首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Follicular dendritic cells (FDC)3 play crucial roles in germinal center (GC) formation and differentiation of GC B cells. Many aspects of FDC function are influenced by contact with B or T cells, and by cytokines produced in the GC, which involve stimulation of CD40 and TNF-alpha receptors on FDC. In this study, using an established FDC line, HK cells, we compared the effects of CD40 and TNF receptor triggering on cytokine induction and activation of mitogen-activated protein kinase family. We show that HK cells spontaneously produced IL-6, M-CSF, and G-CSF mRNA. Both the soluble form of CD40 ligand (sCD40L) and TNF increased the level of M-CSF and G-CSF mRNA. While TNF strongly induced IL-6 mRNA, its expression was not affected by sCD40L treatment, differing from the strong IL-6 induction in other cell types upon CD40 stimulation. In addition, sCD40L treatment resulted in activation of extracellular signal-related kinase 1 and 2 (ERK1/2) and p38 without significant increase in c-Jun N-terminal kinase (JNK) activity. Lack of JNK activation differs in that most B cells respond to CD40 stimulation by inducing JNK activity strongly, suggesting distinct characteristics of CD40 signaling in FDC. Compared with the effects of sCD40L, TNF was capable of inducing JNK activity in addition to the activation of ERK1/2 and p38. Furthermore, the proximal signaling elements activated by TNF differed from those activated by sCD40L, in that TNF did not require PMA-sensitive protein kinase C isoforms in the activation of ERK and p38, whereas sCD40L did. However, signals activated by these stimuli converged on cytokine gene expression in a synergistic manner, which may have implication in augmenting FDC function during GC reaction.  相似文献   

2.
Bystander B cells may be initially stimulated through CD40, which enhances susceptibility to Fas-mediated apoptosis, before encountering Ag, which produces Fas resistance. A key issue in this process is to what extent CD40 cross-talk might affect subsequent BCR signaling. It has previously been shown that CD40 engagement bypasses or mitigates the need for Bruton's tyrosine kinase in subsequent BCR signaling for NF-kappaB activation. However, the full extent of the effects of CD40 on BCR signaling has not been delineated. In the present study we evaluated the possibility that CD40-mediated cross-talk also affects another principal outcome of BCR signaling: MAPK activation. We found that prior stimulation of primary murine B cells with CD40L markedly enhanced the level of ERK and JNK (but not p38 MAPK) phosphorylation produced by subsequently added anti-Ig Ab, and much, but not all, of this enhancement was independent of PI3K and phospholipase C. CD40L treatment similarly enhanced BCR-induced MAPK kinase (MEK) phosphorylation, and MEK was required for enhancement of ERK. Although BCR-induced c-Raf phosphorylation was also enhanced by prior CD40L treatment, c-Raf was not required for MEK/ERK phosphorylation. These results identify a novel system of receptor cross-talk between CD40 and BCR and indicate that the effects of CD40 engagement on subsequent BCR stimulation spread beyond NF-kappaB to involve the MAPK pathway.  相似文献   

3.
4.
CD147 is a type I transmembrane protein previously identified as a signal transducing receptor for extracellular cyclophilins. CD147-expressing cells exhibit a characteristic activation of extracellular-signal regulated kinase 1 and 2 (ERK1/2) in response to stimulation with cyclophilin A (CypA). CD147 was also shown to enhance HIV-1 infection in a CypA-dependent fashion, but the role of signaling in this activity of CD147 has not been investigated. In this report, we demonstrate that neither mutations incapacitating signaling response of CD147 to CypA stimulation, nor inhibitor of ERK activation, reduced susceptibility of cells to HIV-1 infection. Surprisingly, truncation of the cytoplasmic tail of CD147 did not abolish signaling response to CypA, but reduced infection by HIV-1 to the level observed in control cells. These results indicate that CD147 enhances HIV-1 replication in a signaling-independent fashion through specific events mediated by the cytoplasmic domain of the protein.  相似文献   

