首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Specific interactions between parasite genotypes and host genotypes (Gp × Gh) are commonly found in invertebrate systems, but are largely lacking a mechanistic explanation. The genotype of invertebrate hosts can be complemented by the genomes of microorganisms living on or within the host (‘microbiota’). We investigated whether the bacterial gut microbiota of bumble bees (Bombus terrestris) can account for the specificity of interactions between individuals from different colonies (previously taken as host genotype proxy) and genotypes of the parasite Crithidia bombi. For this, we transplanted the microbiota between individuals of six colonies. Both the general infection load and the specific success of different C. bombi genotypes were mostly driven by the microbiota, rather than by worker genotype. Variation in gut microbiota can therefore be responsible for specific immune phenotypes and the evolution of gut parasites may be driven by interactions with ‘microbiota types’ as well as with host genotypes.  相似文献   

2.
Many metacommunities are distributed across habitat patches that are themselves aggregated into groups. Perhaps the clearest example of this nested metacommunity structure comes from multi-species parasite assemblages, which occupy individual hosts that are aggregated into host populations. At both spatial scales, we expect parasite community diversity in a given patch (either individual host or population) to depend on patch characteristics that affect colonization rates and species sorting. But, are these patch effects consistent across spatial scales? Or, do different processes govern the distribution of parasite community diversity among individual hosts, versus among host patches? To answer these questions, we document the distribution of parasite richness among host individuals and among populations in a metapopulation of threespine stickleback Gasterosteus aculeatus. We find some host traits (host size, gape width) are associated with increased parasite richness at both spatial scales. Other patch characteristics affect parasite richness only among individuals (sex), or among populations (lake size, lake area, elevation and population mean heterozygosity). These results demonstrate that some rules governing parasite richness in this metacommunity are shared across scales, while others are scale-specific.  相似文献   

3.
 We analyze the dynamics of a community of macroparasite species that share the same host. Our work extends an earlier framework for a host species that would grow exponentially in the absence of parasitism, to one where an uninfected host population is regulated by factors other than parasites. The model consists of one differential equation for each parasite species and a single density-dependent nonlinear equation for the host. We assume that each parasite species has a negative binomial distribution within the host and there is zero covariance between the species (exploitation competition). New threshold conditions on model parameters for the coexistence and competitive exclusion of parasite species are derived via invadibility and stability analysis of corresponding equilibria. The main finding is that the community of parasite species coexisting at the stable equilibrium is obtained by ranking the species according t! o th e minimum host density H * above which a parasite species can grow when rare: the lower H * , the higher the competitive ability. We also show that ranking according to the basic reproduction number Q 0 does not in general coincide with ranking according to H * . The second result is that the type of interaction between host and parasites is crucial in determining the competitive success of a parasite species, because frequency-dependent transmission of free-living stages enhances the invading ability of a parasite species while density-dependent transmission makes a parasite very sensitive to other competing species. Finally, we show that density dependence in the host population entails a simplification of the portrait of possible outcomes with respect to previous studies, because all the cases resulting in the exponential growth of host and parasite populations are eliminated.. Received: 24 June 1996 / Revised version: 28 April 1998  相似文献   

4.
Coevolutionary models often assume host infection by parasites depends on a single bout of molecular recognition. As detailed immunological studies accumulate, however, it becomes increasingly apparent that the outcome of host–parasite interactions more generally depends on complex multiple step infection processes. For example, in plant and animal innate immunity, recognition steps are followed by downstream effector steps that kill recognized parasites, with the outcome depending on an escalatory molecular arms race. Here, we explore the consequences of such multistep infection processes for coevolution using a genetically explicit model. Model analyses reveal that polymorphism is much greater at recognition loci than effector loci, that host–genotype by parasite–genotype (Gh × Gp) interactions are larger for the recognition step, and that the recognition step contributes more to local adaptation than the effector step. These results suggest that (1) local adaptation is more likely when fitness measures are related to recognition versus downstream effectors, (2) effector loci, while mechanistically important, are less likely to harbor the Gh × Gp variation that fuels coevolution, and (3) recognition loci are better candidates for genomic hotspots of coevolution.  相似文献   

5.
We consider an admixture event, T generations in the past, where two ‘parental’ populations, P1 and P2, of size N1 and N2, contribute different proportions into the gene pool of an admixed population, H of size Nh. lea (likelihood‐based estimator of admixture) is a program which allows the user to obtain the posterior distribution of the parameters of the model. This includes p1, the contribution of P1, and t1, t2 and th, the time since the admixture event (scaled by the population size) for the three populations. lea allows the user to stop and restart the analyses at any time.  相似文献   

