首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial chemotaxis receptors are posttranslationally modified by carboxyl methylation of specific glutamate residues within their cytoplasmic domains. This highly regulated, reversible modification counterbalances the signaling effects of ligand binding and contributes to adaptation. On the basis of the crystal structure of the gamma-glutamyl methyltransferase CheR, we have postulated that positively charged residues in helix alpha2 in the N-terminal domain of the enzyme may be complementary to the negatively charged methylation region of the methyltransferase substrates, the bacterial chemotaxis receptors. Several altered CheR proteins, in which positively charged arginine or lysine residues were substituted with alanines, were constructed and assayed for their methylation activities toward wild-type receptor and a series of receptor variants containing different glutamates available for methylation. One of the CheR mutant proteins (Arg53Ala) showed significantly lower activity toward all receptor constructs, suggesting that Arg53 may play a general role in catalysis of methyl transfer. The rest of the mutant proteins exhibited different patterns of relative methylation rates toward different receptor substrates, indicating specificity, probably through interaction of CheR with the receptor at sites distal to the specific site of methylation. The findings imply complementarity between positively charged residues of the alpha2 helix of CheR and the negatively charged glutamates of the receptor. It is likely that this complementarity is involved in discriminating different methylation states of the receptors.  相似文献   

2.
3.
Treatment of the canine renal Na,K-ATPase with N-(2-nitro-4-isothiocyanophenyl)-imidazole (NIPI), a new imidazole-based probe, results in irreversible loss of enzymatic activity. Inactivation of 95% of the Na,K-ATPase activity is achieved by the covalent binding of 1 molecule of [3H]NIPI to a single site on the alpha-subunit of the Na,K-ATPase. The reactivity of this site toward NIPI is about 10-fold greater when the enzyme is in the E1Na or sodium-bound form than when it is in the E2K or potassium-bound form. K+ ions prevent the enhanced reactivity associated with Na+ binding. Labeling and inactivation of the enzyme is prevented by the simultaneous presence of ATP or ADP (but not by AMP). The apparent affinity with which ATP prevents the inactivation by NIPI at pH 8.5 is increased from 30 to 3 microM by the presence of Na+ ions. This suggests that the affinity with which native enzyme binds ATP (or ADP) at this pH is enhanced by Na+ binding to the enzyme. Modification of the single sodium-responsive residue on the alpha-subunit of the Na,K-ATPase results in loss of high affinity ATP binding, without affecting phosphorylation from Pi. Modification with NIPI probably alters the adenosine binding region without affecting the region close to the phosphorylated carboxyl residue aspartate 369. Tightly bound (or occluded) Rb+ ions are not displaced by ATP (4 mM) in the inactivated enzyme. Thus modification of a single residue simultaneously blocks ATP acting with either high or low affinity on the Na,K-ATPase. These observations suggest that there is a single residue on the alpha-subunit (probably a lysine) which drastically alters its reactivity as Na+ binds to the enzyme. This lysine residue is essential for catalytic activity and is prevented from reacting with NIPI when ATP binds to the enzyme. Thus, the essential lysine residue involved may be part of the ATP binding domain of the Na,K-ATPase.  相似文献   

4.
The DNMT2 enzyme methylates tRNA-Asp at position C38. Because there is no tRNA-Dnmt2 cocrystal structure available, we have mapped the tRNA binding site of DNMT2 by systematically mutating surface-exposed lysine and arginine residues to alanine and studying the tRNA methylation activity and binding of the corresponding variants. After mutating 20 lysine and arginine residues, we identified eight of them that caused large (>4-fold) decreases in catalytic activity. These residues cluster within and next to a surface cleft in the protein, which is large enough to accommodate the tRNA anticodon loop and stem. This cleft is located next to the binding pocket for the cofactor S-adenosyl-l-methionine, and the catalytic residues of DNMT2 are positioned at its walls or bottom. Many of the variants with strongly reduced catalytic activity showed only a weak loss of tRNA binding or even bound better to tRNA than wild-type DNMT2, which suggests that the enzyme induces some conformational changes in the tRNA in the transition state of the methyl group transfer reaction. Manual placement of tRNA into the structure suggests that DNMT2 mainly interacts with the anticodon stem and loop.  相似文献   

