首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrical responses of some nerves of the ciliary ganglion to stimulation of its other nerves were recorded, and intracellular recordings were also made from neurons of the ganglion (in situ). The overwhelming majority of preganglionic fibers terminate synaptically on neurons of the ganglion. Postganglionic fibers leave in the lateral and medial ciliary nerves, in which the velocity of conduction of excitation ranges from 1.9 to 9.0 m/sec. A few preganglionic fibers pass through the ciliary ganglion into the lateral ciliary nerve, giving off collaterals to neurons of the ganglion, so that stimulation of the lateral ciliary nerve evokes a response in the medial ciliary nerve (preganglionic axon reflex). The resting potential of neurons of the ciliary ganglion is 57±2.8 mV, and their action potential 68±3.6 mV. Single orthodromic stimulation usually evokes a single action potential in a neuron. The amplitude of the EPSP is increased during hyperpolarization of the postsynaptic membrane, confirming the chemical nature of synaptic transmission in the ganglion. The antidromic response consists of an IS-component and spike. The spike is followed by after-hyperpolarization, with a mean amplitude equal to 31% of the spike amplitude, and the time taken for it to fall to one–third of its initial amplitude is 75–135 msec.A. A. Bogomolets' Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 1, No. 1, pp. 101–108, July–August, 1969.  相似文献   

2.
The compound action potential arising in response to supramaximal stimulation of Aδ- or C-fibers of a cat cutaneous nerve (the saphenous nerve) was investigated by methods improving the signal/noise ratio in the record of the unit evoked response. By the use of optical and computer (BÉSM-3M) methods of coherent signal accumulation followed by averaging, potentials of nerve fibers ranging in amplitude from 20 to 0.05 µV and in duration from 10 to 0.4 msec were distinguished from the apparatus noise. A continuous distribution of nerve fibers by conduction velocity was found over the range from 80 to 0.15 m/sec. The conditions of appearance of low-amplitude action potentials of nerve fibers with a low conduction velocity are discussed.  相似文献   

3.
1. Conduction of impulses in peripheral myelinated fibers of a nerve trunk is a continuous process, since with uninjured nerve fibers: (a) within each internodal segment the conduction time increases continuously and linearly with increasing conduction distance; (b) the presence of nodes of Ranvier does not result in any detectable discontinuity in the conduction of the impulse; (c) the ascending phase of the spike always has an S shape and never presents signs of fractionation; (d) the shape and magnitude of the spike are constant at all points of each internodal segment. 2. Records have been presented of the external logitudinal current that flows during propagation of an impulse in undissected single nerve fiber (Fig. 6). 3. Propagation of impulses across a conduction block occurs with a readily demonstrable discontinuity.  相似文献   

4.
The respiratory response to hypercapnia has been investigated in 10 anesthetized rabbits by use of a rebreathing technique. The responses were obtained in three situations: with one intact vagus nerve (control), during differential block of conduction, and after vagotomy. Differential block was achieved using anodal hyperpolarization by application of a direct current to the cervical vagus nerve. Great care was taken during the differential block to establish that all impulse conduction in myelinated fibers of the cervical vagus nerve was abolished but that the nonmyelinated fibers conducted normally. Additionally, in five more rabbits the nature of the differential block was confirmed from single-fiber recordings of activity in both myelinated and nonmyelinated fibers. The same increase in tidal volume in response to hypercapnia was present in all three experimental situations, indicating that it was not vagally mediated. The increase in frequency in response to hypercapnia in the control state was abolished by vagotomy but preserved when only the nonmyelinated fibers were functioning during the differential block. This increased frequency response, attributable to decreases in both inspiratory and expiratory durations, was usually enhanced during the differential block, despite the slower deeper pattern of breathing attributed to loss of activity in myelinated fibers. The implications of this reflex increase in frequency in response to hypercapnia, mediated by nonmyelinated vagal endings in the lung, are discussed.  相似文献   

