首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We evaluated the contribution of endocytotic pathways to pulmonary uptake of surfactant lipids from the alveolar space. Resting and stimulated 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP) uptake of unilamellar liposomes labeled with either [(3)H]dipalmitoylphosphatidylcholine ([(3)H]DPPC) or 1-palmitoyl-2-[12-(7-nitro-2-1,3-benzoxadiazol-4-yl) amino] dodecanoyl-phosphatidylcholine (NBD-PC) was studied in isolated perfused rat lungs and isolated type II cells. Amantadine and phenylarsine oxide, inhibitors of clathrin-mediated endocytosis, each decreased [(3)H]DPPC uptake under resting conditions by approximately 40%; their combination had no additional effect. Cytochalasin D, an inhibitor of actin-dependent processes, reduced liposome uptake by 55% and potentiated the effect of either clathrin inhibitor alone. Relative inhibition for all agents was higher in the presence of 8-Br-cAMP. The effect of inhibitors was similar for liposomes labeled with [(3)H]DPPC or NBD-PC. By fluorescence microscopy, NBD-PC taken up by lungs was localized primarily to alveolar type II cells and was localized to lamellar bodies in both lungs and isolated cells. These studies indicate that both clathrin-mediated and actin-mediated pathways are responsible for endocytosis of DPPC-labeled liposomes by alveolar type II cells in the intact lung.  相似文献   

2.
We have shown previously that phospholipids instilled through the trachea are removed from the air spaces in isolated rat lungs by a process that is stimulated by beta-adrenergic agonists. In this study, we evaluated the fate of radiolabeled lipid vesicles [50% [3H]dipalmitoyl phosphatidylcholine (DPPC), 25% phosphatidylcholine (PC), 15% cholesterol, and 10% phosphatidylglycerol (PG)]. Vesicles were instilled through the trachea of anesthetized rats, and the lungs removed for perfusion. The percent of instilled 3H that could not be removed from lungs by extensive lung lavage increased progressively; at 3 h this fraction was 25.8 +/- 0.63% (mean +/- SE; n = 8). The percent of dpm in the lung homogenate accounted for by PC decreased progressively while dpm in lyso-PC, unsaturated PC, and aqueous soluble metabolites [choline, choline phosphate, glycerophosphorycholine, and cytidine 5'-diphosphate (CDP) choline (CDP-choline) increased. The dpm in microsomal and lamellar body fractions isolated from lung homogenates also increased progressively with time of perfusion. The presence of 8-bromoadenosine 3',5'-cyclic monophosphate (8-BrcAMP) significantly stimulated both uptake of DPPC and the appearance of radioactivity in metabolites and subcellular organelles. This effect of 8-BrcAMP was not due to stimulation of phospholipase A activity. These results indicate that exogenous phospholipids instilled into the air spaces of rat lungs are internalized and degraded by a process that is stimulated by cAMP.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Previous studies with the isolated perfused rat lung showed that both clathrin- and actin-mediated pathways are responsible for endocytosis of dipalmitoylphosphatidylcholine (DPPC)-labeled liposomes by granular pneumocytes in the intact lung. Using surfactant protein-A (SP-A) gene-targeted mice, we examined the uptake of [(3)H]DPPC liposomes by isolated mouse lungs under basal and secretagogue-stimulated conditions. Unilamellar liposomes composed of [(3)H]DPPC: phosphatidylcholine:cholesterol:egg phosphatidylglycerol (10:5:3:2 mol fraction) were instilled into the trachea of anesthetized mice, and the lungs were perfused (2 h). Uptake was calculated as percentage of instilled disintegrations per minute in the postlavaged lung. Amantadine, an inhibitor of clathrin and, thus, receptor-mediated endocytosis via clathrin-coated pits, decreased basal [(3)H]DPPC uptake by 70% in SP-A +/+ but only by 20% in SP-A -/- lung, data compatible with an SP-A/receptor-regulated lipid clearance pathway in the SP-A +/+ mice. The nonclathrin, actin-dependent process was low in the SP-A +/+ lung but accounted for 55% of liposome endocytosis in the SP-A -/- mouse. With secretagogue (8-bromoadenosine 3',5'-cyclic monophosphate) treatment, both clathrin- and actin-dependent lipid clearance were elevated in the SP-A +/+ lungs while neither pathway responded in the SP-A -/- lungs. Binding of iodinated SP-A to type II cells isolated from both genotypes of mice was similar indicating a normal SP-A receptor status in the SP-A -/- lung. Inclusion of SP-A with instilled liposomes served to "rescue" the SP-A -/- lungs by reestablishing secretagogue-dependent enhancement of liposome uptake. These data are compatible with a major role for receptor-mediated endocytosis of DPPC by granular pneumocytes, a process critically dependent on SP-A.  相似文献   