5.
It has been suggested that the lysine residue in the conserved K-T-G-G motif could be the substrate ADP-glucose binding site of Escherichia coli glycogen synthase (GS). Since the K-X-G-G motif is highly conserved between E. coli GS and all the maize starch synthase (SS) isozymes, it has become widely accepted that the lysine in the conserved K-T-G-G motif may also function as the ADPGlc binding site of maize SS. We have used chemical modification and site-directed mutagenesis to study the function of lysine residues in SS. Pyridoxal-5'-phosphate inactivated maize SSIIa activity in a time and concentration dependent manner. ADPGlc completely protected SSIIa from inactivation by pyridoxal-5'-phosphate, indicating that lysine residue(s) could be important for ADPGlc binding and enzyme catalysis. In contrast to E. coli GS, mutation of conserved lysine193 (K-T-G-G) in maize SS did not alter the ADPGlc binding while significantly changing the enzyme activity toward different primers. Our results suggest that lysine-193 (K-T-G-G) is not directly involved in ADPGlc binding, instead mutation in the conserved lysine position affected the primer preference.  相似文献   

6.
Lysine 234 is a residue highly conserved in all beta-lactamases, except in the carbenicillin-hydrolyzing enzymes, in which it is replaced by an arginine. Informational suppression has been used to create amino acid substitutions at this position in the broad spectrum Escherichia coli beta-lactamase TEM-1, in order to elucidate the role of this residue which lies on the wall at the closed end of the active site cavity. The mutants K234R and K234T were constructed and their kinetic constants measured. Replacement of lysine 234 by arginine yields an enzyme with similar activity toward cephalosporins and most penicillins, except toward the carboxypenicillins for which the presence of the guanidine group enhances the transition state binding. The removal of the basic group in the mutant K234T yields a protein variant which retains a low activity toward penicillins, but losts drastically its ability to hydrolyze cephalosporins. Moreover, these two mutations largely decreased the affinity of the enzyme for penicillins (10-fold for K234R and 50-fold for K234T). This can be correlated with the disruption of the predicted electrostatic binding between the C3 carboxylic group of penicillins and the amine function of the lysine. Therefore, lysine 234 in the E. coli beta-lactamase TEM-1 is involved both in the initial recognition of the substrate and in transition state stabilization.  相似文献   

7.
The molecular interactions resulting in specific binding of trans-acting factors to distinct cis-acting elements is not well understood. Here we report our attempt to understand the involvement of distinct amino acid residues of the basic domain of cAMP-responsive element-binding protein (delta CREB) in the determination of binding toward the cAMP-responsive element (CRE). Using in vitro mutagenesis, we constructed site-directed mutants of distinct amino acid residues within the DNA contact region of delta CREB. The activities of the mutant proteins were analyzed by gel retardation, methylation interference, and CRE competition analyses. We demonstrate that a single lysine to glutamine substitution at positions 289 and 291 of delta CREB alters the methylation interference pattern of the mutant protein for the CRE site. Additional mutants constructed at these positions demonstrate that only identical basic residues at both positions 289 and 291 of delta CREB can restore the wild type methylation interference pattern of the mutant delta CREB protein for the CRE site. These observations point to the importance of the lysine residues at positions 289 and 291 in the process of CRE binding. In addition, this observation suggests that the symmetrical nature of the CRE site is reflected in the DNA contact region of the protein.  相似文献   