5.
Current nerve conduction studies (NCS) are influenced by the activity of the largest active fibers, making it difficult to assess the state of smaller nerve fibers. This study is aimed at alternative diagnostic techniques for assessing carpal tunnel syndrome (CTS). A conduction velocity distribution (CVD) estimator based on the collision technique that incorporates volume conductor modeling is proposed and discussed in this paper. Simulations were run to evaluate the accuracy of the CVD estimator and compare its performance with previous CVD estimators based on the collision technique. Results show the improved accuracy of the proposed approach, which is able to provide estimates with a percent mean square error (PMSE) lower than 1.1% for all CTS cases studied and lower than 2% in the presence of additive white Gaussian noise. Simulations also showed that conduction slowing in the carpal tunnel (CT) segment is detected by the proposed technique and displayed as an increase in the number of low velocity fibers. Results suggest that both CVD estimator and amplitude parameter proposed can help detect the severity of CTS in a patient more accurately than current NCS.  相似文献   

6.
The somatosensory evoked response recorded from the scalp over the somatosensory cortex was used to examine the interaction between painful cold and transcutaneous electrical stimuli delivered concomitantly. When a painful cold stimulus was applied to the palmar receptive field of the median nerve while that nerve was being stimulated with electrical pulses at the wrist, there was an augmentation of an early component of the somatosensory evoked response manifested by an increase in the amplitude of a wave segment in comparison with room temperature controls. This augmentation depended on there being normal conduction of nerve impulses in both the population of small and large peripheral nerve fibers as compared to a state in which conduction was blocked selectively by a local anesthetic or a pressure cuff in those small and large fibers, respectively. The augmentation was not found to be characteristic of an arousal phenomenon, but was localized to the somatosensory cortex. This might represent the effects of a non-specific thalamortical projection system on a specific one.  相似文献   

7.
The dependence of the magnitude and character of vasomotor reflexes on the amplitude of tetanic stimulation of the mesenteric nerves was investigated in experiments on anesthetized cats. Comparison of the results of analysis of the stimulus amplitude versus reflex magnitude curves with previous data on excitability of the various groups of mesenteric nerve fibers revealed three groups of "vasomotor" afferents with different conduction velocities: fast-conducting Aδ-fibers (conduction velocity over 8 m/sec) evoking depressor or small pressor reflexes; slow-conducting Aδ-fibers (conduction velocity below 8 m/sec), evoking pressor reflexes or, by interaction with impulses of lower-threshold, fast-conducting Aδ-fibers, either reduce the magnitude of the depressor reflexes evoked by those impulses or increase the corresponding pressor reflexes; C-fibers increasing the magnitude of the pressor reflexes evoked by slow-conducting A-fibers.  相似文献   

8.
On x-irradiation of the eggs and sperm of Arbacia punctulata there was inhibition of respiration with relatively large doses, whereas there was an increase with small doses. The dose required to produce an increase of respiration depended on the degree of sensitivity of the cell to the effect of ionizing radiation. Sperm cells were more sensitive; then came fertilized eggs; unfertilized eggs were the least sensitive. The inhibiting effect of x-rays on cell division was observed even on irradiation with x-ray doses which produced an increase of respiration. These results are compared to similar effects produced by thiol reagents and are attributed to oxidation of the thiol compounds in the cell.  相似文献   

9.
Phrenic nerve conduction times and twitch pressures of the human diaphragm   总被引:8,自引:0,他引:8  
A multilumen catheter was modified to allow simultaneous recording of transdiaphragmatic pressure (Pdi) and the electromyographic (EMG) activity of the diaphragm. The catheter was used in 20 healthy males to measure the conduction time of the phrenic nerves and the twitch pressure of each hemidiaphragm during single supramaximal shocks delivered to the phrenic nerve in the neck. Diaphragmatic EMG was also recorded with surface electrodes at various sites on the chest wall. The mean conduction time to the crural fibers was 6.82 +/- 0.64 ms on the right and 7.93 +/- 0.85 ms on the left, whereas that to the costal fibers adjacent to the midclavicular line was 7.68 +/- 0.56 ms on the right and 7.92 +/- 0.92 ms on the left. Significant correlations were found between the conduction time of each phrenic nerve and the height and the age of the subjects. Conduction times measured at different EMG recording sites varied by as much as 2 ms. This variability, and that of previously reported values for phrenic conduction time, may be largely accounted for by differences in the conduction distances that were measured to each site in three cadavers. The evoked change in Pdi had a mean rise time of 92 ms and an amplitude of approximately 10 cmH2O.  相似文献   

