首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The rate of fatty acid uptake, oxidation, and deposition in skeletal muscles in relation to total and unbound to albumin fatty acids concentration in the medium were investigated in the incubated rat soleus muscle. An immunohistochemical technique was applied to demonstrate whether the albumin-bound fatty acid complex from the medium penetrates well within all areas of the muscle strips. It was found that the percentage of incorporation of palmitic acid into intramuscular lipids was fairly constant, independently of the fatty acid concentration in the medium, and amounted to 63-72% for triacylglycerols, 7-12% for diacylglycerols-monoacylglycerols, and 19-26% for phospholipids. Both palmitic acid incorporation into the muscle triacylglycerol stores and its oxidation to CO2 closely correlated with an increase in both total and unbound to albumin fatty acid concentrations in the incubation medium. Under conditions of increased total but constant unbound to albumin palmitic acid concentrations, the incorporation of palmitic acid into triacylglycerols and its oxidation to CO2 were also increased, but to a lower extent. This supports the hypothesis that the cellular fatty acid metabolism depends not only on the availability of fatty acids unbound to albumin, but also on the availability of fatty acids complexed to albumin.  相似文献   

2.
The aim of the study was to investigate the palmitic acid incorporation into intramuscular acylglycerols in perfused hind-limb skeletal muscles of different fibre types in rats either fasted for 48 h or exposed to cold (6 °C) for 12 h. Hind-limb preparations of fasted and cold exposed rats were perfused with buffers containing tritium labelled and cold palmitic acid. Palmitic acid incorporation into intracellular lipid pools in the soleus, plantaris, red and white gastrocnemius and red and white quadriceps was measured. It was found that fasting increased approximately 2-fold palmitic acid incorporation in all muscles examined regardless of the fibre type composition of the muscle. On the other hand, exposure to cold had no effect on the palmitic acid incorporation into intramuscular acylglycerols regardless the muscle fibre type. The increased incorporation of palmitic acid into acylglycerols in fasted animals is in line with data showing that 48 h fasting stimulates the expression of plasma membrane proteins putatively facilitating fatty acid uptake. It appears that although 12 h cold exposure increases the use of fatty acids as energy substrates it does not alter the incorporation of palmitic acid into intramuscular acylglycerols in the perfused rat hind-limb.  相似文献   

3.
Fetuin belongs to a group of fetal glycoproteins whose specific function is not known. In this study we investigated the effect of bovine fetuin on exogenous fatty acid incorporation into lipid classes by fetal rabbit aortic smooth muscle cells (SMC) and human fetal skin fibroblasts. When compared with albumin, the addition of fetuin to the culture medium caused a dramatic increase in labeled fatty acid incorporation (nanomoles/mg of protein) by SMC into triglycerides (albumin (control) 2.8 +/- 0.3 + fetuin 178.3 +/- 13.7). This effect was noted at a wide range of fetuin concentrations (0.2-5%) at oleate:fetuin molar ratios of 3.3-0.13, respectively. Similar effects were noted using human fetal skin fibroblasts with both labeled oleic and arachidonic acids (0.1 mM) as substrates (arachidonic acid incorporation into triglycerides, albumin (control) 76.9 +/- 16.2 + fetuin 684.6 +/- 64.1). Stimulation of fatty acid incorporation into di- and monoglycerides was also noted. Although the amount of unbound fatty acid in the presence of fetuin was greater than with albumin, experiments done under conditions that create identical unbound oleate levels (by varying fatty acid concentration) still showed increased fatty acid incorporation into triglycerides by SMC when exposed to fetuin. This marked effect of fetuin on triglyceride accumulation in cells was confirmed by lipid analysis, strong positive staining with oil red O, and transmission of electron microscopy. Furthermore, the potential physiological role of fetuin in terms of fatty acid and transport was attested by (a) the presence of significant amounts of free fatty acids associated with fetuin; and (b) by the stimulatory effect of fetuin, even when added to culture media containing other fatty acid carriers. These results show that (a) fetuin is far more efficient than albumin in incorporating fatty acids into cells; and (b) this might represent a novel function for fetuin during development.  相似文献   