4.
Previous studies with peroxiredoxin 6 (Prdx6) null mice demonstrated that the phospholipase A(2) activity of this enzyme plays a major role in lung phospholipid metabolism. This study evaluated lung phospholipid metabolism in transgenic mice that over-express Prdx6. Lung lysosomal type PLA(2) activity in transgenic mice was 222% of wild type in lung homogenate and 280% in isolated lamellar bodies. Total phospholipid, phosphatidylcholine (PC) and disaturated PC were decreased approximately 20-35% in bronchoalveolar lung fluid, lung homogenate, and lung lamellar bodies in transgenic mice although lung compliance and type 2 cell ultrastructure were unaltered. To study metabolism, unilamellar liposomes ((3)H-DPPC: PC: cholesterol: PG, 10: 5: 3: 2 mol fraction) were instilled endotracheally in anesthetized mice and lungs were removed for perfusion. Compared to wild type, transgenic mice showed similar net uptake of liposomes in 2 h, but significantly increased (3)H-DPPC degradation (38.9+/-1.1 vs. 29.0+/-1.3% of recovered dpm). The PLA(2) competitive inhibitor MJ33 decreased degradation to 15% of recovered dpm in both transgenic and wild type lungs. Incorporation of [(14)C] palmitate into DSPC at 24 h after its intravenous injection was markedly increased in both the lung surfactant (+100%) and lamellar bodies (+188%) while incorporation of [(3)H] choline was increased by only 10-20%. These results indicate increased DPPC degradation and synthesis by the reacylation pathway with Prdx6 overexpression and provide additional evidence that the PLA(2) activity of Prdx6 has an important role in lung surfactant turnover.  相似文献   

5.
Quantification of surfactant phospholipids in the dog lung   总被引:1,自引:0,他引:1  
We quantified total phospholipid (PL), total and disaturated phosphatidylcholine (PC and DSPC), phosphatidylglycerol (PG), and total protein in alveolar washings and lung tissue in 22 dog lungs. Quantitative recovery of alveolar material and assessment of its possible contamination by blood lipids were important determinants of methodology. To remove blood, the vessels of half the lungs were perfused with a fluorocarbon emulsion before lavage. The volume of blood removed by perfusion and the quantity and fatty acid patterns of its whole blood and plasma PL and PC were determined. Washings of unperfused lungs contained means of 21% more PL and 24% more PC than those of perfused lungs. Although this excess could be accounted for by the PL and PC in pulmonary blood, the hemoglobin and total protein content of washings and their PC fatty acid patterns indicated that blood lipids were not a major source of the excess lipid in washings of unperfused lungs. Using more recent morphometric estimates rather than the indirect ones previously used by others, the quantity of alveolar DSPC (1 mg/g lung) is calculated to be 1.8 times the amount necessary to form a packed monolayer on the internal surface of the lung at functional residual capacity.  相似文献   