5.
6.
CD72 is a 45-kDa B cell transmembrane glycoprotein that has been shown to be important for B cell activation. However, whether CD72 ligation induces B cell activation by delivering positive signals or sequestering negative signals away from B cell receptor (BCR) signals remains unclear. Here, by comparing the late signaling events associated with the mitogen-activated protein kinase pathway, we identified many similarities and some differences between CD72 and BCR signaling. Thus, CD72 and BCR activated the extracellular signal-regulated kinase (ERK) and the c-Jun N-terminal kinase (JNK) but not p38 mitogen-activated protein kinase. Both CD72- and BCR-mediated ERK and JNK activation required protein kinase C activity, which was equally important for CD72- and BCR-induced B cell proliferation. However, CD72 induced stronger JNK activation compared with BCR. Surprisingly, the JNK activation induced by both BCR and CD72 is Btk independent. Although both CD72 and BCR induced Btk-dependent ERK activation, CD72-mediated proliferation is more resistant to blocking of ERK activity than that of BCR, as shown by the proliferation response of B cells treated with PD98059 and dibutyryl cAMP, agents that inhibit ERK activity. Most importantly, CD72 signaling compensated for defective BCR signaling in X-linked immunodeficiency B cells and partially restored the proliferation response of X-linked immunodeficiency B cells to anti-IgM ligation. These results suggest that CD72 signals B cells by inducing BCR-independent positive signaling pathways.  相似文献   

7.
8.
Exosomes are lipid-bound nanovesicles formed by inward budding of the endosomal membrane and released following fusion of the endosomal limiting membrane with the plasma membrane. We show here that primary leukocytes do not release exosomes unless subjected to potent activation signals, such as cytokine or mitogen stimulation. In particular, high levels of exosomes were released when murine splenic B cells were stimulated via CD40 and the IL-4 receptor. This property was shared by B cells from different anatomic locations, as newly formed marginal zone and follicular B cells were capable of secreting exosomes upon CD40/IL-4 triggering. B cell exosomes expressed high levels of MHC class I, MHC class II, and CD45RA (B220), as well as components of the BCR complex, namely, surface Ig, CD19, and the tetraspanins CD9 and CD81. Ig on the plasma membrane of primary B cells was targeted to the exosome pathway, demonstrating a link between the BCR and this exocytic pathway. IgD and IgM were the predominant Ig isotypes associated with CD40/IL-4 elicited exosomes, though other isotypes (IgA, IgG1, IgG2a/2b, and IgG3) were also detected. Together, these results suggest that exosome release is not constitutive activity of B cells, but may be induced following cell: cell signaling.  相似文献   

9.
We have previously shown that CD40 causes strong activation of the c-Jun N-terminal kinase (JNK), the p38 mitogen-activated protein kinases (MAPK) and MAPKAP kinase-2, a downstream target of p38 MAPK. To identify signaling motifs in the CD40 cytoplasmic domain that are responsible for activation of these kinases, we have created a set of 11 chimeric receptors consisting of the extracellular and transmembrane domains of CD8 fused to portions of the murine CD40 cytoplasmic domain. These chimeric receptors were expressed in WEHI-231 B lymphoma cells. We found that amino acids 35-45 of the CD40 cytoplasmic domain constitute an independent signaling motif that is sufficient for activation of the JNK and p38 MAPK pathways, as well as for induction of I kappa B alpha phosphorylation and degradation. Amino acids 35-45 were also sufficient to protect WEHI-231 cells from anti-IgM-induced growth arrest. This is the same region of CD40 required for binding the TNF receptor-associated factor-2 (TRAF2), TRAF3, and TRAF5 adapter proteins. These data support the idea that one or more of these TRAF proteins couple CD40 to the kinase cascades that activate NF-kappa B, JNK, and p38 MAPK.  相似文献   