4.
Production of platelet-activating factor (PAF) during opsonized zymosan stimulation of human polymorphonuclear leukocytes is dependent on the concentration of extracellular albumin and on the presence of exogenous fatty acids. Fatty acid-free albumin caused a concentration-dependent increase in PAF synthesis up to 5% albumin concentrations (w/v) where the amount of PAF produced was three- to four-fold higher than in controls containing no albumin. The addition of free fatty acids, particularly arachidonic acid and palmitic acid, to 5% fatty acid-free albumin media caused a concentration-dependent decrease in PAF synthesis. A 50% inhibition of PAF synthesis was observed at an arachidonic acid concentration of 120 microM and at a palmitic acid concentration of 100 microM. The inhibition of PAF production by palmitic acid was also dependent on the concentration of extracellular albumin. In 0.5% fatty acid-free albumin media, a palmitic acid concentration of 40 microM produced a 50% inhibition in PAF synthesis. The addition of palmitic acid did not affect the release of endogenous arachidonic acid during stimulation. In contrast, the addition of stearic acid up to 120 microM in 5% fatty acid-free albumin media had no effect on PAF production. The different inhibitory effects of palmitic acid and stearic acid on PAF production may be related to differences in intracellular utilization of these two fatty acids during cell stimulation.  相似文献   

5.
The optimum cofactor requirements for triacylglycerol biosynthesis in rat adipose-tissue homogenates containing mitochondrial, microsomal and cytosolic fractions were investigated. In general the optimum concentrations of cofactors for triacylglycerol biosynthesis were found to differ from those for total fatty acid esterification. The results provided further evidence for the key role of phosphatidate phosphohydrolase in the regulation of triacylglycerol biosynthesis. Albumin was included in the incubation medium to permit the use of concentrations of added fatty acids that would swamp the effects of endogenous fatty acids. The addition of albumin had little effect on the incorporation of palmitic acid and stearic acid into lipids including triacylglycerols. By contrast, a critical concentration of albumin (about 60 muM) was required before incorporation of oleic acid or linoleic acid into triacylglycerols occurred. The system was used to study the incorporation of different 1-14C-labelled fatty acids from a mixture of unesterified fatty acids [palmitic acid 30%; stearic acid 10%; oleic acid 40%; linoleic acid 20% (molar percentages)] separately into the positions 1,2 and 3 of triacyl-sn-glycerols. In general the stereo-specific distribution of the labelled fatty acids incorporated into triacylglycerols paralleled the normal distribution of fatty acids within rat adipose-tissue triacylglycerols, suggesting that the specificities of the relevant acyltrasferases have the major role in determining the positional distribution of fatty acids within triacylglycerols.  相似文献   

6.
Primary cultures of adult rat hepatocytes were used to compare the uptake and esterification of essential polyunsaturated fatty acids (18:2, 20:3 and 20:4 of the n-6 series) with those of palmitic and oleic acids. The uptake of unesterified fatty acids was linearly related to the free fatty acid/albumin molar ratio for 14 h and did not depend on the unbound free fatty acid level. Whatever the initial free fatty acid/albumin molar ratio, it dropped to 0.5 +/- 0.1 mM after 14 h, thus showing that hepatocytes have a high capacity for clearing free fatty acids from the medium at high free fatty acid/albumin molar ratios. The free fatty acid uptake become saturable when the free fatty acid and albumin concentrations were raised and the free fatty acid/albumin ratio remained constant. This strongly suggests that albumin-hepatocyte interaction mediates free fatty acid uptake. This uptake was identical whatever the fatty acid tested and did not depend on the relative amounts of fatty acids when they were added simultaneously. Triacylglycerol accumulation and synthesis, monitored by labelled fatty acids, were related to the free fatty acid/albumin molar ratio and exhibited no specificity for the series of fatty acids tested. Triacylglycerols were enriched in all the fatty acids tested by up to 60%, and fatty acid incorporation into diacylglycerols and triacylglycerols reflected the free fatty acid composition of the medium. By contrast, neither the level nor the synthesis of phospholipids varied with free fatty acid/albumin, but the rate of phospholipid turnover depended on the fatty acids tested. Accumulation of these acids was smaller in phospholipids than in triacylglycerols. When linoleic and arachidonic acids were added together, phospholipids (especially phosphatidylethanolamine and phosphatidylinositol) were more enriched in arachidonic acid than triacylglycerols. This might be due to the specificity for fatty acid of the enzymes involved in phospholipid metabolism.  相似文献   