6.
In the isolated perfused rat lung and cultured type II cells, surfactant secretion and cellular adenosine 3',5'-cyclic monophosphate (cAMP) content was stimulated by beta-adrenergic agonists. Isoproterenol-induced surfactant secretion was inhibited by the antimicrotubule agents colchicine and vinblastine. Incorporation of [3H]glycerol into disaturated phosphatidylcholine was augmented by beta-adrenergic agents but was not significantly different from the enhanced incorporation rate when colchicine was present. This suggests that the augmented incorporation of [3H]glycerol into disaturated phosphatidylcholine was a secondary response to storage depletion rather than direct cAMP stimulation. beta-Adrenergic agents shifted the equilibrium in the isolated perfused rat lung and cultured type II cells to favor microtubules. The stimulatory effect of 1.0 microM isoproterenol on tubulin polymerization was observed as early as 1 min and was augmented 2.8-fold at a half-maximal stimulation of 4 nM in cultured type II cells. Cytochalasin B, an antimicrofilament agent, potentiated the isoproterenol-induced secretion. These results suggest that an intact microtubule-microfilament system may be obligatory for enhanced surfactant secretion and that beta-adrenergic agents not only induce surfactant release but also tubulin polymerization.  相似文献   

7.
The role of surfactant protein-A (SP-A) in pulmonary uptake and metabolism of [(3)H]dipalmitoylphosphatidylcholine ([(3)H]DPPC) was studied in SP-A gene-targeted mice (SP-A -/-). Unilamellar liposomes were instilled into the trachea of anesthetized mice. Uptake was measured as dpm in lungs plus liver and kidney for in vivo experiments and in lungs and perfusate for isolated lung experiments. [(3)H]DPPC uptake increased with CO(2)-induced hyperventilation in wild-type mice (SP-A +/+) but was unchanged in SP-A -/-. Secretagogue treatment approximately doubled the uptake of [(3)H]DPPC in isolated lungs from SP-A +/+ but had no effect in SP-A -/-. Lungs degraded 23 +/- 1.2% of internalized [(3)H]DPPC in SP-A +/+ and 36 +/- 0.6% in SP-A -/-; degradation increased with 8-bromoadenosine 3',5'-cyclic monophosphate in SP-A +/+ but was unchanged in SP-A -/-. Activity of lysosomal-type phospholipase A(2) (PLA(2)) was significantly greater in lungs from SP-A -/- compared with SP-A +/+. Thus SP-A is necessary for lungs to respond to hyperventilation or secretagogues with increased DPPC uptake and also modulates the PLA(2)-mediated degradation of internalized DPPC.  相似文献   

8.
Lung surfactant dipalmitoylphosphatidylcholine (DPPC) is endocytosed by alveolar epithelial cells and degraded by lysosomal-type phospholipase A2 (aiPLA2). This enzyme is identical to peroxiredoxin 6 (Prdx6), a bifunctional protein with PLA2 and GSH peroxidase activities. Lung phospholipid was studied in Prdx6 knockout (Prdx6-/-) mice. The normalized content of total phospholipid, phosphatidylcholine (PC), and disaturated phosphatidylcholine (DSPC) in bronchoalveolar lavage fluid, lung lamellar bodies, and lung homogenate was unchanged with age in wild-type mice but increased progressively in Prdx6-/- animals. Degradation of internalized [3H]DPPC in isolated mouse lungs after endotracheal instillation of unilamellar liposomes labeled with [3H]DPPC was significantly decreased at 2 h in Prdx6-/- mice (13.6 +/- 0.3% vs. 26.8 +/- 0.8% in the wild type), reflected by decreased dpm in the lysophosphatidylcholine and the unsaturated PC fractions. Incorporation of [14C]palmitate into DSPC at 24 h after intravenous injection was decreased by 73% in lamellar bodies and by 54% in alveolar lavage surfactant in Prdx6-/- mice, whereas incorporation of [3H]choline was decreased only slightly. Phospholipid metabolism in Prdx6-/- lungs was similar to that in wild-type lungs treated with MJ33, an inhibitor of aiPLA2 activity. These results confirm an important role for Prdx6 in lung surfactant DPPC degradation and synthesis by the reacylation pathway.  相似文献   

