首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Analysis of 22 deletion breakpoints in dystrophin intron 49   总被引:9,自引:0,他引:9  
Over 60% of Duchenne and Becker muscular dystrophies are caused by deletions spanning tens or hundreds of kilobases in the dystrophin gene. The molecular mechanisms underlying the loss of DNA at this genomic locus are not yet understood. By studying the distribution of deletion breakpoints at the genomic level, we have previously shown that intron 49 exhibits a higher relative density of breakpoints than most dystrophin introns. To determine whether the mechanisms leading to deletions in this intron preferentially involve specific sequence elements, we sublocalized 22 deletion endpoints along its length by a polymerase-chain-reaction-based approach and, in particular, analyzed the nucleotide sequences of five deletion junctions. Deletion breakpoints were homogeneously distributed throughout the intron length, and no extensive homology was observed between the sequences adjacent to each breakpoint. However, a short sequence able to curve the DNA molecule was found at or near three breakpoint junctions.  相似文献   

2.
Fluorescence in situ hybridization (FISH) was applied to detect the copy number of the retinoblastoma (RB1) tumor suppressor gene in metaphase chromosomes and interphase nuclei. We used 14 lambda phage clones spanning the whole RB1 gene region as a probe and obtained a specific hybridization signal in normal metaphase chromosomes at 13q14. Normal interphase nuclei showed two RB1 signals in about 90% of cases, whereas two cell lines with cytogenetically defined deletions involving the RB1 gene showed only one hybridization signal in about 80% of the nuclei. Analogous changes were detected in metaphase chromosomes. Multicolor FISH with subsets of the phage clones allowed visualization of subregions within the 200-kb gene in interphase nuclei. Analysis of clinical breast cancer samples showed that most of the cells contained two copies of the RB1 gene, even when restriction fragment length polymorphism analysis showed loss of heterozygosity (LOH) at the RB1 locus. This indicates that LOH at the RB1 locus in breast cancer cells probably involves mechanisms other than physical deletion.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disorder. The biochemical defect remains unknown, but the gene responsible has been mapped to band Xp21. The gene has now been cloned in two laboratories solely from knowledge of its map location. L. M. Kunkel and his colleagues isolated genomic sequences (PERT 87) from within a large deletion causing DMD, whereas our group isolated genomic sequences (XJ) spanning the junction of an X-autosome translocation causing the disease. Chromosome walking by both groups has led to the isolation of over 400 kilobases of the PERT 87 and XJ region. Subclones of PERT 87 and XJ reveal restriction fragment length polymorphisms that segregate with the DMD gene in 95% of meioses, and fail to hybridize with DNA from about 8% of male patients. Selected subclones of PERT 87 and XJ contain exons that hybridize to muscle-derived complementary DNA (cDNA) clones. The cDNA clones detect a large (16 kilobase) message. Analysis of deletions, mutations and translocations suggests a DMD gene of between two million and three million base pairs. The clones obtained so far are useful for attempts to generate antibody against the gene product and for carrier identification and prenatal diagnosis.  相似文献   

4.
DNA-DNA hybridization of cloned segments of the Escherichia coli K-12 ilvGEDA operon to genomic blots was used to determine the physical dimensions of a series of deletion mutations of the ilvGEDA operon. The smallest mutation resulted from the deletion of approximately 200 base pairs from within ilvD, whereas the largest mutation resulted from the deletion of 17 kilobases including the rep gene. The structure of three of these mutants indicates that formation of the deletions was mediated by Tn5 (or Tn5-131) that is retained in the chromosome. This is the first observation of this type of Tn5-mediated event. Our analysis of the total acetohydroxy acid synthase activity of strains containing deletions of ilvG indicates that the truncated ilvG polypeptide of wild-type E. coli K-12 lacks enzyme activity. The small 200-base-pair deletion of ilvD confirms the presence of a strong polar site 5' to ilvA. The detailed structure of these deletions should prove useful for the investigation of other genes in this region. This genomic analysis demonstrates that the ilv restriction site map that was established previously by the analysis of recombinant bacteriophage and plasmids is identical to that on the genome.  相似文献   