7.
Membrane fatty acid composition of CaCo-2 cells was modified by incubating the cells for 8 days in medium containing 100 microM eicosapentaenoic acid or palmitic acid. The effect of membrane fatty acid changes on cholesterol metabolism was then studied. Cells incubated with eicosapentaenoic acid had significant changes in membrane fatty acid composition with an accumulation of 20:5 and 22:5 and a reduction in monoenoic fatty acids compared to cells grown in palmitic acid. Intracellular cholesteryl esters could not be detected in CaCo-2 cells grown in the presence of the n-3 polyunsaturated fatty acid. In contrast, cells incubated with the saturated fatty acid contained 2 micrograms/mg protein of cholesteryl esters. Cells grown in eicosapentaenoic acid, however, accumulated significantly more triglycerides compared to cells modified with palmitic acid. The rate of oleic acid incorporation into triglycerides was significantly increased in cells incubated with eicosapentaenoic acid. CaCo-2 cells modified by eicosapentaenoic acid had lower rates of HMG-CoA reductase and ACAT activities compared to cells modified with palmitic acid. The incorporation of the two fatty acids into cellular lipids also differed. Palmitic acid was predominantly incorporated into cellular triglycerides, whereas eicosapentaenoic acid was preferentially incorporated into phospholipids with 60% of it in the phosphatidylethanolamine fraction. The data indicate that membrane fatty acid composition is significantly altered by growing CaCo-2 cells in eicosapentaenoic acid. These modifications in membrane fatty acid saturation are accompanied by a decrease in the rates of cholesterol synthesis and cholesterol esterification.  相似文献   

8.
Fibroblasts derived from a rat carrageenin granuloma were cultured in the presence of radioactive arachidonic acid, palmitic acid and linoleic acid. More than 90% of each labeled fatty acid was incorporated into a phospholipid fraction by the cells in 18 hrs. Arachidonic acid was evenly incorporated into phosphatidylcholine and phosphatidylethanolamine, while both palmitic acid and linoleic acid were almost entirely incorporated into phosphatidylcholine. The position of phosphatidylcholine where the fatty acids were incorporated was different for each fatty acid. The ratio of the amount of fatty acid incorporated into the 2-position to the amount incorporated into the 1-position of phosphatidylcholine for each fatty acid was greater than 90% for arachidonic acid, 2:1 for palmitic acid and 5:1 for linoleic acid. In the case of phosphatidylethanolamine, most arachidonic acid (greater than 90%) was incorporated into the 2-position. PGF2alpha caused the stimulation of arachidonic acid release but not of palmitic acid and linoleic acid from pre-labeled fibroblasts. The serum in the medium was completely replaceable by bovine serum albumin. The effect of PGF2Alpha increased with an increasing concentration of bovine serum albumin, suggesting that serum only acts as a "trap" for released arachidonic acid. The effect of PGF2Alpha was greater than bradykinin, and no synergistic effect was seen, although an additive effect was observed. The effect of PGF2Alpha depended on the concentration of calcium ions under magnesium-supplemented conditions.  相似文献   