10.
The interaction between CD40 and its ligand, CD154, has been shown to play a role in the onset and maintenance of inflammatory disease. Contributing to this process is the ability of CD40 to signal monocyte and macrophage inflammatory cytokine production. We have shown that this event is dependent on Src family tyrosine kinase activity and the subsequent activation of ERK1/2. To address the role of TNFR-associated factor (TRAF) family members in facilitating this signaling pathway, we transfected a CD40-deficient macrophage cell line with wild-type human CD40, or with CD40 containing disrupted TRAF binding sites. Ligation of either wild-type CD40, or a CD40 mutant unable to bind TRAF2/3/5, resulted in the stimulation of inflammatory cytokine production. However, ligation of a CD40 mutant lacking a functional TRAF6 binding site did not initiate inflammatory cytokine production, and this mutant was found to be defective in CD40-mediated activation of ERK1/2, as well as IkappaB kinase (IKK) and NF-kappaB. Likewise, introduction of a dominant-negative TRAF6 into a wild-type (CD40(+)) macrophage cell line resulted in abrogation of CD40-mediated induction of inflammatory cytokine synthesis. Finally, treatment of monocytes with a cell-permeable peptide corresponding to the TRAF6-binding motif of CD40 inhibited CD40 activation of ERK1/2, IKK, and inflammatory cytokine production. These data demonstrate that TRAF6 acts as a critical adapter of both the Src/ERK1/2 and IKK/NF-kappaB proinflammatory signaling pathways in monocytes and macrophages.  相似文献   

11.
We previously demonstrated that microtubule disruption impairs stimulation of glucose uptake in cardiomyocytes and that 9-cis retinoic acid (9cRA) treatment preserved both microtubule integrity and stimulated glucose transport. Herein we investigated whether 1) activation of the extracellular signal-regulated kinases (ERK1/2) is responsible for microtubule destabilization and 2) ERK1/2 inactivation may explain the positive effects of 9cRA on glucose uptake and microtubule stabilization. Adult rat cardiomyocytes in primary culture showed increased basal ERK1/2 phosphorylation. Cardiomyocytes exposed to inhibitors of the ERK1/2 kinase mitogen/extracellular signal-regulated kinase (MEK) 1/2 had preserved microtubular scaffold, including microtubule-organizing centers (MTOC), together with increased insulin and metabolic stress-stimulated glucose transport as well as signaling, thus replicating the effects of 9cRA treatment. Although 9cRA treatment did not significantly reduce global ERK1/2 activation, it markedly reduced perinuclear-activated ERK1/2 at the location of MTOC. 9cRA also triggered relocation of the ERK1/2 phosphatase mitogen-activated protein kinase phosphatase-3 from the cytosol to the nucleus. These results indicate that, in cardiomyocytes, microtubule destabilization, leading to impaired stimulation of glucose transport, is mediated by ERK1/2 activation, impacting on the MTOC. 9cRA acid restores stimulated glucose transport indirectly through compartmentalized inactivation of ERK1/2.  相似文献   

12.
13.
IL-7 signaling culminates in different biological outcomes in distinct lymphoid populations, but knowledge of the biochemical signaling pathways in normal lymphoid populations is incomplete. We analyzed CD127/IL-7Ralpha expression and function in normal (nontransformed) human thymocytes, and human CD19(+) B-lineage cells purified from xenogeneic cord blood stem cell/MS-5 murine stromal cell cultures, to further clarify the role of IL-7 in human B cell development. IL-7 stimulation of CD34(+) immature thymocytes led to phosphorylation (p-) of STAT5, ERK1/2, AKT, and glycogen synthase kinase-3 beta, and increased AKT enzymatic activity. In contrast, IL-7 stimulation of CD34(-) thymocytes (that included CD4(+)/CD8(+) double-positive, and CD4(+) and CD8(+) single-positive cells) only induced p-STAT5. IL-7 stimulation of CD19(+) cells led to robust induction of p-STAT5, but minimal induction of p-ERK1/2 and p-glycogen synthase kinase-3 beta. However, CD19(+) cells expressed endogenous p-ERK1/2, and when rested for several hours following removal from MS-5 underwent de-phosphorylation of ERK1/2. IL-7 stimulation of rested CD19(+) cells resulted in robust induction of p-ERK1/2, but no induction of AKT enzymatic activity. The use of a specific JAK3 antagonist demonstrated that all IL-7 signaling pathways in CD34(+) thymocytes and CD19(+) B-lineage cells were JAK3-dependent. We conclude that human CD34(+) thymocytes and CD19(+) B-lineage cells exhibit similarities in activation of STAT5 and ERK1/2, but differences in activation of the PI3K/AKT pathway. The different induction of PI3K/AKT may at least partially explain the different requirements for IL-7 during human T and B cell development.  相似文献   