6.
7.
Comparative studies of genetic diversity and population structure can shed light on the ecological and evolutionary factors that influence host–parasite interactions. Here we examined whether geography, time and genetic variation in Alaskan three‐spined stickleback (Gasterosteus aculeatus Linneaus) hosts shape the population genetic structure of the diphyllobothridean cestode parasite Schistocephalus solidus (Müller, 1776). Host lineages and haplotypes were identified by sequencing the mitochondrial cytochrome b gene, and host population structure was assessed by Bayesian clustering analysis of allelic variation at 11 microsatellite loci. Parasite population structure was characterized according to allelic variation at eight microsatellite loci. Mantel tests and canonical redundancy analysis were conducted to evaluate the proportion of parasite genetic variation attributable to time and geography vs. host lineage, haplotype, and genotypic cluster. Host and parasite population structure were largely discordant across the study area, probably reflecting differences in gene flow, environmental influences external to the host, and genomic admixture among host lineages. We found that geography explained the greatest proportion of parasite genetic variation, but that variation also reflects time, host lineage, and host haplotype. Associations with host haplotypes suggest that one parasite genotypic cluster exhibits a narrower host range, predominantly infecting the most common host haplotypes, whereas the other parasite cluster infects all haplotypes equally, including rare haplotypes. Although experimental infection trials might prove otherwise, distributional differences in hosts preferentially infected by S. solidus could underlie the observed pattern of population structure.  相似文献   

8.
1. Recently, the potential for parasites to influence the ecology and evolution of their zooplankton hosts has been the subject of increasing study. However, most research to date has focussed on Daphnia hosts, and the potential for parasites to influence other zooplankton taxa remains largely unstudied. 2. During routine sampling of zooplankton in a eutrophic lake, we observed that the rotifer Asplanchna girodi was often infected with a parasitic oomycete. Epidemics of this parasite occurred frequently, with three separate events in a single year. Prevalence at peak infection ranged from 29 to 41% and epidemics lasted from 17 to 56 days. Our data indicate that high densities of the host population are required for epidemics to occur. 3. Our morphological and molecular analyses suggest that this parasite is in the genus Pythium. Most Pythium spp. are plant pathogens, but our study supports recent work on Daphnia, suggesting that Pythium spp. are also important parasites of zooplankton. 4. As the parasite in this study was recalcitrant to cultivation, we developed an alternative method to verify its identity. Our approach used quantitative PCR to show that the ribosomal sequences identified increased with increasing density of infected hosts and, thus, were associated with the parasite. This approach should be generally applicable to other plankton parasites that are difficult to cultivate outside their hosts. 5. Infections significantly reduced host fecundity, lifespan and population growth rate. As a result of the virulence of this parasite, it is likely to influence the population ecology and evolution of its Asplanchna host, and may be a useful model system for studies on host–parasite coevolutionary dynamics.  相似文献   

9.
Evolutionary studies often estimate fitness components with the aim to make predictions about the outcome of selection. Depending on the system and the question, different fitness components are used, but their usefulness for predicting the outcome of selection is rarely tested. Here we estimate host fitness components in different ways with the aim to test how well they agree with each other and how well they predict host fitness at the population level in the presence of the parasite. We use a Daphnia magna-microparasite system to study the competitive ability of host clones in the absence and presence of the parasite, the infection intensity of the parasite in individuals of twelve host clones (an estimate of both host resistance and parasite reproductive success), and parasite persistence in small host populations (an estimate of R 0 of the parasite). Analysis of host competitive ability and parasite persistence reveals strong host genotype effects, while none are found for infection intensity. Host competitive ability further shows a genotype-specific change upon infection, which is correlated with the relative persistence of the parasite in the competing hosts. Hosts in which the parasite persists better suffer a competitive disadvantage in the parasite’s presence. This suggests that in this system, parasite-mediated selection can be predicted by parasite persistence, but not by parasite infection intensity.  相似文献   