9.
The incorporation of 3H oleic acid into tissue lipids of guinea pig heart was studied after 15, 30, 60 or 120 sec perfusion using EM autoradiography with 'hypothetical grain' analysis and lipid analysis by thin-layer chromatography. Radioactivity in triacylglycerol and phospholipid increased and in free fatty acid decreased with time. This corresponded to an increase in radioactivity associated with lipid droplets in the autoradiographs. High levels of radioactivity were found associated with the mitochondria after only 15 sec. The movement of fatty acids is interpreted in terms of transport mechanisms, concentration gradients and bound and unbound molecules.  相似文献   

10.
Cholesterol is an abundant lipid of lung surfactant, where its concentration changes relative to phospholipids in response to certain physiological conditions. We investigated the effect of the cellular cholesterol content on uptake and esterification of palmitic acid, and on cellular distribution of fatty acid translocase (FAT/CD36) in alveolar type II cells. Incubation of type II cells with methyl-beta-cyclodextrin-cholesterol complexes increased the cholesterol content of lamellar bodies. The palmitate uptake of type II cells increased in parallel with the cellular cholesterol content. The content of FAT/CD36 increased in membranes and decreased in cytosol in type II cells. The detergent-insoluble fraction (DIGs), isolated from type II cells, was enriched in FAT/CD36 and caveolin-1 after increasing the cellular cholesterol. The total incorporation of labeled palmitic acid into glycerolipids and cholesterol ester (CE) increased by a factor of about 10 when the amount of unbound (14)C-palmitic acid added to type II cells was increased by a factor of about 1000. Under these conditions, a small but significant increase of the palmitate incorporation into PL occurred. Independent from the amount of added palmitate, palmitate incorporation into triacylglycerol decreased and palmitate incorporation into cholesterol ester increased about 40-65-fold. The beta-oxidation of palmitate significantly decreased. We conclude that alveolar type II cells respond to an increase of the cholesterol level with (i) cellular redistribution of FAT/CD36 into DIGs causing enhanced palmitate uptake and increased cholesterol ester-formation, (ii) storage of cholesterol in lamellar bodies, and (iii) induction of the formation of caveolae-like microdomains in the surface membrane, a structure possibly involved in a lamellar body-independent efflux of free cholesterol via the high-density lipoprotein-specific pathway.  相似文献   

11.
Microsomal membrane preparations from rat lung catalyse the incorporation of radioactive linolenic acid from [14C]linolenoyl-CoA into position 2 of sn-phosphatidylcholine. The incorporation was stimulated by bovine serum albumin and free CoA. Free fatty acids in the incubation mixtures were not utilised in the incorporation into complex lipids. Fatty acids were transferred to the acyl-CoA pool during the incorporation of linolenic acid into phosphatidylcholine. An increase in lysophosphatidylcholine occurred in incubations containing both bovine serum albumin and free CoA and in the absence of acyl-CoA. The results were consistent with an acyl-CoA: lysophosphatidylcholine acyltransferase operating in both a forwards and backwards direction and thus catalysing the acyl exchange between acyl-CoA and position 2 of sn-phosphatidylcholine. In incubations with mixed species of acyl-CoAs, palmitic acid was the major fatty acid substrate transferred to phosphatidylcholine in acyl exchange, whereas this acid was completely selected against in the acylation of added lysophosphatidylcholine. The selectivity for palmitoyl-CoA was particularly enhanced when the mixed acyl-CoA substrate was presented to the microsomes in molar concentrations equivalent to the molar ratios of the fatty acids in position 2 of sn-phosphatidylcholine. During acyl exchange, the predominant fatty acid transferred to phosphatidylcholine from acyl-CoA was palmitic acid, whereas arachidonic acid was particularly selected for in the reverse reaction from phosphatidylcholine to acyl-CoA. A hypothesis is presented to explain the differential selectivity for acyl species between the forward and backward reactions of the acyltransferase that is based upon different affinities of the enzyme for substrates at high and low concentrations of acyl donor. Acyl exchange between acyl-CoA and phosphatidylcholine offers, therefore, a possible mechanism for the acyl-remodelling of phosphatidylcholine for the production of lung surfactant.  相似文献   