5.
Previous work (E. A. Faust and D. C. Ward, J. Virol. 32:276-292, 1979) revealed a remarkably high rate of spontaneous deletion in viral DNA during lytic infection of cultured murine cells with minute virus of mice (MVM), an autonomous parvovirus. In the present study, we have isolated plasmid and phage recombinants containing MVM DNA inserts bearing deletions and we have determined the DNA sequence spanning three deletion junctions. The deletions, which average 3 kilobases in length, occur between pairs of perfectly homologous 4- to 10-base-pair direct repeats, such that one copy of the repeated sequence is lost, whereas the other remains behind at the deletion junction. When compared, the three sets of direct repeats exhibit no apparent sequence homology and have an A + T content of between 50 and 80%. These results indicate that 4- to 10-base-pair homologies mediate spontaneous deletion formation in the MVM genome and highlight parvoviruses as novel model systems for studies of this ubiquitous pathway of genetic variation.  相似文献   

6.
NF1 microdeletion syndrome is caused by haploinsufficiency of the NF1 gene and of gene(s) located in adjacent flanking regions. Most of the NF1 deletions originate by non-allelic homologous recombination between repeated sequences (REP-P and -M) mapped to 17q11.2, while the remaining deletions show unusual breakpoints. We performed high-resolution FISH analysis of 18 NF1 microdeleted patients with the aims of mapping non-recurrent deletion breakpoints and verifying the presence of additional recombination-prone architectural motifs. This approach allowed us to obtain the sequence of the first junction fragment of an atypical deletion. By conventional FISH, we identified 16 patients with REP-mediated common deletions, and two patients carrying atypical deletions of 1.3 Mb and 3 Mb. Following fibre-FISH, we identified breakpoint regions of 100 kb, which led to the generation of several locus-specific probes restricting the atypical deletion endpoint intervals to a few kilobases. Sequence analysis provided evidence of small blocks of REPs, clustered around the 1.3-Mb deletion breakpoints, probably involved in intrachromatid non-allelic homologous recombination (NAHR), while isolation and sequencing of the 3-Mb deletion junction fragment indicated that a non-homologous end joining (NHEJ) mechanism is implicated.M. Venturin and C. Gervasini contributed equally to the study  相似文献   

7.
The CYC7-H3 mutation is a 5-kb deletion that causes overproduction of iso-2 cytochrome c. Unlike most mutations in yeast, the CYC7-H3 mutation is preferentially lost when it is involved in a gene conversion event. We have shown that cloned copies of CYC7-H3 DNA that are inserted into the yeast genome are associated with a high frequency of recombination and aberrant segregation events. Since parity in conversion frequency was observed when the extensive insertion/deletion heterozygosity at this locus was eliminated, we conclude that the CYC7-H3 sequences are inherently capable of acting as donors or recipients in gene conversion events, although they are unlikely to act as donors when they are located opposite a large heterology. DNA sequence comparisons revealed similarities between the CYC7-H3 junction region and the 2-micron circle DNA region that is involved in site-specific recombination.  相似文献   

8.
Summary The physical structures of seven small plasmids, Rsc10, Rsc11, Rsc12, Rsc13, Rsc15, Rsc10-1 and pEM1 were analyzed. Molecular lengths of these plasmids were determined to range from 7.65 to 19.8 kilobases or kb. Electron microscope heteroduplex analysis of these plasmids show that the plasmids were all derived from pKN102 (86.3kb) in a complicated process that takes place by a series of deletion and, in some cases, transposition events. Rsc10 and Rsc11 were each formed by a simple deletion event from the parental plasmid. The physical structures of Rsc13 and pEM1 suggest that these plasmids must have been derived by a single and two successive deletion events from Rsc11. In the formation of these plasmids, all the deletions occured at the ends of the transposon, Tn3, which confers ampicillin resistance (amp) to the plasmid, or at the ends of the insertion sequence, IS1. Rsc15 was assumed to be formed in a two step process. The first step was a deletion event to form Rsc10-1 which occurs at one end of the IS1 present in pKN102. At first, the deletion event leaves out the ampicillin gene but in the second step Tn3 is transposed to the newly formed plasmid, Rsc10-1. Rsc12 is believed to have been formed in a similar fashion; first, a series of deletions and second, the transposition of Tn3.Studies on these small plasmids enabled us to also map the regions of the replication genes and ampicillin resistance on pKN102.  相似文献   