8.
9.
10.
Cell membrane-bound ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) are homooligomeric, with native quaternary structure required for maximal enzyme activity. In this study, we mutated lysine 79 in human ecto-nucleoside triphosphate diphosphohydrolase 3 (NTPDase3). The residue corresponding to lysine 79 in NTPDase3 is conserved in all known cell surface membrane NTPDases (NTPDase1, 2, 3, and 8), but not in the soluble, monomeric NTPDases (NTPDase5 and 6), or in the intracellular, two transmembrane NTPDases (NTPDase4 and 7). This conserved lysine is located between apyrase conserved region 1 (ACR1) and an invariant glycosylation site (N81), in a region previously hypothesized to be important for NTPDase3 oligomeric structure. This lysine residue was mutated to several different amino acids, and all mutants displayed substantially decreased nucleotidase activities. A basic amino acid at this position was found to be important for the increase of nucleotidase activity observed after treatment with the lectin, concanavalin A. After solubilization with Triton X-100, mutants showed little or no decrease in activity, unlike the wild-type enzyme, suggesting that the lysine at this position may be important for maintaining proper folding and for stabilizing the quaternary structure. However, mutation at this site did not result in global changes in tertiary or quaternary structure as measured by Cibacron blue binding, chemical cross linking, and native gel electrophoretic analysis, leaving open the possibility of other mechanisms by which mutation of this conserved lysine residue might decrease enzyme activity.  相似文献   

11.
Mitochondrial aldehyde dehydrogenase (ALDH2) is the major enzyme that oxidizes ethanol-derived acetaldehyde. A nearly inactive form of the enzyme, ALDH2*2, is found in about 40% of the East Asian population. This variant enzyme is defined by a glutamate to lysine substitution at residue 487 located within the oligomerization domain. ALDH2*2 has an increased Km for its coenzyme, NAD+, and a decreased kcat, which lead to low activity in vivo. Here we report the 2.1 A crystal structure of ALDH2*2. The structure shows a large disordered region located at the dimer interface that includes much of the coenzyme binding cleft and a loop of residues that form the base of the active site. As a consequence of these structural changes, the variant enzyme exhibits rigid body rotations of its catalytic and coenzyme-binding domains relative to the oligomerization domain. These structural perturbations are the direct result of the inability of lysine 487 to form important stabilizing hydrogen bonds with arginines 264 and 475. Thus, the elevated Km for coenzyme exhibited by this variant probably reflects the energetic penalty for reestablishing this site for productive coenzyme binding, whereas the structural alterations near the active site are consistent with the lowered Vmax.  相似文献   

12.
13.
14.
Glutamine synthetase (Escherichia coli) was incubated with three different reagents that react with lysine residues, viz. pyridoxal phosphate, 5'-p-fluorosulfonylbenzoyladenosine, and thiourea dioxide. The latter reagent reacts with the epsilon-nitrogen of lysine to produce homoarginine as shown by amino acid analysis, nmr, and mass spectral analysis of the products. A variety of differential labeling experiments were conducted with the above three reagents to label specific lysine residues. Thus pyridoxal phosphate was found to modify 2 lysine residues leading to an alteration of catalytic activity. At least 1 lysine residue has been reported previously to be modified by pyridoxal phosphate at the active site of glutamine synthetase (Whitley, E. J., and Ginsburg, A. (1978) J. Biol. Chem. 253, 7017-7025). By varying the pH and buffer, one or both residues could be modified. One of these lysine residues was associated with approximately 81% loss in activity after modification while modification of the second lysine residue led to complete inactivation of the enzyme. This second lysine was found to be the residue which reacted specifically with the ATP affinity label 5'-p-fluorosulfonylbenzoyladenosine. Lys-47 has been previously identified as the residue that reacts with this reagent (Pinkofsky, H. B., Ginsburg, A., Reardon, I., Heinrikson, R. L. (1984) J. Biol. Chem. 259, 9616-9622; Foster, W. B., Griffith, M. J., and Kingdon, H. S. (1981) J. Biol. Chem. 256, 882-886). Thiourea dioxide inactivated glutamine synthetase with total loss of activity and concomitant modification of a single lysine residue. The modified amino acid was identified as homoarginine by amino acid analysis. The lysine residue modified by thiourea dioxide was established by differential labeling experiments to be the same residue associated with the 81% partial loss of activity upon pyridoxal phosphate inactivation. Inactivation with either thiourea dioxide or pyridoxal phosphate did not affect ATP binding but glutamate binding was weakened. The glutamate site was implicated as the site of thiourea dioxide modification based on protection against inactivation by saturating levels of glutamate. Glutamate also protected against pyridoxal phosphate labeling of the lysine consistent with this residue being the common site of reaction with thiourea dioxide and pyridoxal phosphate.  相似文献   