10.
Host–parasite systems are characterised by coevolutionary arms races between host and parasite. Parasites are often the driving force, as they replicate much faster than their hosts and have shorter generation times and larger population sizes, resulting in higher mutation rates per time interval. This scenario does not fit all host–parasite systems. Socially parasitic cuckoo bumblebees (Bombus (Psithyrus) vestalis) parasitise colonies of Bombus terrestris share most life history characteristics with their hosts. As they parasitise only a subset of all available colonies, their population size should be lower than that of their hosts. This might have strong negative effects on the genetic diversity of B. vestalis and their adaptability. Here, we study for the first time the population structure of a Bombus/Bombus (Psithyrus) system. Highly polymorphic DNA markers were used to reconstruct sibships from individuals collected in the wild. The analysis of the host and parasite populations revealed a rate of parasitism of about 42% (range 33–50%). The population size of B. vestalis was lower compared to their hosts, which was also reflected in low within-group genetic distance. An analysis of the reconstructed queen genotypes revealed more supersisters amongst the B. vestalis queens when compared to the B. terrestris host. The data suggest that B. vestalis females and males do not disperse over long distances. This shows a potential for local adaptation to their hosts.  相似文献   

11.
Genetic variation among populations of chewing lice (Geomydoecus actuosi) was examined in relation to chromosomal and electrophoretic variation among populations of their hosts (Thomomys bottae) at a contact zone. Louse demes were characterized by low levels of genetic heterozygosity (H? = 0.039) that may result from founder effects during primary infestation of hosts, compounded by seasonal reductions in louse population size. Louse populations sampled from different hosts showed high levels of genetic structuring both within and among host localities. Microgeographic differentiation of louse populations is high (mean FST = 0.092) suggesting that properties of this host–parasite system promote differentiation of louse populations living on different individual hosts. Among-population differentiation in lice (FST = 0.240) was similar to that measured among host populations (FST = 0.236), suggesting a close association between gene flow in pocket gophers and gene flow in their lice.  相似文献   

12.
Although elevated CO2 may affect various forms of ecological interactions, the effect of elevated CO2 on interactions between parasitic plants and their hosts has received little attention. We examined the effect of elevated CO2 (590 μl l−1) at two nutrient (NPK) levels on the interactions of the facultative root hemiparasite Rhinanthus alectorolophus with two of its hosts, the grass Lolium perenne and the legume Medicago sativa. To study possible effects on parasite mediation of competition between hosts, the parasite was grown with each host separately and with both hosts simultaneously. In addition, all combinations of hosts were grown without the parasite. Both the parasite and the host plants responded to elevated CO2 with increased growth, but only at high nutrient levels. The CO2 response of the hemiparasite was stronger than that of the hosts, but depended on the host species available. With L. perenne and M. sativa simultaneously available as hosts, the biomass of the parasite grown at elevated CO2 was 5.7 times that of parasites grown at ambient CO2. Nitrogen concentration in the parasites was not influenced by the treatments and was not related to parasite biomass. The presence of the parasite strongly reduced both the biomass of the hosts and total productivity of the system. This effect was much stronger at low than at high nutrient levels, but was not influenced by CO2 level. Elevated CO2 did not influence the competitive balance between the two different hosts grown in mixture. The results of this study support the hypothesis that hemiparasites may influence community structure and suggest that these effects are robust to changes in CO2 concentration. Received: 17 August 1998 / Accepted: 3 March 1999  相似文献   

13.
14.
The present paper studies how the female parasite of Kratochviliana sp. visits and attacks its host larvae of Ranunculus leaf mining fly, P. ranunculi at a single leaf visit. The parasite visited its hosts at random on the leaf. The frequency of host visits was independent of the host density and the proportion of hosts survived from the parasite attack, in a leaf and its distribution was expressed as a single straight line. It almost always attacked living hosts at the first host visit after isolated from them for one day but with the rate of about 0.5 at the subsequent visits. In consequence, the relationships of the number of host attacks and killed hosts to the host density drew satulated curves in each. A model of host attack by this parasite at its single leaf visit was formulated by modifyingBakker et al.'s model (1972) basing upon these observations and the attack avoidance by the parasite to already attacked hosts previously reported.  相似文献   

15.
Reciprocal co‐evolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population‐ or genotype‐specific evolutionary change. These host–parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of co‐evolving host–parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its co‐evolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus‐infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population‐level co‐evolution is leading to population‐specific host–parasite interactions and evolutionary trajectories. We also used an FST‐based approach to identify a set of loci that represent promising candidates for targets of parasite‐mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population‐specific responses to co‐evolving infection in the P. antipodarum‐Microphallus interaction and provide new insights into the genomic basis of co‐evolutionary interactions in nature.  相似文献   