9.
To identify specific lung cells possessing functional beta-adrenergic receptors, we developed an immunoperoxidase-staining procedure capable of in situ localization of cells responding to beta-agonist stimulation with a rise in adenosine 3',5'-cyclic monophosphate (cAMP). Isoproterenol was instilled into the airways of excised intact guinea pig lungs for 5 min and resulted in a six to eightfold rise in cAMP. Immediately thereafter, the lungs were washed in and fixed with 10% buffered Formalin. Sections were then stained using immunoperoxidase techniques and monoclonal antibodies directed against cAMP. We found that isoproterenol-stimulated lungs had widespread increased staining for immunoreactive cAMP. The specific cells consistently demonstrating marked increases in staining were airway epithelial cells, airway smooth muscle cells, alveolar and parenchymal macrophages, and alveolar lining cells, including both type I and type II cells, and capillary endothelial cells. Of all tissues, the airway epithelium was the most intensely stained area for beta-agonist-induced immunoreactive cAMP. The techniques employed herein should make possible the in situ localization of cells responding to any stimuli capable of increasing cAMP, thereby allowing the specific identification of cells possessing functional adenylate cyclase-linked receptors.  相似文献   

10.
C J Malemud  R S Papay 《FEBS letters》1984,167(2):343-351
The effects of N6,O2'-dibutyryladenosine 3':5'-cyclic monophosphate (DBcAMP), 8-bromoadenosine 3':5'-cyclic monophosphate (8Br-cAMP), 3':5'-cyclic monophosphate (cAMP), L-isoproterenol and L-epinephrine on sulfated-proteoglycan synthesis by rabbit articular chondrocytes were compared. DBcAMP and 8Br-cAMP in the presence or absence of 3-isobutyl-1-methylxanthine (IBMX) stimulated sulfated-proteoglycan biosynthesis after 20 h of incubation. cAMP had no significant effect. Both DBcAMP and 8Br-cAMP increased the hydrodynamic size of the newly synthesized proteoglycan monomer (A1D1) relative to control cultures. By contrast, although isoproterenol and epinephrine stimulated total cAMP synthesis, neither stimulated sulfated-proteoglycan synthesis. Whereas intracellular cAMP accumulated after incubation with DBcAMP and 8Br-cAMP, this was not the case with isoproterenol whether IBMX was present or not. Thus, stimulation of sulfated-proteoglycan synthesis by cAMP analogues in chondrocyte cultures appears to be dependent on increased intracellular cAMP accumulation rather than total cAMP biosynthesis.  相似文献   

11.
缺血预处理对大鼠肺缺血/再灌注损伤的保护作用   总被引:6,自引:0,他引:6  
目的 :观察缺血预处理 (IPC)对大鼠肺缺血 /再灌注 (I/R)损伤的保护作用 ,并初步探讨其作用机制。方法 :建立离体大鼠肺灌流模型 ,36只wistar大鼠随机分为对照组、I/R组和IPC组 ,处理完毕后分别测定平均肺动脉压(MPAP)、肺组织湿 /干重比、支气管肺泡灌洗液中肺表面活性物质磷脂及表面张力改变 ,肺组织标本送电镜检查。结果 :①电镜下观察IPC组肺损伤明显减轻。②肺组织湿 /干重比值IPC组为 4.41± 0 .2 4,显著低于I/R组 ,但仍高于缺血前 (P <0 .0 1) ;③IPC组大鼠缺血 1h后MPAP为 ( 1.88± 0 .2 9)kPa ,明显低于I/R组 (P <0 .0 1) ;④IPC组支气管肺泡灌洗液中总磷脂为 ( 2 33 .42± 14.0 5 ) μg/kg ,大聚体为 ( 10 5 .39± 6 .17) μg/kg ,与I/R组相比显著增高 ,但低于对照组 (P <0 .0 1) ,三组之间小聚体含量没有显著差异 ;⑤IPC组表面张力为 ( 36 .88± 3.49)mN/m ,显著低于I/R组 ,与对照组相比则无显著性差异 (P >0 .0 5 )。结论 :缺血预处理对大鼠肺I/R损伤有保护作用 ,保护机制可能与促进肺表面活性物质 (PS)磷脂分泌、改善PS组成 ,从而提高PS功能有关。  相似文献   