10.
Hypothermia is an important means of neuroprotection. Understanding the effects of temperature on a physiologic measurement such as the nerve action potential (NAP) is important in monitoring its effects. The effects of hypothermia on the NAP amplitude, conduction velocity, and response to paired pulse stimulation were quantified in a rat sciatic nerve preparation from 37 to 10 °C. The time course of temperature related changes and the effect of repeated cycles of cooling and rewarming are explored using the following measures of the NAP: peak-to-peak amplitude, conduction velocity, duration, area under the curve and response to paired pulse stimuli. The NAP amplitude initially increases as temperature is reduced to 27 °C and then drops to roughly 50% of its baseline value by 16 °C while the area under the curve increases gradually until it begins to decline at 16 °C. Permanent loss of the NAP appears only after cooling below 10 °C for extended periods. Although the dependence of amplitude on temperature is approximately sigmoidal, the conduction velocity declines linearly at a rate of 2.8 m/s/°C. The response to paired pulse stimulation is strongly dependent on both temperature and the interstimulus interval with the responses at shorter interstimulus intervals being more temperature sensitive. With repetitive cycles of cooling and rewarming, the NAP amplitude declines by roughly 4% with every cycle without changes in the temperature at which the NAP amplitude reaches 50% of baseline. Only minor differences in conduction velocity are seen during cooling and rewarming.  相似文献   

11.
Single nerve fibers were isolated from the nerve innervating the sartorius or semitendinosus muscle of the toad (Bufo marinus). Single nerve fiber responses were recorded with three arrangements of the "bridge insulator" method. During stimulation at 50 to 150 pulses per second for 20 to 140 minutes the spike duration was progressively increased. After tetanization the spike duration usually continued to increase at a more rapid rate. Within 5 to 60 minutes further prolongation stopped and within 1 to 10 hours the spike duration was normal. The duration of the response of tetanized fibers was from 2.5 to more than 10 times the spike duration of untetanized fibers. Prolongation was observed in nerve fibers isolated from nerves tetanized in vivo.  相似文献   

12.
In this paper, the acute changes in the compound motor action potential (CMAP) during mechanical stretch were studied in hamster sciatic nerve and compared to the changes that occur during compression.In response to stretch, the nerve physically broke when a mean force of 331 gm (3.3 N) was applied while the CMAP disappeared at an average stretch force of 73 gm (0.73 N). There were 5 primary measures of the CMAP used to describe the changes during the experiment: the normalized peak to peak amplitude, the normalized area under the curve (AUC), the normalized duration, the normalized velocity and the normalized velocity corrected for the additional path length the impulses travel when the nerve is stretched. Each of these measures was shown to contain information not available in the others.During stretch, the earliest change is a reduction in conduction velocity followed at higher stretch forces by declines in the amplitude of the CMAP. This is associated with the appearance of spontaneous EMG activity. With stretch forces < 40 gm (0.40 N), there is evidence of increased excitability since the corrected velocities increase above baseline values. In addition, there is a remarkable increase in the peak to peak amplitude of the CMAP after recovery from stretch < 40 gm, often to 20% above baseline.Multiple means of predicting when a change in the CMAP suggests a significant stretch are discussed and it is clear that a multifactorial approach using both velocity and amplitude parameters is important. In the case of pure compression, it is only the amplitude of the CMAP that is critical in predicting which changes in the CMAP are associated with significant compression.  相似文献   

13.
Unit responses of the isolated left celiac ganglion to stimulation of various nerves of the solar plexus were studied by intracellular microelectrode recording in cats before and after degeneration of the preganglionic fibers. The resting potential of the ganglionic neurons was ?62.2±2.9 mV and the amplitude of the spike potential 72.4±3.2 mV. The spike was followed by after-hyperpolarization with a mean amplitude of 24% of the spike amplitude and a duration of between 25 and 180 msec. A characteristic feature of the ganglion was the presence of orthodromic unit responses to stimulation of peripheral nerve fibers of the solar plexus. The higher threshold of activation of the neurons by peripheral fibers than by preganglionic fibers and the preservation of orthodromic unit responses to stimulation of peripheral nerves after degeneration of the preganglionic fibers are evidence that the peripheral reflex arc is closed in this ganglion. Neurons of the left celiac ganglion are divided into three groups. Only preganglionic fibers of the splanchnic nerve with different properties converge on the neurons of the first group (the most numerous); only afferent fibers of peripheral nerves converge on the neurons of the third group (the least numerous); both types of fibers terminate on neurons of the second group. This convergence may lie at the basis of the mechanism of the centrifugal and peripheral reflex interaction in the ganglion for coordinated visceral activity.  相似文献   