12.
The stages of uptake and incorporation of micellar palmitic acid by hamster proximal intestinal mucosa were investigated by incubation of everted sacs at 4 degrees C and 37 degrees C for 2, 5, 10, and 15 min in a micellar solution (10 micro moles of [1-(14)C]palmitic acid, 10 micro moles of monoolein, and 100 micro moles of sodium taurodeoxycholate) and subsequent serial rinsing of the sacs in ice-cold solutions as follows: one 20-sec rinse in unlabeled micellar solution, five 1-min rinses in Krebs-Ringer buffer (0.15 m, pH 6.3), and ten 2-min rinses in 2.5% albumin solution. The fatty acid-solubilizing capacity of all the rinsing solutions was always in excess of the amounts of radioactive palmitic acid released during each rinse. Radioactivity was determined in the tissue homogenates, rinsing solutions, and serosal fluids. The results indicate that a significant proportion of radioactive palmitic acid taken up by the sacs during the short incubation was released into the rinsing solutions. Rinsing in Krebs-Ringer buffer resulted in release of 15.5 +/- 2.4% of the labeled fatty acid, and this fraction was independent of the temperature of incubation. In contrast, the amounts of palmitic acid released in albumin were significantly greater and were markedly dependent on the temperature of incubation; a total of 48.6 +/- 7.0% and 26.3 +/- 5.1% was released from sacs incubated at 4 degrees C and 37 degrees C, respectively. While the proportion of radioactive palmitic acid in the free fatty acid fraction of the tissue after the rinsing sequence remained reasonably constant regardless of the temperature and duration of incubation, the radioactivity of the esterified palmitic acid in the tissue was much greater in the sacs incubated at 37 degrees C and tended to increase linearly up to 10 min of incubation. A highly significant inverse relationship was found between the fraction of radioactive palmitic acid released by rinsing in albumin and the fraction of the label in the tissue esterified fatty acids. The results suggest that the initial uptake of micellar fatty acid by intestinal mucosa may involve reversible binding to superficial sites with at least two strengths of binding: a weak, temperature-independent binding which could be easily dissociated by rinsing in Krebs-Ringer buffer, and a stronger, temperature-dependent binding which could be dissociated by rinsing in albumin, but not in Krebs-Ringer buffer. Analogous binding of micellar palmitic acid occurred in a brush border preparation of proximal intestine which was devoid of any fatty acid esterifying activity. This suggested that the reversible binding of fatty acid by the intestinal mucosa may be a property of its superficial components, namely the glycocalyx or microvillous membranes, and that it may be independent of the esterifying capacity of the tissue.  相似文献   

13.
An investigation of the effect of change of total CO(2) concentration from 7 to 43 mM at pH 7.35 in the medium perfusing isolated rat lungs on [U-(14)C]glucose incorporation into lung phospholipids has been carried out. The incorporation of [U-(14)C]glucose into phosphatidylcholine and phosphatidylglycerol of the surfactant fraction and of the remaining lung tissue (residual fraction) was observed. Increased CO(2) concentration increased [U-(14)C]glucose incorporation into phosphatidylcholine of the surfactant fraction and residual fraction by 43 and 50%, respectively, during a 2 hr perfusion. Likewise, incorporation of [U-(14)C]glucose into phosphatidylglycerol was increased 22 and 34% into the surfactant and residual fractions, respectively. The percentage of [U-(14)C]glucose incorporated into the fatty acid moieties of phosphatidylcholine of both fractions increased as a result of increased CO(2) concentration. The increase in the incorporation of [U-(14)C]glucose into the fatty acid moieties of phosphatidylcholine was confirmed by an average increase of 56 and 77% in the specific activity of palmitic acid isolated from phosphatidylcholine of the surfactant and residual fraction, respectively, as a result of increased CO(2) concentration. The results suggest that alteration in extracellular CO(2) concentration affects the de novo synthesis from glucose of phosphatidylcholine and phosphatidylglycerol of the surfactant-lipoprotein fraction of lung.  相似文献   