9.
Loss of heterozygosity at microsatellite loci in chromosomal band 8p23.2 is a frequent event in squamous cell carcinomas of the head and neck, suggesting that this region contains a putative tumor suppressor. Allelic loss studies on laryngeal and oral/oropharyngeal tumors have restricted the size of this region to approximately 1 cM. A similar pattern of deletions is also observed in prostatic and ovarian adenocarcinomas. As part of an effort to identify this gene by positional cloning, we developed a physical contig consisting of 12 overlapping bacterial artificial chromosome (BAC) clones spanning this interval. We developed sequence-tagged sites from the ends of these BACs and used them, along with seven microsatellite loci, to detect and map homozygous deletions in four head and neck squamous cancer cell lines. Our mapping analysis further restricted the consensus minimal region of deletion to a <191-kb interval.  相似文献   

10.
Interstitial deletions of the short arm of chromosome 9 are associated with glioma, acute lymphoblastic leukemia, melanoma, mesothelioma, lung cancer, and bladder cancer. The distal breakpoints of the deletions (in relation to the centromere) in 14 glioma and leukemia cell lines have been mapped within the 400 kb IFN gene cluster located at band 9p21. To obtain information about the mechanism of these deletions, we have isolated and analyzed the nucleotide sequences at the breakpoint junctions in two glioma-derived cell lines. The A1235 cell line has a complex rearrangement of chromosome 9, including a deletion and an inversion that results in two breakpoint junctions. Both breakpoints of the distal inversion junction occurred within AT-rich regions. In the A172 cell line, a tandem heptamer repeat was found on either side of the deletion breakpoint junction. The distal breakpoint occurred 5' of IFNA2; the 256 bp sequenced from the proximal side of the breakpoint revealed 95% homology to long interspersed nuclear elements. One- and two-base-pair overlaps were observed at these junctions. The possible role of sequence overlaps, and repetitive sequences, in the rearrangement is discussed.  相似文献   

11.
Deletions of specific DNA sequences are known to occur in Tetrahymena thermophila as a developmentally regulated process. Deletions of a particular region (region M) were previously shown to be of two alternative sizes, 0.6 or 0.9 kilobases (kb) (C.F. Austerberry, C.D. Allis, and M.-C. Yao, Proc. Natl. Acad. Sci. USA 81: 7383-7387). In this study, the nucleotide sequences for both deletions were determined. These two deletions share the same right junction, but their left junctions are 0.3 kb apart. An 8-base-pair (bp) sequence is present at both junctions of the 0.6-kb deletion, but only 5 bp of this direct repeat are present at the left junction of the 0.9-kb deletion. Further comparison revealed a common 10-bp sequence near each of the two left junctions and a similar sequence in inverted orientation near the right junction. These sequences may play a role in the developmental regulation of the deletion process.  相似文献   

