首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Androgen receptors in crude and partially purified 105,000 X g supernatant fractions from rat testis, epididymis, and prostate were studied in vitro using a charcoal adsorption assay and sucrose gradient centrifugation. Androgen metabolism was eliminated during receptor purification allowing determination of the kinetics of [3H]-androgen-receptor complex formation. In all three tissues, receptors were found to have essentially identical capabilities to bind androgen, with the affinity for [3H] dihydrotestosterone being somewhat higher than for [3H] testosterone. Equilibrium dissociation constants for [3H] dihydrotestosterone and [3H] testosterone (KD = 2 to 5 X 10(-10) M) were estimated from independently determined rates of association (ka congruent to 6 X 10(7) M-1 h-1 for [3H] dihydrotestosterone and 2 X 10(8) M-1 h-1 for [3H] testosterone) and dissociation (t 1/2 congruent to 40 hr for [3H] dihydrotestosterone and 15 h [3H] testosterone). Evaluation of the effect of temperature on androgen receptor binding of [3H]testosterone allowed estimation of several thermodynamic parameters, including activation energies of association and dissociation (delta H congruent to 14 kcal/mol), the apparent free energy (delta G congruent to -12 kcal/mol), enthalpy (delta H congruent to -2.5 kcal/mol), and entropy (delta S congruent to 35 cal col-1 K-1). Optimum receptor binding occurred at a pH of 8. Receptor stability was greatly enhanced when bound with androgen. Receptor specificity for testosterone and dihydrotestosterone was demonstrated by competitive binding assays. The potent synthetic androgen, 7 alpha, 17 alpha-dimethyl-19-nortestosterone, inhibited binding of [3H] testosterone or [3H] dihydrotesterone nearly as well as testosterone and dihydrotestosterone while larger amounts of 5 alpha-androstane-3alpha, 17 beta-diol and nonandrogenic steroids were required. Sedimentation coefficients of androgen receptors in all unfractionated supernatants were 4 and 5 to 8 S. Differences in sedimentation coefficients were observed following (NH4)2SO4 precipitation which did not influence the binding properties of the receptors. These results, together with measurements of3alpha/beta-hydroxysteroid oxidoreductase activity in vitro, suggest that organ differences in receptor binding of [3H] dihydrotestosterone and [3H] testosterone in vivo result from relative differences in intracellular concentrations of these androgens rather than from differences in receptor affinities.  相似文献   

2.
Wethers (at least 2 1/2 years after castration) were implanted with testosterone propionate (TP), oestradiol dipropionate (ODP), dihydrotestosterone, or a combination of dihydrotestosterone and ODP Silastic capsules. Active immunization against both oestradiol and oestrone or oestradiol only was used to negate effects of oestrogens produced by aromatization of TP. On exposure to oestrous ewes, immunization of wethers implanted with TP significantly (P less than 0.01) reduced all components of mating behaviour (except sniffing and Flehmen) to levels seen in untreated controls. The results support the conclusion that dihydrotestosterone potentiates the action of oestrogens, particularly as regards Flehmen, and has no action on its own within the central nervous system, while oestrogens do not restore mating activity to the same level as that following treatment with testosterone.  相似文献   

3.
Aromatase is a cytochrome P-450 enzyme that catalyzes the conversion of androgens into oestrogens via sequential oxidations at the 19-methyl group. Despite intensive investigation, the mechanism of the third step, conversion of the 19-aldehydes into oestrogens, has remained unsolved. We have previously found that a pre-enolized 19-al derivative undergoes smooth aromatization in non-enzymic model studies, but the role of enolization by the enzyme in transformations of 19-oxoandrogens has not been previously investigated. The compounds 19-oxo[2 beta-2H]testosterone and 19-oxo[2 beta-2H]androstenedione have now been synthesized. Exposure of either of these compounds to microsomal aromatase, in the absence of NADPH, for an extended period led to no significant 2H loss or epimerization at C-2, leaving open the importance of an active-site base. However, in the presence of NADPH there was an unexpected substrate-dependent difference in the stereoselectivity of H loss at C-2 in the enzyme-induced aromatization of 19-oxo[2 beta-2H]-testosterone versus 19-oxo[2 beta-2H]androstenedione. The aromatization results for 17 beta-ol derivative 19-oxo[2 beta-2H]-testosterone correspond to about 1.2:1 2 beta-H/2 alpha-H loss from unlabelled 19-oxotestosterone. In contrast, aromatization results for 19-oxo[2 beta-2H]androstenedione correspond to at least 11:1 2 beta-H/2 alpha-H loss from unlabelled 19-oxoandrostenedione. This substrate-dependent stereoselectivity implies a direct role for an enzyme active-site base in 2-H removal. Furthermore, these results argue against the proposal that 2 beta-hydroxylation is the obligatory third step in aromatase action.  相似文献   