14.
O Leon  C Panos 《Journal of bacteriology》1981,146(3):1124-1134
The fatty acid content of Mycoplasma pneumoniae increased 2.5- to 9.6-fold when the growth medium was supplemented with a saturated, unsaturated, or beta-hydroxy fatty acid, the greatest increase occurring with palmitic acid. The amount of each supplemented fatty acid found within this organism was 2.8 to 5.5% of the total fatty acid content; the exception was palmitic acid. Up to 57% of the palmitic acid was utilized from the supplemented medium, whereas only 0.2 to 10% of the other fatty acids was utilized. Chromatographic and isotopic analyses revealed that 22% of the labeled palmitic acid incorporated from the palmitic acid-supplemented medium remained free in this organism. Also, even though complex lipid synthesis increased a minimum of 3.8-fold under these conditions, this mycoplasma continued to incorporate intact complex lipids from the growth medium. Bacteriostatic and bactericidal studies which used high concentrations of various long-chain fatty acids showed that only palmitic, myristic, and beta-hydroxydecanoic acids were not bactericidal. The addition of palmitic acid to the growth medium resulted in the formation of exceedingly long, filamentous cells in approximately 25% of the population. Osmotic fragility and electron spin resonance spectroscopy studies showed a correlation among this increased fatty acid content, decreased membrane fluidity, and the increased osmotic fragility of palmitic acid-grown cells. In addition, these cells had a lowered cholesterol content. The effect of such compositional changes on osmotic fragility is discussed in this paper. Finally, the profound increase in the total fatty acid content of palmitic acid-grown cells altered neither sensitivity to tetracycline or erythromycin nor the amount of hydrogen peroxide secreted.  相似文献   

15.
Fibroblasts derived from a rat carrageenin granuloma were cultured in the presence of radioactive arachidonic acid, palmitic acid and linoleic acid. More than 90% of each labeled fatty acid was incorporated into a phospholipid fraction by the cells in 18 hrs. Arachidonic acid was evenly incorporated into phosphatidylcholine and phosphatidylethanolamine, while both palmitic acid and linoleic acid were almost entirely incorporated into phosphatidylcholine. The position of phosphatidylcholine where the fatty acids were incorporated was different for each fatty acid. The ratio of the amount of fatty acid incorporated into the 2-position to the amount incorporated into the 1-position of phosphatidylcholine for each fatty acid was >90% for arachidonic acid, 2:1 for palmitic acid and 5:1 for linoleic acid. In the case of phosphatidylethanolamine, most arachidonic acid (>90%) was incorporated into the 2-position. PGF2α caused the stimulation of arachidonic acid release but not of palmitic acid and linoleic acid from pre-labeled fibroblasts.The serum in the medium was completely replaceable by bovine serum albumin. The effect of PGF2α increased with an increasing concentration of bovine serum albumin, suggesting that serum only acts as a ‘trap’ for released arachidonic acid. The effect of PGF2α was greater than bradykinin, and no synergistic effect was seen, although an additive effect was observed.The effect of PGF2α depended on the concentration of calcium ions under magnesium-supplemented conditions.  相似文献   

16.
The effects of inclusion of different fatty acids in the medium on the rate of esterification of palmitic acid and its stereospecific distribution among the three positions of the triacyl-sn-glycerols by preparations of rat adipocytes in vitro have been determined. Myristic acid, stearic acid, oleic acid and linoleic acid were used as diluents and the concentration of the combined unesterified fatty acids in the medium was held constant; only the proportion of palmitic acid was varied. The amount of palmitic acid esterified was always linearly related to its relative concentration in the medium and was not significantly affected by the nature of the diluent fatty acid chosen. Constant relative proportions were recovered in triacylglycerols and in intermediates in each instance. The amount of palmitic acid esterified to each of the positions of the triacyl-sn-glycerols was linearly dependent on the relative proportion in the medium but the nature of the relationship was markedly influenced by which fatty acid was present. When stearic acid was present, simple relationships were found over the whole range tested. When either myristic acid, oleic acid or linoleic acid was present, abrupt changes in the manner of esterification of palmitic acid were observed in position sn-1 when the relative concentrations of palmitic acid and the diluent reached critical values, which differed with each fatty acid. In position sn-2 when oleic acid or linoleic acid was present, a similar change was observed, and in position sn-3 it was obtained with myristic acid as diluent. The results are discussed in terms of changes in the relative affinities of the acyltransferases for palmitic acid. Palmitic acid was esterified into various molecular species in proportions that indicated acylation with non-correlative specificity at higher relative concentrations but not at lower.  相似文献   