12.
Cerebral cavernous malformations (CCMs) are vascular abnormalities of the brain that can result in a variety of neurological disabilities, including hemorrhagic stroke and seizures. Mutations in the gene KRIT1 are responsible for CCM1, mutations in the gene MGC4607 are responsible for CCM2, and mutations in the gene PDCD10 are responsible for CCM3. DNA sequence analysis of the known CCM genes in a cohort of 63 CCM-affected families showed that a high proportion (40%) of these lacked any identifiable mutation. We used multiplex ligation-dependent probe analysis to screen 25 CCM1, -2, and -3 mutation-negative probands for potential deletions or duplications within all three CCM genes. We identified a total of 15 deletions: 1 in the CCM1 gene, 0 in the CCM3 gene, and 14 in the CCM2 gene. In our cohort, mutation screening that included sequence and deletion analyses gave disease-gene frequencies of 40% for CCM1, 38% for CCM2, 6% for CCM3, and 16% with no mutation detected. These data indicate that the prevalence of CCM2 is much higher than previously predicted, nearly equal to CCM1, and that large genomic deletions in the CCM2 gene represent a major component of this disease. A common 77.6-kb deletion spanning CCM2 exons 2-10 was identified, which is present in 13% of our entire CCM cohort. Eight probands exhibit an apparently identical recombination event in the CCM2 gene, involving an AluSx in intron 1 and an AluSg distal to exon 10. Haplotype analysis revealed that this CCM2 deletion occurred independently at least twice in our families. We hypothesize that these deletions occur in a hypermutable region because of surrounding repetitive sequence elements that may catalyze the formation of intragenic deletions.  相似文献   

13.
In the majority of patients with Pelizaeus-Merzbacher disease, duplication of the proteolipid protein gene PLP1 is responsible, whereas deletion of PLP1 is infrequent. Genomic mechanisms for these submicroscopic chromosomal rearrangements remain unknown. We identified three families with PLP1 deletions (including one family described elsewhere) that arose by three distinct processes. In one family, PLP1 deletion resulted from a maternal balanced submicroscopic insertional translocation of the entire PLP1 gene to the telomere of chromosome 19. PLP1 on the 19qtel is probably inactive by virtue of a position effect, because a healthy male sibling carries the same der(19) chromosome along with a normal X chromosome. Genomic mapping of the deleted segments revealed that the deletions are smaller than most of the PLP1 duplications and involve only two other genes. We hypothesize that the deletion is infrequent, because only the smaller deletions can avoid causing either infertility or lethality. Analyses of the DNA sequence flanking the deletion breakpoints revealed Alu-Alu recombination in the family with translocation. In the other two families, no homologous sequence flanking the breakpoints was found, but the distal breakpoints were embedded in novel low-copy repeats, suggesting the potential involvement of genome architecture in stimulating these rearrangements. In one family, junction sequences revealed a complex recombination event. Our data suggest that PLP1 deletions are likely caused by nonhomologous end joining.  相似文献   

14.
We have determined the nucleotide sequences of 10 intragenic human HPRT gene deletion junctions isolated from thioguanine-resistant PSV811 Werner syndrome fibroblasts or from HL60 myeloid leukemia cells. Deletion junctions were located by fine structure blot hybridization mapping and then amplified with flanking oligonucleotide primer pairs for DNA sequence analysis. The junction region sequences from these 10 HPRT mutants contained 13 deletions ranging in size from 57 bp to 19.3 kb. Three DNA inversions of 711, 368, and 20 bp were associated with tandem deletions in two mutants. Each mutant contained the deletion of one or more HPRT exon, thus explaining the thioguanine-resistant cellular phenotype. Deletion junction and donor nucleotide sequence alignments suggest that all of these HPRT gene rearrangements were generated by the nonhomologous recombination of donor DNA duplexes that share little nucleotide sequence identity. This result is surprising, given the potential for homologous recombination between copies of repeated DNA sequences that constitute approximately a third of the human HPRT locus. No difference in deletion structure or complexity was observed between deletions isolated from Werner syndrome or from HL60 mutants. This suggests that the Werner syndrome deletion mutator uses deletion mutagenesis pathway(s) that are similar or identical to those used in other human somatic cells.  相似文献   