4.
Enzymes are present in the primate brain that convert testosterone into 17 beta-hydroxy-5 alpha-androstan-3-one (dihydrotestosterone), estradiol-17 beta and 4-androstene-3,17-dione. To identify the metabolites of testosterone that accumulate in cell nuclei obtained from different regions of the brain, 9 adult castrated male rhesus monkeys were injected with 5 mCi [3H]testosterone as an intravenous bolus. After 1 h, brains were rapidly removed and the left halves were used for autoradiography while the right halves were dissected to provide 14 samples. Radioactive metabolites in cell nuclei were identified by high-performance liquid chromatography (HPLC) and by repeated recrystallization. In autoradiograms of brain, most of the labeled neurons were in the hypothalamus, preoptic area and amygdala. These three regions also had the highest levels of radioactivity. The major form of this radioactivity was [3H]estradiol-17 beta (Type I tissues) and the major radioactive androgen present was [3H]testosterone. In all other brain regions and pituitary gland, the major form of radioactivity was unchanged [3H]testosterone (Type II tissues). In genital tract structures, [3H]dihydrotestosterone predominated (Type III tissues). These results suggested that, in contrast to its actions on genital tract structures, testosterone acts on neuronal nuclei mainly in unmetabolized form or after conversion to estradiol-17 beta.  相似文献   

5.
We measured androgen receptors (AR) and 5 alpha-reductase activity (5 alpha RA) in the ductuli efferentes and epididymides from adult rhesus macaques. Tissue samples were either assayed biochemically for AR or stained immunocytochemically (ICC) with a monoclonal antibody against AR. To estimate 5 alpha RA, tissue microsomes were incubated with [1 alpha,2 alpha-3H]testosterone, and the [3H]dihydrotestosterone formed was quantified. We found significant regional differences in the levels of both 5 alpha RA and AR in the excurrent ducts. In general, both enzyme activity and AR levels were higher in the caput and corpus epididymis than in ductuli efferentes and cauda epididymis. With ICC, positive nuclear AR staining was detected in all epithelial cell types, whereas variable numbers of stromal cells were positively stained. Our data demonstrate that there are segmental differences in the concentrations of 5 alpha RA and AR in epididymis and suggest that there may be regional differences in the regulation of epididymal functions by androgen.  相似文献   

6.
Vacuolar type H(+)-ATPase is involved in lumenal acidification of the epididymis. This protein is highly expressed in narrow and clear cells where it is located in the apical pole, and it contributes to proton secretion into the lumen. We have previously shown that in rats, epididymal cells rich in H(+)ATPase appear during postnatal development and reach maximal numbers at 3-4 wk of age. The factors that regulate the appearance of these cells have not been investigated, but androgens, estrogens, or both may be involved. This study examined whether neonatal administration of estrogens (diethylstilbestrol [DES] or ethinyl estradiol) or an antiandrogen (flutamide), or the suppression of androgen production via administration of a GnRH antagonist (GnRHa), was able to alter the appearance of cells rich in H(+)-ATPase in the rat epididymis when assessed at age 25 days. Surprisingly, all of these treatments were able to significantly reduce the number of H(+)-ATPase positive cells; this was determined by immunofluorescence and confirmed by Western blotting. In contrast, neonatal coadministration of DES and testosterone maintained the expression of H(+)-ATPase in the epididymis at Day 25 despite the high level of concomitant estrogen exposure. These findings indicate that androgens, acting via the androgen receptor, are essential for the normal development of epididymal cells rich in H(+)-ATPase, and that treatments that interfere directly or indirectly with androgen production (GnRHa, DES) or action (flutamide, DES) will result in reduced expression of H(+)-ATPase. Our findings do not exclude the possibility that estrogens can directly suppress the postnatal development of cells in the epididymis that are rich in H(+)-ATPase, but if this is the case, this suppression can be prevented by testosterone administration.  相似文献   