14.
Beta-arrestin mediates desensitization and internalization of beta-adrenergic receptors (betaARs), but also acts as a scaffold protein in extracellular signal-regulated kinase (ERK) cascade. Thus, we have examined the role of beta-arrestin2 in the betaAR-mediated ERK signaling pathways. Isoproterenol stimulation equally activated cytoplasmic and nuclear ERK in COS-7 cells expressing beta1AR or beta2AR. However, the activity of nuclear ERK was enhanced by co-expression of beta-arrestin2 in beta2AR-but not beta1AR-expressing cells. Pertussis toxin treatment and blockade of Gbetagamma action inhibited beta-arrestin2-enhanced nuclear activation of ERK, suggesting that beta-arrestin2 promotes nuclear ERK localization in a Gbetagamma dependent mechanism upon receptor stimulation. beta2AR containing the carboxyl terminal region of beta1AR lost the beta-arrestin2-promoted nuclear translocation. As the carboxyl terminal region is important for beta-arrestin binding, these results demonstrate that recruitment of beta-arrestin2 to carboxyl terminal region of beta2AR is important for ERK localization to the nucleus.  相似文献   

15.
Ligation of CD40 on monocytes through its interaction with CD40 ligand (CD154) present on activated T helper cells, results in activation of monocyte inflammatory cytokine synthesis and rescue of monocytes from apoptosis induced through serum deprivation. Both of these consequences of CD40 stimulation have been shown to be dependent on the induction of protein tyrosine kinase activity. CD40-mediated activation of protein tyrosine kinase activity and subsequent inflammatory cytokine production are abrogated by treatment of monocytes with the T helper type 2 cytokines interleukin 4 (IL-4) and interleukin 10 (IL-10). In the current study we demonstrate that stimulation of monocytes through CD40 resulted in the phosphorylation and activation of the extracellular signal-regulated kinases 1 and 2 (ERK1/2) mitogen-activated protein kinases, whereas phosphorylation of mitogen-activated protein kinases family members p38 and c-Jun N-terminal kinase was not observed in response to this stimuli over the time course examined. PD98059, an inhibitor of the upstream activator of ERK1/2, the MAP/ERK kinase MEK1/2, suppressed IL-1beta and tumor necrosis factor-alpha production in a dose-dependent fashion. Pretreatment of monocytes with IL-4 and IL-10 inhibited CD40-mediated activation of ERK1/2 kinase activity when used individually, and are enhanced in effectiveness when used in combination. Together, the data demonstrate that CD40-mediated induction of IL-1beta and tumor necrosis factor-alpha synthesis is dependent on a MEK/ERK pathway which is obstructed by signals generated through the action of IL-4 and IL-10.  相似文献   

16.
Recently, the involvement of the MAP kinase ERK in mitogenic signaling of cholecystokininB (CCK(B)) receptors has been shown. However, the intracellular effector systems involved in this signaling pathway are poorly defined. In this study, we used COS-7 cells transiently transfected with the human CCK(B) receptor to investigate cholecystokinin-induced MAP kinase activation. CCK-8 induced activation of ERK2 which is associated with its phosphorylation and localization in the nucleus. The CCK-8-dependent ERK stimulation is sensitive to wortmannin an inhibitor of phosphoinositide 3-kinases (PI3Ks) indicating the involvement of PI3K activity. To identify the PI3K species involved in mitogenic signaling of the CCK(B) receptor several dominant-negative mutants of PI3K regulatory and catalytic subunits were transiently expressed. Surprisingly, different catalytically inactive mutants of the G protein-sensitive PI3Kgamma did not affect ERK stimulation induced by CCK, whereas a dominant-negative mutant of the regulatory p85 subunit induced significant inhibition of CCK-dependent ERK activity. These results indicate an involvement of PI3K class 1A species alpha, beta or/and delta in signal transduction via CCK(B) receptors. In addition, protein kinase C (PKC)-dependent signaling pathways contribute to CCK(B)-mediated MAP kinase signaling as shown by inhibition of CCK-8-induced ERK activation by the PKC inhibitor bisindolylmaleimide.  相似文献   