16.
This paper considers the extrema of the relative precision (R. P.), or the ratio of the variance of optimum allocation to that of proportional allocation in stratified sampling for a mean (=Y) or total (=Y) when there is a fixed cost C=conhch over L strata. The upper bound of R. P. is shown to be equal to unity, though the lower bound can be negative while approaching zero if the finite population size N→∞. Numerical results (cf. Table) when the upper bound of R. P. = 1 is attained are included for the cases L≦4 with various combinations of {Wh}, {ch} and a fixed cost C; these give the appropriate sample sizes (=np) determined for proportional sampling in the cases of finite populations of sizes N=5000, 10,000 respectively.  相似文献   

17.
18.
Crustaceans are important hosts for a number of helminth parasites, and they are increasingly used as models for studying the physiology, ecology and evolution of parasite-host interactions. In ecological studies, this interaction is commonly described only in terms of prevalence and number of larvae per infected host. However, the volume of helminth parasites can vary greatly, and this variation can potentially give important insights into the nature of a parasite-host relationship. It may influence and be influenced, for example, by within-host competition, host size, growth, and life history. Here we present a simple method that allows rapid approximation of the absolute and relative volumes of cestode larvae within copepod hosts of various developmental stages (nauplii, copepodites and adults). The measurements are taken in vivo without much disturbance of the animals, i.e. the technique allows study of growth and development of the parasites in relation to that of their hosts. The principles of this technique can be adopted to other helminth parasites and other crustacean hosts. Using this method in the copepod Macrocyclops albidus infected with the cestode Schistocephalus solidus, we found that the relative parasite size (= `parasite index') ranged from 0.5% to 6.5% of host size 14 days after infection. It was greater in male than in female hosts. With increasing number of parasites per host, the total parasite volume increased while the mean volume of the individual parasites decreased. The magnitude of the observed parasite indices, the large variation that was found within a sample of 46 infected adult copepods, and the observed correlates suggest that this new index can indeed be an important measure of parasite success and its pathogenecity.  相似文献   

19.
Summary Adult size (in terms of dry weight; DW) and development time (T p ) of the solitary parasitoidAphidius ervi varied when reared in different nymphal instars of its host, apterous virginoparae of the pea aphid (Acyrthosiphon pisum). Parasitoid DW increased with an increase in the DW of the host at parasitization, from the first to the third aphid instar. Female wasps gained 1.1 times more in DW than their male counterparts in all four host classes, butT p did not significantly differ between the sexes. Parasitoid DW was consistently more variable thanT p . The two traits covaried positively with an increase in host size from the first to the third instar, but they varied independently in parasitoids from fourth-instar hosts. The host size (and stage) at the time of parasitization imposes constraints on the growth and development of immatureA. ervi that are reflected in the pattern of covariation between DW andT p . When growing in aphids below a certain size threshold, parasitoids can maximize fitness by a trade-off between DW andT p . Consequently, the assumption implicit in host-size models of parasitoid oviposition decisions — that females incur a relatively greater reduction in size (used as an index of fecundity) than males when developing in poor quality hosts — can be falsified.  相似文献   

20.
Understanding what processes drive community structure is fundamental to ecology. Many wild animals are simultaneously infected by multiple parasite species, so host–parasite communities can be valuable tools for investigating connections between community structures at multiple scales, as each host can be considered a replicate parasite community. Like free‐living communities, within‐host–parasite communities are hierarchical; ecological interactions between hosts and parasites can occur at multiple scales (e.g., host community, host population, parasite community within the host), therefore, both extrinsic and intrinsic processes can determine parasite community structure. We combine analyses of community structure and assembly at both the host population and individual scales using extensive datasets on wild wood mice (Apodemus sylvaticus) and their parasite community. An analysis of parasite community nestedness at the host population scale provided predictions about the order of infection at the individual scale, which were then tested using parasite community assembly data from individual hosts from the same populations. Nestedness analyses revealed parasite communities were significantly more structured than random. However, observed nestedness did not differ from null models in which parasite species abundance was kept constant. We did not find consistency between observed community structure at the host population scale and within‐host order of infection. Multi‐state Markov models of parasite community assembly showed that a host's likelihood of infection with one parasite did not consistently follow previous infection by a different parasite species, suggesting there is not a deterministic order of infection among the species we investigated in wild wood mice. Our results demonstrate that patterns at one scale (i.e., host population) do not reliably predict processes at another scale (i.e., individual host), and that neutral or stochastic processes may be driving the patterns of nestedness observed in these communities. We suggest that experimental approaches that manipulate parasite communities are needed to better link processes at multiple ecological scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号