17.
Lymphosarcoma cells isolated from the spleens of tumor-bearing mice were used to study the effect of a low dose of X-rays (5 Gy) on the incorporation of [3H]palmitate and [14C]arachidonate into the lipids of the tumor cells. Palmitate and arachidonate were rapidly incorporated especially into the phospholipids of the cells. Between one and three hours after the start of the incubation with radiactive palmitate 80–90% of the label of the total lipids was found in the phospholipid fraction. Already after a few minutes of incubation with radioactive arachidonate, about 95% of the label was incorporated in the phospholipids. Irradiation caused a small but significant increase in the rate of fatty acid incorporation for both fatty acids. Concomitantly, a significantly increased amount of fatty acid was removed from the medium by the cells as a result of the irradiation, and the specific radioactivity of the free fatty acids in the cells was found to be enhanced. The radiation effect on the tumor cells could be mimicked by a hypotonic treatment. The magnitude of the radiation-induced stimulation of the fatty acid incorporation was similar to that of the hypotonically induced effect. Cells which had received a hypotonic treatment before the irradiation, did not show an additional radiation-induced enhancement of fatty acid incorporation into the cellular lipids. When the cells were incubated with serum albumin loaded with a relatively large (non-physiological) amount of complexed fatty acids (fatty acid: albumin molar ratio, ν = 3.7), no radiation effect on the fatty acid incorporation could be detected. It is concluded that hypotonic treatment, irradiation, and increased supply of exogenous fatty acids all lead to an enhanced flux of fatty acids into the cells. These results confirm our previous suggestion that the uptake of fatty acids through the plasma membrane is the rate-limiting step in the fatty acid incorporation into the phospholipids and that ionizing radiation is one of the means to enhance fatty acid uptake through the plasma membrane leading to an increased incorporation into the phospholipids.  相似文献   

18.
The effects of eicosapentaenoic acid and oleic acid on lipid synthesis and secretion by HepG2 cells were examined to identify fatty acid specific changes in lipid metabolism that might indicate a basis for the hypolipidemic effect attributed to eicosapentaenoic acid and related n-3 fatty acids. Cellular glycerolipid synthesis, as determined by [3H]glycerol incorporation, increased in a concentration-dependent manner in cells incubated 4 h with either eicosapentaenoic acid or oleic acid at concentrations between 10 and 300 microM. [3H]Glycerol-labeled triglyceride was the principal lipid formed and increased approximately fourfold with the addition of 300 microM oleic acid or eicosapentaenoic acid. Both fatty acids also produced a 20-40% increase in the total cellular triglyceride mass. Although both fatty acids increased triglyceride synthesis to similar extents, eicosapentaenoic acid-treated cells secreted 40% less [3H]glycerol-labeled triglyceride than cells fed oleic acid. Cellular synthesis of [3H]glycerol-labeled phosphatidylethanolamine and phosphatidylcholine was also reduced by 40% and 30%, respectively, in cells given eicosapentaenoic acid versus cells given oleic acid. Similar results were obtained in determinations of radiolabeled oleic acid and eicosapentaenoic acid incorporation. At a fatty acid concentration of 300 microM, incorporation of radiolabeled eicosapentaenoic acid into cellular triglycerides was greater than the incorporation obtained with radiolabeled oleic acid, while the reverse relationship was observed for the formation of phosphatidylcholine from the same fatty acids. Eicosapentaenoic acid is as potent as oleic acid in inducing triglyceride synthesis but eicosapentaenoic acid is a poorer substrate than oleic acid for phospholipid synthesis. The intracellular rise in de novo-synthesized triglyceride in eicosapentaenoic acid-treated cells without corresponding increases in triglyceride secretion suggests that eicosapentaenoic acid is less effective than oleic acid in promoting the transfer of de novo-synthesized triglyceride to nascent very low density lipoproteins.  相似文献   

