosis, coarctation of the aorta, interrupted aortic arch). Children with the syndrome require surgery as neonates, as they have duct-dependent systemic circulation. Currently, there are two major modalities, primary cardiac transplantation or a series of staged functionally univentricular palliations. The treatment chosen is dependent on the preference of the institution, its experience, and also preference. Although survival following initial surgical intervention has improved significantly over the last 20 years, significant mortality and morbidity are present for both surgical strategies. As a result pediatric cardiologists continue to be challenged by discussions with families regarding initial decision relative to treatment, and long-term prognosis as information on long-term survival and quality of life for those born with the syndrome is limited.  相似文献   

3.
4.
Characteristics of sleep and sleep problems were investigated in 43 individuals with 11q terminal deletion disorder (Jacobsen syndrome). Data were collected using a sleep questionnaire. Ten individuals (23%) had a sleep problem. Settling problems, frequent night waking and early waking occurred in 2 (4%), 7 (16%) and 2 (6%) individuals, respectively. Twenty-two individuals (54%) had a history of sleep problems. Twenty-five individuals (60%) showed restless sleep and 23 individuals (54%) slept in an unusual position. Apart from frequent coughs, no significant relationships were found between the presence of a sleep problem and other variables, such as age, level of ID, breathing problems, heart defects, constipation, daytime activity and behavioral diagnosis, restless sleep and sleeping in an unusual positions.  相似文献   

5.
A fetal patient presented at 27.3 weeks of gestation with polyhydramnion. Ultrasound examination showed enlarged cerebral ventricles, abnormal position of the fingers and abnormal external genitals. Chromosome studies in chorionic villus material were normal male: in cultured amniocytes a distal deletion 14q32 was demonstrated and confirmed by FISH analysis. The baby was born at 37 weeks and died spontaneously during labour. This is the first report of prenatal diagnosis of a terminal 14q deletion.  相似文献   

6.
Chromosome inversions are intra-chromosomal rearrangements formed when the chromosome breaks occur at two places, and in the process of repair the intervening segments are joined in an inverted or opposite manner. Inversions themselves do not appear to cause clinical anomalies, if balanced. Abnormal phenotypes can occur due to gene disruption at the point of breakage and reunion or due to duplication/deficiency recombinants formed during crossover at meiosis. We report a case with familial deletion 4q syndrome in a 1-year-old female child with dysmorphism and congenital abnormalities. The deletion was an outcome of a paracentric inversion 4q31.2q35.2. The deletion was confirmed by fluorescence in situ hybridization using telomeric DNA probes for chromosome No. 4. An attempt was made to correlate the genotype with the phenotype. The father had the same rearrangement with a milder phenotype. The recurrence risk in such cases is high.  相似文献   

7.
Summary We report a girl with a de novo interstitial deletion in the long arm of a chromosome 10. Clinical features are described.  相似文献   

8.
The aim of this study was to determine whether deletion 22q11.2 studies should become apart of a standardized diagnostic workup for selected groups of at risk patients. We prospectively investigated four cohorts of unselected patients referred because of 1) congenital heart defect (CHD), 2) palatal anomalies, 3) hypocalcaemia, 4) dysmorphic features suggestive of del 22q11.2. Fluorescence in situ hybridization analysis revealed deletion 22q11.2 in 9.4% (6/64) patients with CHD. From 18 patients referred because of the hypocalcaemia, six (33.3%) had 22q11.2 deletion. In the group of 31 children with dysmorphic traits, the diagnosis was confirmed in two (6.4%) patients. None of the 58 children with palatal anomalies showed evidence of 22q11.2 deletion. Conclusions: Testing for the 22q11.2 microdeletion can be recommended in all patients with conotruncal heart defects and in patients with hypocalcaemia. It should be also considered in patients presenting only with dysmorphic traits suggestive of del 22q11.2, while screening in patients with cleft palate is not warranted.  相似文献   

9.
In this case report we describe a child with a de novo deletion in the (q11.2q13) region of chromosome 14. The child presented with dysmorphic features - anophthalmia, microcephaly, and growth retardation. Cytogenetic studies showed mosaicism. The karyotype was 46,XX,del(14)(q11.2;q13) [16] /46,XX [9]. We compared the features observed in this child with that of others with the same deletion reported in scientific literature and found that this is the first report of a child mosaic for this deletion. It is also the first time it has been reported in association with anophthalmia.  相似文献   

10.
We present a mother and her son, both carrying a deletion of chromosome 22q.11.2. They manifest clinical heterogeneity. The mother has schizophrenia, an IQ of 70. Tetralogy of Fallot, a hypernasal voice, but does not have the characteristic facies. Her son has mild psychomotor developmental delay. Tetralogy of Fallot and mild facial features characteristic of VCFS.  相似文献   