12.
Lung injury was induced in rabbits with N-nitroso-N-methylurethane (NNNMU), and saturated phosphatidylcholine (Sat PC) pool sizes and phospholipid compositions were measured in alveolar wash subfractions isolated by differential centrifugation (large and small surfactant aggregates). Surfactant metabolism also was studied using intravascular and intratracheal radiolabels. Protein permeability, gas exchange, and compliance were significantly abnormal as lung injury progressed. At peak injury, there was a decrease in the large aggregate Sat PC pool size in alveolar wash accompanied by increased uptake of Sat PC from the air space and increased specific activity of both intravascular and intratracheal radiolabels in lamellar bodies. This was followed by a marked rise in the small aggregate pool size in the alveolar wash and increased secretion of Sat PC into the air spaces. Phospholipid compositions, total phospholipid-to-protein ratios, and in vivo functional studies using a preterm ventilated rabbit model were abnormal for both large and small aggregate surfactant fractions from the lung-injured rabbits. These studies characterize quantitative, qualitative, and functional changes of alveolar wash surfactant subfractions in NNNMU-injured lungs.  相似文献   

13.
Uptake and degradation of (125)I-surfactant protein A (SP-A) over a 1-h period was studied in alveolar cells in culture and in isolated perfused lungs to elucidate the mechanism for clearance of the protein from the alveolar space. Specific inhibitors of clathrin- and actin-dependent endocytosis were utilized. In type II cells, uptake of SP-A, compared with controls, was decreased by 60% on incubation with clathrin inhibitors (amantadine and phenylarsine oxide) or with the actin inhibitor cytochalasin D. All agents reduced SP-A metabolism by alveolar macrophages. Untreated rat isolated perfused lungs internalized 36% of instilled SP-A, and 56% of the incorporated SP-A was degraded. Inhibitors of clathrin and actin significantly reduced SP-A uptake by approximately 54%, whereas cytochalasin D inhibited SP-A degradation. Coincubation of agents did not produce an additive effect on uptake of SP-A by cultured pneumocytes or isolated perfused lungs, indicating that all agents affected the same pathway. Thus SP-A clears the lung via a clathrin-mediated pathway that requires the polymerization of actin.  相似文献   

14.
Type II pneumocyte changes during hyperoxic lung injury and recovery   总被引:2,自引:0,他引:2  
Adult rabbits exposed to 100% O2 for 64 h and then returned to room air for up to 200 h, develop a lung injury characterized by decreased levels of alveolar surfactant followed by a rebound recovery. In the present study we isolated alveolar type II cells from rabbits at various times during hyperoxic exposure and recovery and measured rates of phosphatidylcholine (PC) synthesis, cellular lipid content, and the specific activity of glycerol 3-phosphate (G-3-P) acyltransferase, an enzyme that catalyzes one of the early reactions in phosphoglyceride biosynthesis. These biochemical parameters were compared with measurements of cell size and cell cycle phase by laser flow cytometry. Results showed that alterations in alveolar phospholipid levels in vivo correlated consistently with cellular lipid metabolic changes measured in isolated type II pneumocytes. In particular, alveolar pneumocytes isolated from lungs of rabbits exposed to 100% O2 for 64 h exhibited a 60% decrease in PC synthesis, cell lipid content, and G-3-P acyltransferase activity. All variables then followed a pattern of recovery to normal and ultimately supranormal levels beginning at approximately 3 days postexposure, at which point there was also a measured increase in the number of type II cells in S phase. These findings suggest that O2-induced changes in type II cell surfactant biosynthesis may account, at least in part, for observed changes in lung phospholipid levels in vivo.  相似文献   

15.
The effects of intratracheally instilled silica (10 mg/rat) on the biosynthesis of surfactant phospholipids was investigated in the lungs of rats. The sizes of the intracellular and extracellular pools of surfactant phospholipids were measured 7, 14 and 28 days after silica exposure. The ability of lung slices to incorporate [14C]choline and [3H]palmitate into surfactant phosphatidylcholine (PC) and disaturated phosphatidylcholine (DSPC) was also investigated. Both intra- and extra-cellular pools of surfactant phospholipids were increased by silica treatment. The intracellular pool increased linearly over the 28-day time period, ultimately reaching a size 62-fold greater than controls. The extracellular pool also increased, but showed a pattern different from that of the intracellular pool. The extracellular pool increased non-linearly up to 14 days, and then declined. At its maximum, the extracellular pool was increased 16-fold over the control. The ability of lung slices to incorporate phospholipid precursors into surfactant-associated PC and DSPC was elevated at all time periods. The rate of incorporation of [14C]choline into surfactant PC and DSPC was maximal at 14 days and was nearly 3-fold greater than the rate in controls. The rate of incorporation of [3H]palmitate was also maximal at 14 days, approx. 5-fold above controls for PC and 3-fold for DSPC. At this same time point, the microsomal activity of cholinephosphate cytidylyltransferase was increased 4.5-fold above controls, but cytosolic activity was not significantly affected by silica treatment. These data indicate that biosynthesis of surfactant PC is elevated after treatment of lungs with silica and that this increased biosynthesis probably underlies the expansion of the intra- and extra-cellular pools of surfactant phospholipids.  相似文献   