7.
The distribution of androgen and estrogen binding sites in the mouse epididymis was assessed by autoradiography with 3H dihydrotestosterone (3H DHT) and 3H estradiol (3H E2). Nuclear labeling with 3H DHT in principal cells of the epithelium is high in the caput, low in the corpus, and high again in the cauda. 3H E2 also binds to the nuclei of principal cells. The pattern is distinct from 3H DHT: nuclear labeling is highest in the ductulus efferens and high in the caput, but low or absent in corpus and cauda. Apical cells in caput and clear cells in corpus and cauda are moderately labeled with 3H DHT but heavily labeled with 3H E2. Connective tissue cells show variable labeling with both hormones, being more pronounced with 3H E2. Smooth muscle cells are also labeled to varying degrees with both hormones. The different binding patterns of 3H DHT and 3H E2 and the results of the competition studies with unlabeled compounds demonstrate that in the epididymis besides the specific nuclear receptors for androgen also estrogen receptors are present.  相似文献   

8.
The chicken oviduct androgen receptor was characterized by sucrose density gradient centrifugation, Scatchard analysis, competition studies, and affinity labeled with dihydrotestosterone 17 beta-bromoacetate. A specific 8.5 S peak was seen on 0.01 M KCl sucrose density gradients when the receptor was labeled with [3H]5 alpha-dihydrotestosterone. Specific 4.6 S peaks were seen when receptor labeled with [3H]5 alpha-dihydrotestosterone or [3H]dihydrotestosterone 17 beta-bromoacetate was analyzed on 0.3 M KCl sucrose density gradients. Scatchard analysis of [3H]5 alpha-dihydrotestosterone binding by oviduct cytosol was consistent with two binding sites. A Kd of 0.13 nM was found for the high affinity androgen receptor. Competition studies showed the following order of ligand affinity: 5 alpha-dihydrotestosterone greater than dihydrotestosterone 17 beta-bromoacetate greater than progesterone greater than estradiol. A 61.2 kDa protein was specifically covalently labeled with [3H]dihydrotestosterone 17 beta-bromoacetate. The chicken oviduct androgen receptor possesses characteristics similar to other androgen receptors, and provides a good source of androgen receptor for physicochemical studies of the native receptor protein.  相似文献   

9.
Japanese quail selected bidirectionally for adult mating frequency were utilized to study in vivo aromatization of testosterone (T) in relation to masculine copulatory behavior. Functionally castrated high (HM) and low mating (LM) line quail were injected with 75 microCi of [3H]T. One hour after the injection, all radioactivity recovered in telencephalic-diencephalic brain tissue was in the form of T, dihydrotestosterone (DHT), or estradiol (E2). Neither the total 3H nor the [3H]T metabolite radioactivity differed between the two genetic lines. Of all [3H]T metabolic radioactivity, [3H]E2 represented 45 +/- 6 % in the HM line and 46 +/- 6% in the LM line, indicating that the line difference in mating frequency was not due to a corresponding difference in aromatase activity. Inasmuch as both the HM and LM line birds actively converted T to E2, these results implicate a neural mechanism involving E2-receptor interactions as the cause of the behavioral differences between the HM and LM lines.  相似文献   

10.
The effects of dihydrotestosterone (17beta-hydroxy-5alpha-androstan-3-one) and testosterone on the growth of the androgen-dependent Shionogi SC-115 tumour in mice have been compared and the metabolites in the tumour arising from each steroid have been identified. After the transfer of SC-115 tumour cells to castrated male mice, treatment of the recipients with dihydrotestosterone produced a striking proliferative response that enabled earlier tumour detection and led to a higher tumour incidence than obtained with testosterone. At short intervals after the intravenous injection of 200muCi of [1,2-(3)H]testosterone the amounts of radioactivity in tumour, muscle and seminal vesicles were almost equal. The metabolism of [1,2-(3)H]testosterone in tumour and muscle was slight in comparison with the extensive metabolism in seminal vesciles. Whereas up to 7% of the total neutral steroid recovered from whole tumour tissue and isolated nuclei was in the form of [1,2-(3)H]dihydrotestosterone, the amount of this compound in the corresponding preparations from seminal vesciles was several times greater. When the metabolism of [1,2-(3)H]dihydrotestosterone in tumour tissue was studied, it was found that more than 60% of the total neutral steroid in both cytoplasm and nuclei consisted of [1,2-(3)H]dihydrotestosterone. Thus much higher intracellular concentrations of dihydrotestosterone occurred with the administration of this steroid than with testosterone. Tumour cell proliferation was suppressed by oestradiol and the amount of androgen in nuclei was significantly decreased by high doses of this hormone.  相似文献   