15.
SET domain lysine methyltransferases are known to catalyze site and state-specific methylation of lysine residues in histones that is fundamental in epigenetic regulation of gene activation and silencing in eukaryotic organisms. Here we report the three-dimensional solution structure of the SET domain histone lysine methyltransferase (vSET) from Paramecium bursaria chlorella virus 1 bound to cofactor S-adenosyl-L-homocysteine and a histone H3 peptide containing mono-methylated lysine 27. The dimeric structure, mimicking an enzyme/cofactor/substrate complex, yields the structural basis of the substrate specificity and methylation multiplicity of the enzyme. Our results from mutagenesis and enzyme kinetics analyses argue that a general base mechanism is less likely for lysine methylation by SET domains; and that the only invariant active site residue tyrosine 105 in vSET facilitates methyl transfer from cofactor to the substrate lysine by aligning intermolecular interactions in the lysine access channel of the enzyme.  相似文献   

16.
As a critical target for cyclin-dependent kinases (Cdks), the retinoblastoma tumour suppressor protein (pRb) controls early cell cycle progression. We report here a new type of regulation that influences Cdk recognition and phosphorylation of substrate proteins, mediated through the targeted methylation of a critical lysine residue in the Cdk substrate recognition site. In pRb, lysine (K) 810 represents the essential and conserved basic residue (SPXK) required for cyclin/Cdk recognition and phosphorylation. Methylation of K810 by the methyltransferase Set7/9 impedes binding of Cdk and thereby prevents subsequent phosphorylation of the associated serine (S) residue, retaining pRb in the hypophosphorylated growth-suppressing state. Methylation of K810 is under DNA damage control, and methylated K810 impacts on phosphorylation at sites throughout the pRb protein. Set7/9 is required for efficient cell cycle arrest, and significantly, a mutant derivative of pRb that cannot be methylated at K810 exhibits compromised cell cycle arrest. Thus, the regulation of phosphorylation by Cdks reflects the combined interplay with methylation events, and more generally the targeted methylation of a lysine residue within a Cdk-consensus site in pRb represents an important point of control in cell cycle progression.  相似文献   

17.
Human pancreatic alpha-amylase (HPA) is a member of the alpha-amylase family involved in the degradation of starch. Some members of this family, including HPA, require chloride for maximal activity. To determine the mechanism of chloride activation, a series of mutants (R195A, R195Q, N298S, R337A, and R337Q) were made in which residues in the chloride ion binding site were replaced. Mutations in this binding site were found to severely affect the ability of HPA to bind chloride ions with no binding detected for the R195 and R337 mutant enzymes. X-ray crystallographic analysis revealed that these mutations did not result in significant structural changes. However, the introduction of these mutations did alter the kinetic properties of the enzyme. Mutations to residue R195 resulted in a 20-450-fold decrease in the activity of the enzyme toward starch and shifted the pH optimum to a more basic pH. Interestingly, replacement of R337 with a nonbasic amino acid resulted in an alpha-amylase that no longer required chloride for catalysis and has a pH profile similar to that of wild-type HPA. In contrast, a mutation at residue N298 resulted in an enzyme that had much lower binding affinity for chloride but still required chloride for maximal activity. We propose that the chloride is required to increase the pK(a) of the acid/base catalyst, E233, which would otherwise be lower due to the presence of R337, a positively charged residue.  相似文献   