16.
Secretion of [3H]phosphatidylcholine ([3H]PC) from isolated rat pulmonary type II epithelial cells was inhibited by the surfactant-associated protein of Mr = 35,000 (SAP-35) purified from canine lung surfactant. SAP-35 inhibited [3H]PC secretion in a dose-dependent manner and significantly inhibited basal, phorbol ester, beta-adrenergic, and P2-purinergic agonist-induced [3H]PC secretion. SAP-35 significantly inhibited [3H]PC secretion from 1 to 3 h after treatment. The IC50 for inhibition of [3H]PC secretion by canine SAP-35 was 1-5 X 10(-6) g/ml and was similar for inhibition of both basal and secretagogue-stimulated release. Heat denaturation of SAP-35, addition of monoclonal anti-SAP-35 antibody, reduction and alkylation of SAP-35, or association of SAP-35 with phospholipid vesicles reversed the inhibitory effect on secretagogue-induced secretion. Inhibitory effects of SAP-35 were observed 3 h after cells were washed with buffer that did not contain SAP-35. Although SAP-35 enhanced reassociation of surfactant phospholipid with isolated type II cells, its inhibitory effect on secretion of [3H]PC did not result from stimulation of reuptake of secreted [3H]PC by type II cells. The inhibition of phospholipid secretion by SAP-35 was also not due to inhibition of PC or disaturated PC synthesis by SAP-35. SAP-35, the major phospholipid-associated protein in pulmonary surfactant, is a potent inhibitor of surfactant secretion from type II cells in vitro and may play an important role in homeostasis of surfactant in the alveolar space.  相似文献   

17.
Surfactant is present in the alveoli and conductive airways of mammalian lungs. The presence of surface active agents was, moreover, demonstrated for avian tubular lungs and for the stomach and intestine. As the surface characteristics of these organs differ from each other, their surfactants possess distinct biochemical and functional characteristics. In the stomach so-called 'gastric surfactant' forms a hydrophobic barrier to protect the mucosa against acid back-diffusion. For this purpose gastric mucosal cells secrete unsaturated phosphatidylcholines (PC), but no dipalmitoyl-PC (PC16:0/16:0). By contrast, surfactant from conductive airways, lung alveoli and tubular avian lungs contain PC16:0/16:0 as their main component in similar concentrations. Hence, there is no biochemical relation between gastric and pulmonary surfactant. Alveolar surfactant, being designed for preventing alveolar collapse under the highly dynamic conditions of an oscillating alveolus, easily reaches values of <5 mN/m upon cyclic compression. Surfactants from tubular air-exposed structures, however, like the conductive airways of mammalian lungs and the exclusively tubular avian lung, display inferior compressibility as they only reach minimal surface tension values of approximately 20 mN/m. Hence, the highly dynamic properties of alveolar surfactant do not apply for surfactants designed for air-liquid interfaces of tubular lung structures.  相似文献   