14.
Ito I  Watanabe S  Kimura T  Kirino Y  Ito E 《Zoological science》2003,20(11):1327-1335
Although primary olfactory systems in various animals display spontaneous oscillatory activity, its functional significance in olfactory processing has not been elucidated. The tentacular ganglion, the primary olfactory system of the terrestrial slug Limax marginatus, also displays spontaneous oscillatory activity at 1-2 Hz. In the present study, we examined the relationship between odor-evoked spike activity and spontaneous field potential oscillations in the tentacular nerve, representing the pathway from the primary olfactory system to the olfactory center. Neural activity was recorded from the tentacular nerve before, during and after application of various odors (garlic, carrot, and rat chow) to the sensory epithelium and the changes in firing rate and spontaneous oscillations were analyzed. We detected the baseline amplitude of the oscillations and baseline spike activity before stimulation. Odor stimulations for 20 s or 60 s evoked a transient increase in the firing rate followed by a decrease in the amplitude of spontaneous oscillations. The decrease in the amplitude was larger in the first 8 s of stimulation and subsequently showed recovery during stimulation. The amplitude of the recovered oscillations often fluctuated. Odor-evoked spikes appeared when the amplitude of the recovered oscillations was transiently small. These results suggest that the large oscillations could inhibit spike activity whereas the first transient increase in spike activity was followed by the decrease in the oscillation amplitude. Our results indicate that there is a significant negative correlation between spontaneous oscillations and odor-evoked spike activity, suggesting that the spontaneous oscillations contribute to the olfactory processing in slugs.  相似文献   

15.
Extracellular recording techniques were used to record the responses of medial nucleus cells and posterior lateral line nerve fibers in mottled sculpin, Cottus bairdi, and goldfish, Carassius auratus, to a 50-Hz dipole source (vibrating sphere). Responses were characterized in terms of (1) receptive fields that relate responsiveness (spike rate and phase-locking) to the location of the source along the length of the fish, (2) input-output functions that relate responsiveness to vibration amplitude for a fixed source location, and (3) peri-stimulus time histograms that relate responsiveness to time during a sustained period of vibration. Relative to posterior lateral line nerve fibers, medial nucleus cells in both species were similar in showing (1) lower spontaneous and evoked rates of spike activity, (2) greater degrees of adaptation, (3) greater heterogeneity in all response characteristics, and (4) evidence for inhibitory/excitatory interactions. Whereas receptive fields of nerve fibers in both species faithfully reflect both pressure gradient amplitudes (with rate changes) and directions (with phase-angle changes) in the stimulus field, receptive fields of medial nucleus were more difficult to relate to the stimulus field. Some, but not all, receptive fields could be modeled with excitatory center/inhibitory surround and inhibitory center/excitatory surround organizations. Accepted: 26 November 1997  相似文献   

16.
Protection of bacteriophage T1 against x-rays was tested in the presence of concentrations of (NH(4))(2)SO(4) ranging from 10(-6)M to saturation (4.26 M). Survival of T1 in concentrations of 10(-6) to 10(-3)M after irradiation did not differ significantly from survival in distilled water after irradiation. From 10(-3)M to 10(-1)M there was a steep rise in survival, with a leveling off as the concentration approached saturation, giving over-all a 2,000-fold increase in survival. The mechanism of salting out protection in these experiments is apparently due chiefly to dehydration, which protects the virus particles against the indirect effects of x-irradiation. Postirradiation effects, tested by the inactivation of phage added to irradiated media, approach in magnitude the effects obtained by irradiation of the phage particles themselves in the various solutions. Filter paper adsorption analyses indicate a close correlation between concentrations of (NH(4))(2)SO(4), ability of the filter paper to adsorb phage, and protection against x-rays, both during and after irradiation.  相似文献   