18.
Human UDP-glucose dehydrogenase (UGDH) is a homohexameric enzyme that catalyzes two successive oxidations of UDP-glucose to yield UDP-glucuronic acid, an essential precursor for matrix polysaccharide and proteoglycan synthesis. We previously used crystal coordinates for Streptococcus pyogenes UGDH to generate a model of the human enzyme active site. In the studies reported here, we have used this model to identify three putative active site residues: lysine 220, aspartate 280, and lysine 339. Each residue was site-specifically mutagenized to evaluate its importance for catalytic activity and maintenance of hexameric quaternary structure. Alteration of lysine 220 to alanine, histidine, or arginine significantly impaired enzyme function. Assaying activity over longer time courses revealed a plateau after reduction of a single equivalent of NAD+ in the alanine and histidine mutants, whereas turnover continued in the arginine mutant. Thus, one role of this lysine may be to stabilize anionic transition states during substrate conversion. Mutation of aspartate 280 to asparagine was also severely detrimental to catalysis. The relative position of this residue within the active site and dependence of function on acidic character point toward a critical role for aspartate 280 in activation of the substrate and the catalytic cysteine. Finally, changing lysine 339 to alanine yielded the wild-type Vmax, but a 165-fold decrease in affinity for UDP-glucose. Interestingly, gel filtration of this substrate-binding mutant also determined it was a dimer, indicating that hexameric quaternary structure is not critical for catalysis. Collectively, this analysis has provided novel insights into the complex catalytic mechanism of UGDH.  相似文献   

19.
Previous reports have demonstrated that aconitase has a single reactive sulfhydryl at or near the active site (Johnson, P. G., Waheed, A., Jones, L., Glaid, A. J., and Gawron, O. (1977) Biochem. Biophys. Res. Commun. 74, 384-389). On the basis of experiments with phenacyl bromide in which enzyme activity was abolished while substrate afforded protection, it was concluded that this group was an essential sulfhydryl. We have further examined the reactivity of this group and confirmed the result that, when reagents with bulky groups (e.g. N-ethylmaleimide or phenacyl bromide) modify the protein at the reactive sulfhydryl, activity is lost. However, when smaller groups, e.g. the SCH3 from methylmethanethiosulfonate or the CH2CONH2 from iodoacetamide, are introduced, there is only partial (50%) or no loss of activity. Experiments were performed to obtain evidence that these reagents are modifying the same residue. Methylmethanethio-sulfonate-treated enzyme showed an increase in the Km for citrate from 200 to 330 microM. EPR spectra were taken of the reduced N-ethylmaleimide- and iodoacetamide-modified enzyme in the presence of substrate. The former gave a spectrum typical of the substrate-free enzyme, while the spectrum of the latter was identical to enzyme with bound substrate. We, therefore, conclude that modification of this sulfhydryl affects activity by interfering with the binding of substrate to the active site and is not essential in the catalytic process.  相似文献   

20.
The ribosomal protein L12ab (Rpl12ab) in Saccharomyces cerevisiae is modified by methylation at both arginine and lysine residues. Although the enzyme responsible for the modification reaction at arginine 66 has been identified (Rmt2), the enzyme(s) responsible for the lysine modification(s) has not been found, and the site(s) of methylation has not been determined. Here we demonstrate, using a combination of mass spectrometry and labeling assays, that the yeast gene YDR198c encodes the enzyme responsible for the predominant epsilon-trimethylation at lysine 10 in Rpl12ab. An additional site of predominant epsilon-dimethylation is observed at lysine 3; the enzyme catalyzing this modification is not known. The YDR198c gene encodes a SET domain similar to that of the Rkm1 enzyme responsible for modifying Rpl23ab, and we have now designated the YDR198c gene product as Rkm2 (ribosomal lysine methyltransferase 2). The effect of the loss of the enzyme on ribosomal complex stability was studied by polysomal fractionation. However, no difference was observed between the Deltarkm2 deletion strain and its parent wild type strain. With the identification of this enzyme, it appears that the 12 SET domain family members in yeast can now be divided into two subfamilies based on function and amino acid sequence identity. One branch includes enzymes that modify histones, including Set1 and Set2; the other branch includes Rkm1, Rkm2, and Ctm1, the cytochrome c methyltransferase. These studies suggest that the remaining seven SET domain proteins may also be lysine methyltransferases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号