17.
Oncogenic ras activates multiple signaling pathways to enforce cell proliferation in tumor cells. The ERK1/2 mitogen-activated protein kinase pathway is required for the transforming effects of ras, and its activation is often sufficient to convey mitogenic stimulation. However, in some settings oncogenic ras triggers a permanent cell cycle arrest with features of cellular senescence. How the Ras/ERK1/2 pathway activates different cellular programs is not well understood. Here we show that ERK1/2 localize predominantly in the cytoplasm during ras-induced senescence. This cytoplasmic localization seems to be dependent on an active nuclear export mechanism and can be rescued by the viral oncoprotein E1A. Consistent with this hypothesis, we showed that E1A dramatically down-regulated the expression of the ERK1/2 nuclear export factor PEA-15. Also, RNA interference against PEA-15 restored the nuclear localization of phospho-ERK1/2 in Ras-expressing primary murine embryo fibroblasts and stimulated their escape from senescence. Because senescence prevents the transforming effect of oncogenic ras, our results suggest a tumor suppressor function for PEA-15 that operates by means of controlling the localization of phospho-ERK1/2.  相似文献   

18.
Despite CD40's role in stimulating dendritic cells (DCs) for efficient specific T-cell stimulation, its signal transduction components in DCs are still poorly documented. We show that CD40 receptors on human monocyte-derived DCs associate with sphingolipid- and cholesterol-rich plasma membrane microdomains, termed membrane rafts. Following engagement, CD40 utilizes membrane raft-associated Lyn Src family kinase, and possibly other raft-associated Src family kinases, to initiate tyrosine phosphorylation of intracellular substrates. CD40 engagement also leads to a membrane raft-restricted recruitment of tumor necrosis factor (TNF) receptor-associated factor (TRAF) 3 and, to a lesser extent, TRAF2, to CD40's cytoplasmic tail. Thus, the membrane raft structure plays an integral role in proximal events of CD40 signaling in DCs. We demonstrate that stimulation of Src family kinase within membrane rafts initiates a pathway implicating ERK activation, which leads to interleukin (IL)-1alpha/beta and IL-1Ra mRNA production and contributes to p38-dependent IL-12 mRNA production. These results provide the first evidence that membrane rafts play a critical role in initiation of CD40 signaling in DCs, and delineate the outcome of CD40-mediated pathways on cytokine production.  相似文献   

19.
The interaction between CD40 ligand (CD154) expressed on activated T cells and its receptor, CD40, has been shown to play a role in the onset and maintenance of autoimmune inflammation. Recent studies suggest that CD154+T cells also contribute to the regulation of atherogenesis due to their capacity to activate CD40+cells of the vasculature, including vascular smooth muscle cells (VSMC). The present study evaluated the signalling events initiated through CD40 ligation which culminate in VSMC chemokine production. CD40 ligation resulted in the phosphorylation/activation of mitogen-activated protein kinases (MAPKs), extracellular signal-regulated kinases 1 and 2 (ERK1/2), and p38, but not c-jun N-terminal kinase. Inhibition of both ERK1/2 and p38 activity abrogated CD40 stimulation of IL-8 and MCP-1 production. CD40-mediated induction of chemokines also showed dependence on the Src family kinase activity. The Src kinase inhibitor, PP2, was found to inhibit CD40-induced phosphorylation of ERK1/2 as well as activation of IkappaB kinase. An evaluation of Src kinases that may be important in CD40 signalling identified Lyn as a potential candidate. These data indicate that CD40 signalling in VSMC activates a Src family kinase-initiated pathway that results in the induction of MAPK activities required for successful induction of chemokine synthesis.  相似文献   

20.
Differences in BCR signaling may govern outcomes as diverse as proliferation and cell death. We profiled BCR signaling kinetics in subsets of primary human B cells using flow cytometry. In the predominant population expressing IgM, BCR cross-linking led to a quick burst of Syk, ERK1/2, and p38 signaling. In contrast, IgG B cells sustained higher per-cell ERK1/2 phosphorylation over time. This dichotomy suggested a mechanism for dampening signals transmitted by IgM. Regulatory phosphatase activity in IgM B cells was BCR-mediated and initiated more slowly than kinase activity. This BCR-mediated phosphatase activity was sensitive to inhibition by H(2)O(2) and required to attenuate IgM BCR signaling. These results provide the first kinetic maps of BCR signaling in primary human B cell subsets and enable new studies of signaling in B cell disorders, such as autoimmunity and cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号