17.
We studied effects of tetrac (tetraiodothyroacetic acid) on survival of GL261, a murine brain tumor cell line, following single doses of 250 kVp x-rays and on repair of damage (sublethal and potentially lethal damage repair; SLDR, PLDR) in both exponential and plateau phase cells. Cells were exposed to 2 μM tetrac (1 h at 37oC) prior to x-irradiation. At varying times after irradiation, cells were re-plated in medium without tetrac. Two weeks later, colonies were counted and results analyzed using either the linear-quadratic (LQ) or single-hit, multitarget (SHMT) formalisms. Tetrac sensitized both exponential and plateau phase cells to x-irradiation, as shown by a decrease in the quasi-threshold dose (Dq), leading to an average tetrac enhancement factor (ratio of SF2 values) of 2.5. Tetrac reduced SLDR in exponential cells by a factor of 1.8. In plateau phase cells there was little expression of SLDR, but tetrac produced additional cell killing at 1-4 h after the first dose. For PLDR expression in exponential cells, tetrac inhibited PLDR by a factor of 1.9, and in plateau phase cells, tetrac decreased PLDR expression by a factor of 3.4. These data show that the decreased Dq value seen after single doses of x-rays with tetrac treatment is also accompanied by a significant decrease in recovery from sublethal and potentially lethal damage.  相似文献   

18.

Background

Visual stimuli elicit action potentials in tens of different retinal ganglion cells. Each ganglion cell type responds with a different latency to a given stimulus, thus transforming the high-dimensional input into a temporal neural code. The timing of the first spikes between different retinal projection neurons cells may further change along axonal transmission. The purpose of this study is to investigate if intraretinal conduction velocity leads to a synchronization or dispersion of the population signal leaving the eye.

Methodology/Principal Findings

We ‘imaged’ the initiation and transmission of light-evoked action potentials along individual axons in the rabbit retina at micron-scale resolution using a high-density multi-transistor array. We measured unimodal conduction velocity distributions (1.3±0.3 m/sec, mean ± SD) for axonal populations at all retinal eccentricities with the exception of the central part that contains myelinated axons. The velocity variance within each piece of retina is caused by ganglion cell types that show narrower and slightly different average velocity tuning. Ganglion cells of the same type respond with similar latency to spatially homogenous stimuli and conduct with similar velocity. For ganglion cells of different type intraretinal conduction velocity and response latency to flashed stimuli are negatively correlated, indicating that differences in first spike timing increase (up to 10 msec). Similarly, the analysis of pair-wise correlated activity in response to white-noise stimuli reveals that conduction velocity and response latency are negatively correlated.

Conclusion/Significance

Intraretinal conduction does not change the relative spike timing between ganglion cells of the same type but increases spike timing differences among ganglion cells of different type. The fastest retinal ganglion cells therefore act as indicators of new stimuli for postsynaptic neurons. The intraretinal dispersion of the population activity will not be compensated by variability in extraretinal conduction times, estimated from data in the literature.  相似文献   

19.
We have studied the effects of Q-switched Nd:YAG laser irradiation on transmission of neural impulses in sensory nerve fibers in anesthetized rats and cats. Laser light was applied to dorsal roots (rat, cat) and to the sciatic nerve (rat) at increasing pulse energies ranging from 10 to 100 mJ/pulse for 5 minutes each. Compound action potentials recorded from dorsal roots and the sciatic nerve in response to high intensity electrical stimulation during laser application at increasing pulse energies showed a progressive preferential reduction of the slow late component of the electrically evoked response. Preliminary data from multifilament recordings from dorsal roots in cats demonstrated that conduction in small slow conducting fibers was blocked at lower laser pulse energies than in fibers with faster conduction velocities. These results imply, that laser light might have differential effects on slow versus fast conducting sensory nerve fibers. It is most likely that the preferential effect of laser irradiation on slow conducting fibers is mediated by photothermal mechanisms, since temperature increased substantially during laser application.  相似文献   

20.
Natural electrical activity in the left greater splanchnic nerve during feeding was studied in chronic experiments on dogs. The method of separation of coherent components in pulsed form was used to analyze the discharges: Recording from the nerve was carried out at two points; activity was delayed by the time for its conduction along the nerve between the channels, in the channel which received it first, and it was then led from both channels to the coincidence unit. Spontaneous afferent impulsation was shown to spread among a group of nerve fibers with conduction velocities of between 3.7 and 20 m/sec, and with a mean velocity for the maximum of activity of 9.2±1.0 m/sec. Efferent spontaneous activity was not detected. During feeding with meat, besides spontaneous activity, activity of a group of afferent fibers with conduction velocities within the range 3.7–9.2 m/sec also was found (the mean velocity for the maximum of activity was 5.8±0.7 m/sec), and also activity of a group of efferent fibers with conduction velocities within the range 2.5–9.8 m/sec (mean value for maximum 3.5±0.5 m/sec).A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 13, No. 6, pp. 636–642, November–December, 1981.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号