11.
To investigate the presence of glycosyltransferase activity at the apical surfaces of columnar cells in small intestine, CMP-[3H]-sialic acid was injected into the lumen of a ligated segment of rat jejunum; 5 min later the tissue was fixed and processed for light microscopic autoradiography. After a 3-6-month exposure, an autoradiographic reaction appeared over the microvillar surfaces of columnar cells, indicating the presence of surface sialyltransferase activity accompanied by endogenous acceptors. When CMP-[3H]-sialic acid was injected into the posterior chamber of rat eye or the lumen of mouse gallbladder, no autoradiographic reaction was observed at the surfaces of the cells facing these cavities. After injection of UDP-[3H]-galactose into the same three sites, an autoradiographic reaction was observed in the Golgi regions of the various epithelial cells, but not along their apical surfaces. Competition experiments using unlabeled galactose indicated that [3H]-galactose had been released from the nucleotide and had entered the cells to be incorporated into the Golgi apparatus.  相似文献   

12.
The oxidative metabolism of androgens in the rat brain includes aromatization preceded by the requisite 19-hydroxylation. We have examined the transformation of [19-C3H3]androstenedione and [4-14C]testosterone by the semipurified cytochrome P-450 fraction of the rat brain. [19-C3H3]Androstenedione generated tritiated water and formic acid in a ratio of 8 to 1 indicating that 19-hydroxylation in the brain far exceeds that necessary for aromatization. This was confirmed by the results of the 14C-testosterone incubation in which the 14C labeled 19-hydroxy and 19-oxo derivatives which were isolated exceeded the yield of 14C-estrogens by several fold. Thus the rat brain has the capacity to form in situ 19-hydroxylated androgens which are not available to it from the circulation.  相似文献   

13.
When [3H]testosterone was infused into the general circulation of the rat, perfusion of a length of the cauda epididymidis (17 +/- 1.0 (s.e.m.) cm, n = 36) with perfusates of varied composition revealed a low entry of radioactivity (1--10% plasma levels; 10 exps) with protein-free perfusates, and a greater entry (15--48%; 10 exps) when the perfusate contained bovine serum albumin (38 mg/ml). When the perfusate contained ovine or rat testicular fluid, or rat epididymal fluid at protein concentrations of 3 mg/ml or less, the entry of radioactivity into the epididymis was greater than when the perfusate contained 3 mg BSA/ml. The addition of ovine rete testis fluid protein (3 mg/ml to BSA (38 mg/ml) in the perfusate increased the uptake of radioactivity (58--106%; 6 exps). Radioactivity in blood was principally associated with testosterone (90, 95% total blood activity, 2 rats), whereas both [3H]testosterone (37, 41% total perfusate activity) and [3H]dihydrotestosterone (42, 63% total perfusate activity) was present in BSA-containing perfusates. The proportion of dihydrotestosterone appeared to increase when the perfusate contained protein of testicular origin.  相似文献   

14.
Using the dry-mount autoradiographic technique, a single population of cells within the rat epididymis, the clear cells, have been shown to bind [3H]aldosterone at a nuclear site. Competitive binding experiments demonstrated that aldosterone was more potent than desoxycorticosterone than testosterone in reducing the nuclear uptake of radioactive aldosterone. Furthermore, the other epididymal cells (principal and basal cells) in all regions of the epididymis were not significantly labelled; occasional labelling was noted in some endothelial and stromal cells. It is suggested that aldosterone may play a role in controlling the intracellular and transcellular movement of ions and water necessary for concentrating absorbed macromolecules in the clear cell.  相似文献   