11.
22q11 Deletion syndrome (22q11DS) is a common microdeletion syndrome with variable expression, including congenital and later onset conditions such as schizophrenia. Most studies indicate that expression does not appear to be related to length of the deletion but there is limited information on the endpoints of even the common deletion breakpoint regions in adults. We used a real-time quantitative PCR (qPCR) approach to fine map 22q11.2 deletions in 44 adults with 22q11DS, 22 with schizophrenia (SZ; 12 M, 10 F; mean age 35.7 SD 8.0 years) and 22 with no history of psychosis (NP; 8 M, 14 F; mean age 27.1 SD 8.6 years). QPCR data were consistent with clinical FISH results using the TUPLE1 or N25 probes. Two subjects (one SZ, one NP) negative for clinical FISH had atypical 22q11.2 deletions confirmed by FISH using the RP11-138C22 probe. Most (n = 34; 18 SZ, 16 NP) subjects shared a common 3 Mb hemizygous 22q11.2 deletion. However, eight subjects showed breakpoint variability: a more telomeric proximal breakpoint (n = 2), or more centromeric (n = 3) or more telomeric distal breakpoint (n = 3). One NP subject had a proximal nested 1.4 Mb deletion. COMT and TBX1 were deleted in all 44 subjects, and PRODH in 40 subjects (19 SZ, 21 NP). The results delineate proximal and distal breakpoint variants in 22q11DS. Neither deletion extent nor PRODH haploinsufficiency appeared to explain the clinical expression of schizophrenia in the present study. Further studies are needed to elucidate the molecular basis of schizophrenia and clinical heterogeneity in 22q11DS.  相似文献   

12.
A male patient is reported with terminal 10q26 deletion, developmental retardation, special behaviour, and multiple clinical anomalies including hypotonia, short stature of postnatal onset, short webbed neck, craniofacial dysmorphism, pectus excavatum with widely spaced small nipples, cryptorchidism with scrotal hypoplasia, limb and musculoskeletal anomalies. The facial dysmorphism mainly consisted of trigonocephaly, a long, triangular and asymmetrical face, hypertelorism with pseudoepicanthus, broad nasal bridge, high-arched palate, retrognathia, low-set dysplastic auricles and, on ophthalmologic examination, strabismus, astigmatism and myopia. Some of these clinical stigmata were suggesting the diagnosis of Noonan syndrome. The extremities showed special features including shortening of proximal limbs, brachydactyly with syndactyly of toes II-III and left fingers III-IV, hypoplastic toenails and joint abnormalities. A diastasis of abdominal muscles was noted and, on X-rays a thoracic scoliosis and bilateral coxa valga were evidenced. Analyses of G- and T-banded chromosomes complemented by FISH analyses using different subtelomere probes detected a terminal 10q26 deletion. Subsequent FISH studies using different probes of the 10q26 region were performed in an attempt to closely define the breakpoint and the extent of the deletion and, thereby, to allow karyotype/phenotype comparison between this patient and a previously reported case with an apparently similar 10q26 deletion.  相似文献   

13.
14.
New deletion syndrome: 1q43.   总被引:2,自引:0,他引:2       下载免费PDF全文
A male infant showed dysmorphology of the head and face, neck, extremities, and genitalia, as well as growth and mental retardation. His G-banded karyotype was 46,XY,--1+der(1),t(1;16)(q43;q24)mat. Combined with five previously reported cases involving similar terminal deletions beginning at 1q42 or 43, we show that the homology of phenotypic characteristics permits identification of a new deletion syndrome, the first involving chromosome 1.  相似文献   

15.
16.
Rearrangements involving long arm of chromosome 12 are rare events. To our knowledge, we present the first case of an interstitial deletion of the long arm of chromosome 12 in a prenatal diagnosis. A review of the literature is included in our report.  相似文献   

17.
In maize, the P1-vv allele specifies variegated pericarp and cob pigmentation, and contains an Ac transposable element inserted in the second intron of the P1-rr gene. Starting from P1-vv, we recovered a new allele, called P1-vv5145, which gives an extremely light variegated pericarp and cob phenotype. The P1-vv5145 allele contains an Ac element ( Ac5145) at the same position and in the same orientation as in the progenitor P1-vv allele; however, the P1-vv5145 allele has a 2-bp deletion which removes the last nucleotide (A) from the 3' end of the Ac element, and an adjacent flanking nucleotide (C) from the p1 intron. In crosses with a Ds tester stock, P1-vv5145 shows a normal ability to induce Ds transposition; however, Ac excision from P1-vv5145 is 3800-fold less frequent than from the progenitor P1-vv allele. Our results demonstrate that the alteration of the 3' terminal base strongly impairs Ac transposition. The P1-vv5145 allele thus provides a relatively stable source of Ac transposase for controlling Ds transposition in genetic experiments. In addition, we describe two further alleles ( P1-ww7B8, P1-ww9A146-3) that contain deletions of Ac and flanking p1 gene sequences. These latter deletions are larger and involve the 5' end of the the Ac element. A model is proposed to explain the formation of one-sided deletions as a consequence of Ac transposition during replication of the element.  相似文献   

18.
A 59-year-old hypertensive white male was diagnosed with acute myelogenous leukemia (AML), M4. A bone marrow aspirate showed a karyotype of 46,XY,del(20)(q11.2q13.3)[12]/ 47,XY,del(20)(q11.2q13.3)x2[8]. The majority of cases with 20q deletion are associated with myeloid disorders; however, an extra copy of the 20q deletion has rarely been reported. The patient expired seven days after admission to the hospital. At autopsy hepatosplenomegaly was present. Many foamy macrophages with bubbling cytoplasm in the spleen, liver, bone marrow and lymph nodes were suggestive of Niemann-Pick disease, type E. AML has not previously been reported with Niemann-Pick disease.  相似文献   

19.
20.
We report an 18-year-old Turkish girl with an 18q- deletion and abnormalities of face, mental and growth retardation, mitral deficiency and hypothyroidism. Mitral deficiency has not been reported in 18q deletion syndrome cases previously. We performed cytogenetic and molecular cytogenetic analysis, and brain MRI. Her karyotype was 46,XX,del(18)(q21.2-->qter). This report compares the symptoms and features of the present patient with previously reported cases with 18q syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号