18.
Adenovirus (Ad) is an airborne, nonenveloped virus infecting respiratory epithelium. To study the mechanism of Ad entry, we used alveolar adenocarcinoma A549 cells, which have retained the ability of alveolar epithelial type II cells to synthesize the major component of pulmonary surfactant, disaturated phosphatidylcholine. Stimulation of phosphatidylcholine secretion by calcium ionophore or phorbol ester augmented the susceptibility of these cells to Ad. Both Ad infection and recombinant-Ad-mediated transfection increased in the presence of dipalmitoyl phosphatidylcholine (DPPC) liposomes in culture medium. Importantly, in the presence of DPPC liposomes, virus penetrates the cells independently of virus-specific protein receptors. DPPC vesicles bind Ad and are efficiently incorporated by A549 lung cells, serving as a virus vehicle during Ad penetration. To identify the viral protein(s) mediating Ad binding, a flotation of liposomes preincubated with structural viral proteins was employed, showing that the only Ad protein bound to DPPC vesicles was a hexon. The hexon preserved its phospholipid-binding properties upon purification, confirming its involvement in virus binding to the phospholipid. Given that disaturated phosphatidylcholine not only covers the inner surface of alveoli in the lungs but also reenters alveolar epithelium during lung surfactant turnover, Ad binding to this phospholipid may provide a pathway for virus entry into alveolar epithelium in vivo.  相似文献   

19.
Because in vitro studies indicate that pulmonary alveolar macrophages (PAM's) filled with phospholipid vesicles have depressed microbicidal capacity, we tested the intrapulmonary bactericidal activity of newborn PAM's after surfactant treatment. Term newborn rabbits received intratracheally either homologous surfactant or one of two artificial phospholipid vesicle preparations followed by pulmonary aerosol infection with group B streptococci (GBS). Four hours after lung infection, phagocytic killing of GBS was reduced by 70-90% in animals treated with the homologous and one of the artificial surfactants compared with untreated animals or animals that received intrapulmonary injections of the surfactant vehicle (P less than 0.02). The other artificial phospholipid preparation decreased intrapulmonary inactivation of GBS by 30-40% compared with the controls. The phospholipid vesicles in the three preparations were avidly ingested and processed by newborn PAM's. The diminished in vivo killing of GBS was not attributed to decreased viability or phagocytic behavior of the PAM's toward GBS. The bactericidal defect that was evident in the newborn PAM's appeared related to the uptake of large phospholipid vesicles in the preparations rather than to the phospholipid content of the surfactants themselves. When in vitro conditions that stimulated the alveolar environment were used, the natural surfactant preparation promoted GBS proliferation, whereas the artificial preparations did not. Our findings indicate that surfactant administration reduces the bactericidal activity of neonatal PAM's. We conclude that additional investigations are needed to ascertain the effect of surfactant replacement therapy on lost defenses of the lung.  相似文献   

20.
Alveolar transfer of prostaglandin E2 (PGE2) was characterized in isolated perfused guinea pig lungs (n = 19) by measuring radioactivity appearing in the venous effluent during 30 min after intratracheal instillation of [3H]PGE2, [14C]-mannitol, and [125I]iodoantipyrine. Recovery of lipid-soluble [125I]iodoantipyrine [91 +/- 3% (SE)] after 30 min was used to estimate total 3H and 14C delivered to the exchanging region of lung at time 0. In seven control lungs, 58 +/- 4% of [14C]mannitol and 16 +/- 4% of [3H]PGE2 was retained 10 min after instillation. Neither perfusion with diphloretin phosphate (10 micrograms/ml; n = 4) nor hypothermia (5 degrees C; n = 5) significantly affected the amount of [14C]mannitol retained; however, [3H]PGE2 remaining in these lungs increased significantly to 36 +/- 4 and 53 +/- 2%, respectively. Addition of unlabeled PGE2 (200 micrograms) to the instilled solution (n = 3) increased retention of both [14C]mannitol (80 +/- 3%) and [3H]PGE2 (65 +/- 4%). Alveolar transfer of [3H]PGE2 was calculated as the difference in percent retention of [14C]mannitol and [3H]PGE2 and normalized to that of [14C]mannitol. After 10 min, alveolar transfer of [3H]PGE2 was 71 +/- 8% in control lungs but was decreased to 26 +/- 7, 10 +/- 5, and 19 +/- 6% by diphloretin phosphate, hypothermia, or unlabeled PGE2, respectively. These data suggest that alveolar clearance of PGE2 involves a saturable drug- and temperature-sensitive process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号