15.
Chromosomal rearrangements associated with one Ty1 element in the iso-1-cytochrome c (CYC1) region of Saccharomyces cerevisiae yeast cells were examined. Most of the rearrangements were deletions of the three linked genes, CYC1, OSM1, and RAD7, and resulted from recombination involving the single Ty1 element and a solo delta in the same orientation. These deletions differed by the number of Ty1 elements (zero, one, or two) remaining after deletion and by restriction site heterogeneities associated with these elements. A single Ty1 element remained at the deletion junction point much more frequently than no Ty1. Apparently the Ty1-associated delta element nearer to the solo delta was involved more often in recombination than the more distal Ty1-associated delta element. The restriction site data implicate gene conversion and suggest that site-specific recombination within the deltas, if occurring, is not the only mechanism of delta-delta recombination. Three other rearrangements bore deletions which began at the end of the Ty1 element and extended into regions not bearing Ty1 or delta sequences. Two of these deletions eliminated 7 kilobases of DNA, although they differed by an associated reciprocal translocation. The third involved a deletion of 14.7 kilobases of DNA associated with an overlapping inversion.  相似文献   

16.
nm23-H1基因缺失人肺癌细胞株的筛选与鉴定   总被引:1,自引:0,他引:1  
nm23一Hj基因与肺癌的侵袭与转移密切相关,但是其作用的分子机制尚不清楚,为研究nm23—141基因的功能,筛选并鉴定了nm23一H,基因缺失人肺癌细胞株及其生物学特性.应用SoutheITIblot.RT—PCR和West—elTl blot检测9株人肺癌细胞株中nm23—14,基因的存在状态及其生物学行为.结果发现发现人大肺癌细胞株L9981中存在nm23—141等位基因的杂合性缺失,与其同源的NL9980及其它7株肺癌细胞株中nm23—111基因均以杂合子的形式存在;并且L998l细胞株的增殖能力、克隆形成能力、体外侵袭力.裸鼠体内成瘤性及移植瘤肺转移的能力均显著高于NL9980.研究结果显示nm23一H,基因的缺失可能与L998l细胞株恶性表型和高转移潜能密切相关.  相似文献   

17.
Hamster cell line HE5 has been established from primary LSH hamster embryo cells by transformation with adenovirus type 2 (Ad2) (1). Each cell contains two to three copies of integrated Ad2 DNA (2, 3). We cloned and sequenced the sites of junction between viral and cellular DNAs. The terminal 10 and 8 nucleotides of Ad2 DNA were deleted at the left and right sites of junction, respectively. The integrated viral DNA had an internal deletion between map units 35 and 82 on the Ad2 genome. At the internal site of deletion, the remaining viral sequences were linked via a GT dinucleotide of unknown origin. From HE5 DNA, the unoccupied sequence corresponding to the site of insertion was also cloned and sequenced. Part of this sequence was shown to be expressed as cytoplasmic RNA in HE5 and primary LSH hamster embryo cells. The viral DNA had been inserted into cellular DNA without deletions, rearrangements or duplications of cellular nucleotides at the site of insertion. Thus, insertion of Ad2 DNA appeared to have been effected by a mechanism different from that of bacteriophage lambda in Escherichia coli and from that of retroviral genomes in vertebrates. It was conceivable that the terminal viral protein (4) was somehow involved in integration either on a linear or a circularized viral DNA molecule.  相似文献   

18.
19.
To examine the mechanisms governing deletion formation in mammalian cells, we have analyzed the breakpoints and junction fragments produced by seven such mutations at the aprt locus of Chinese hamster ovary cells at the base sequence level. The deletions were heterogeneous both in size, varying from 38 bp to 170 kb, and in sequence in that no recurring sequence or structural motifs were evident. Most were simple exchanges at overlapping di- or trinucleotides, but one was the result of a complex rearrangement in which breakpoints approximately 34 kb apart were joined by 16- and 398-bp inserted fragments originating some distance from the target. Unlike many human germ line deletions, few of the breakpoints fell within hamster repetitive elements. The directionality of the deletions at aprt indicates that an essential gene or structure may determine the pattern of such mutations.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号