15.
The metabolism and binding of [1, 2, 6, 7-3H] testosterone in male and female rat brain has been studied in an attempt to find an explanation for the relative androgen unresponsiveness characterizing the female hypothalamo-pituitary axis involved in regulation of hepatic steroid metabolism. The most significant sex differences in the pattern of [3H] testosterone metabolites recovered from several brain regions (including pituitary, pineal gland, and hypothalamus) after intraperitoneal administration of [3H] testosterone were the predominance of testosterone and androstenedione in male brain compared to the quantitative importance of 5alpha-androstane-3alpha, 17beta-diol, 5alpha-androstane-3beta, 17beta-diol, epitestosterone, and dihydroepitestosterone in female brain. One possible explanation for the androgen unresponsiveness of female rats is, therefore, the faster metabolism of testosterone to inactive compounds in female brain. Experiments both in vivo and in vitro showed the presence of high affinity, low capacity binding sites for [3H] testosterone in male pituitary, pineal gland, and hypothalamus (Kd values in the region of 1 X 10(-10) to 1 X 10(-9) M and number of binding sites 1.0 to 1.4 X 10(-14) mol per mg of protein). The steroid - macromolecular complexes generally had a pI of 5.1, were excluded from Sephadex G-200, were heat-labile, and were sensitive to protease. Competition experiments indicated the following order of ligand affinities: testosterone is greater than 5alpha-dihydrotestosterone and estradiol is greater than androstenedione is greater than corticosterone. No steroid-binding proteins of similar nature were found in pituitary, pineal gland, or hypothalamus from female rats. On the basis of these results it is suggested that the androgen unresponsiveness of female rats referred to above relates to the absence of receptor protein for androgens in female rat brain. In support of this hypothesis, 28-day-old female rats, which are known to be affected by androgens with regard to liver enzyme activities, were shown to contain receptor proteins for androgen in the brain. In conclusion, the relative androgen unresponsiveness of the female hypothalamo-pituitary axis is probably explained by the absence of receptor proteins for androgen in female hypothalamus and pituitary. The fast metabolism of testosterone in female rat brain also serves to decrease the availability of active androgen to potential receptor sites. It may be speculated that the presence of androgen receptors in male brain is the result of neonatal programming ("imprinting") by testicular androgen.  相似文献   

16.
To evaluate the presence of androgen receptors in the human melanoma cell line IIBMEL-J, a Scatchard plot analysis was performed. Cells in culture revealed a single binding component with an apparent dissociation constant (KD) at 37°C of 11 nM and a binding capacity of 326 fmol/mg protein when measured with [3H]-R1881. Competition analysis revealed an atypical relaxation of specificity, since not only androgen (testosterone, dihydrotestosterone [DHT], R1881) and antiandrogen (hydroxy-flutamide [OH-FLU]) competed for [3H]-R1881 binding, but also estradiol, progesterone, and cortisol at 500-fold excess concentration. Binding of [3H]-estradiol and [3H]-R5020 in the absence of unlabeled DHT were completely suppressed in its presence. Immunohistochemistry of androgen receptor with a monoclonal antibody showed that nuclei were vigorously stained. Different doses of flutamide (FLU) and OH-FLU tested on cultured IIB-MEL-J cells in the presence of serum inhibited significantly cell proliferation in a dose-dependent manner. When cells were incubated with 10 nM DHT and 1%charcoal-adsorbed serum, a significant stimulation of growth that was observed was inhibited by 4 μM OH-FLU. DHT stimulation was completely reversed by the antiestrogen tamoxifen. In addition, male nude mice transplanted with IIB-MEL-J tumor were treated with FLU when tumors were palpable. FLU was effective in diminishing tumor growth and increasing survival rate of the animals. As a conclusion, the presence of functional androgen receptors in these cells has been demonstrated by growth inhibition in vitro and in vivo with antiandrogens, and their atypical nature is suggested by binding cross-reactivity and competition studies.  相似文献   

17.
F Kamel  L C Krey 《Steroids》1991,56(1):22-29
Dispersed rat pituitary cells were exposed to [1,2,6,7-3H]testosterone ([3H]T, 10(-8) M) to assess the role of 5 alpha-reduction in T regulation of gonadotroph secretion. After 4 to 48 hours of exposure, [3H]T metabolites isolated by thin-layer chromatography were characterized in medium and cell homogenates as well as bound to androgen receptors salt-extracted from purified nuclear pellets. Receptor-bound 5 alpha-[3H]dihydrotestosterone ([3H]DHT)/total [3H]androgens rose progressively from 16% at 4 hours to more than 50% at 48 hours. Coincubation with 4-MA (10- to 1,000-fold molar excess) or testosterone-17 beta-carboxylic acid (TCA; 1,000-fold excess) reduced receptor-bound [3H]DHT/[3H]androgen to less than 10% and 20%, respectively, but elevated [3H]T-receptor levels. Despite inhibiting 5 alpha-reductase activity, TCA and 4-MA had no effect on T suppression of gonadotropin-releasing hormone-stimulated luteinizing hormone secretion or T enhancement of total (cell + secreted) follicle-stimulating hormone levels. The results suggest that 5 alpha-reduction to DHT is not essential for the expression of the direct influences of T on gonadotropin synthesis and secretion in rat gonadotrophs.  相似文献   

18.
Although dopamine-containing cells are known to be present in sympathetic ganglia, the site of action and the role of dopamine in ganglion function remain obscure. In the present work, we evaluated the interaction of dopamine receptor ligands with particulate membrane fractions from bovine chromaffin cells and adrenal medullary homogenates using the D2 dopamine receptor radioligand [3H]N-methylspiperone ([3H]NMSP). Scatchard analysis of [3H]NMSP saturation experiments revealed a Bmax of 24.1 +/- 1.6 fmol/mg of protein and a KD of 0.23 +/- 0.03 nM in the particulate fraction from adrenal medulla homogenates and a Bmax of 26.5 +/- 2.7 fmol/mg of membrane protein and a KD of 0.25 +/- 0.02 nM in the particulate fraction prepared from isolated adrenal chromaffin cells. There were approximately 1,000 receptors/cell. There were no detectable levels of specific [3H]NMSP binding in the particulates prepared from adrenal cortical or capsular homogenates. Competition studies with the nonradioactive D2 receptor antagonists spiperone, chlorpromazine, and (-)-sulpiride revealed KI values of 0.28, 21, and 196 nM, respectively. The (+) isomer of butaclamol displayed a 604-fold higher affinity than the (-) isomer. Competition studies with the dopamine receptor agonists dopamine and apomorphine revealed affinities of 3,960 and 417 nM, respectively. A correlation coefficient of 0.96 was obtained in studies comparing the potencies of drugs in inhibiting specific [3H]NMSP binding in bovine adrenal medullary homogenates and in inhibiting specific [3H]NMSP binding to brain D2 dopamine receptors. In summary, radiolabeling studies using [3H]NMSP have revealed the presence of D2 dopamine receptors on bovine adrenal chromaffin cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Specific binding of [3H]aldosterone to the cytosolic fraction of epithelial cells was studied in the human colon and terminal ileum. Analysis of [3H]aldosterone binding to the epithelial cells of ascending colon, caecum and ileum as a function of [3H]aldosterone concentration revealed only one class of specific receptors with an affinity constant of about 2 nmol/l. [3H]aldosterone binding was approximately the same in the sigmoid, descending and transverse colon and in the caecum, but slightly lower in the ascending colon and ileum. The specificity of the [3H]aldosterone binding was the same along the colon. The relative order of potency in inhibiting [3H]aldosterone binding was: aldosterone = SC 26304 = dexamethasone much greater than dihydrotestosterone greater than estradiol = RU 26988.  相似文献   

20.
An in vivo competition method was used in adult male rhesus monkeys to determine if testosterone binds to high affinity binding agents, notably androgen receptors, in brain cell nuclei. Castrated males received 5 alpha-dihydrotestosterone propionate (DHTP, 20 mg, N = 6), testosterone propionate (TP, 100 mg, N = 3) or oil vehicle (controls, N = 6) followed 3 h later by 5 mCi [3H]testosterone [( 3H]T) as an intravenous bolus. Brain and peripheral tissue samples were removed after 60 min, homogenized and separated into supernatant and purified nuclear fractions. Radioactive metabolites of [3H]T [( 3H]estradiol, [3H]DHT) and unchanged [3H]T were identified by high performance liquid chromatography (HPLC). Androgen pretreatments reduced the nuclear uptake of [3H]T by 67-98% in hypothalamus (HYP), preoptic area (POA) and pituitary gland (PIT). This blockade was presumed to be due to prior occupation of nuclear androgen receptors by unlabeled androgens because pretreatments had no effects on levels of [3H]T in supernatants. Since [3H]T was the major radioactive androgen present in brain cell nuclei, results strongly suggested that the principal nuclear androgen receptor ligand in HYP, POA and PIT was unchanged [3H]T rather than [3H]DHT as occurs in the genital tract. In the amygdala the situation was quite different. Here, nuclear concentrations of [3H]T were reduced by 67% following TP pretreatment but were not changed following DHTP pretreatment, indicating a different uptake mechanism in this region that could have particular relevance for testosterone's central actions on behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号