19.
Little is known about the contribution of plasma free fatty acid (FFA) and intramuscular triacylglycerol (TG) as substrates for energy production during prolonged electrical stimulation of skeletal muscle. The purpose of this study was to investigate the effects of continuous and intermittent electrical stimulation protocols of different intensities on exogenous FFA oxidation, exogenous FFA incorporation into intracellular TG, and intracellular TG content in the isolated in vitro rat flexor digitorum brevis muscle preparation. Muscles were electrically stimulated for 0.5 h continuously at 0.2 Hz or intermittently (30 s on, 60 s off) at 0.2, 0.4, 0.8, and 5.0 Hz while incubated at 37 degrees C in 0.5 mM palmitate-3% bovine serum albumin medium (pH 7.4) in the presence of insulin (100 microU/ml) and glucose (11 mM). Control muscles were frozen immediately after excision or incubated for 0.5 h. At similar frequencies, less exogenous FFA esterification and more exogenous FFA oxidation occurred during continuous than during intermittent stimulation. As the frequency of intermittent stimulation increased, the amount of exogenous FFA esterified decreased and the amount of exogenous FFA oxidized increased. The data also indicate that at least a portion of TG was constantly being hydrolyzed during electrical stimulation. Under stimulation conditions in which exogenous FFA esterification was below the control (resting muscle) level, intramuscular TG content was significantly decreased compared with control TG content values. Thus both plasma FFA and intramuscular TG are substrates for energy production during electrical stimulation. However, the stimulation parameters employed affect the quantities utilized.  相似文献   

20.
Clinical and experimental evidence suggest that increased rates of fatty acid oxidation in the myocardium result in impaired contractile function in both normal and diabetic hearts. Glucose utilization is decreased in type 1 diabetes, and fatty acid oxidation dominates for energy production at the expense of an increase in oxygen requirement. The objective of this study was to examine the effect of chronic treatment with trimetazidine (TMZ) on cardiac mechanical function and fatty acid oxidation in streptozocin (STZ)-diabetic rats. Spontaneously beating hearts from male Sprague-Dawley rats were subjected to a 60-minute aerobic perfusion period with a recirculating Krebs-Henseleit solution containing 11 mmol/L glucose, 100 muU/mL insulin, and 0.8 mmol/L palmitate prebound to 3% bovine serum albumin (BSA). Mechanical function of the hearts, as cardiac output x heart rate (in (mL/min).(beats/min).10-2), was deteriorated in diabetic (73 +/- 4) and TMZ-treated diabetic (61 +/- 7) groups compared with control (119 +/- 3) and TMZ-treated controls (131 +/- 6). TMZ treatment increased coronary flow in TMZ-treated control (23 +/- 1 mL/min) hearts compared with untreated controls (18 +/- 1 mL/min). The mRNA expression of 3-ketoacyl-CoA thiolase (3-KAT) was increased in diabetic hearts. The inhibitory effect of TMZ on fatty acid oxidation was not detected at 0.8 mmol/L palmitate in the perfusate. Addition of 1 mumol/L TMZ 30 min into the perfusion did not affect fatty acid oxidation rates, cardiac work, or coronary flow. Our results suggest that higher expression of 3-KAT in diabetic rats might require increased concentrations of TMZ for the inhibitory effect on fatty acid oxidation. A detailed kinetic analysis of 3-KAT using different concentrations of fatty acid will determine the fatty acid inhibitory concentration of TMZ in diabetic state where plasma fatty acid levels are increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号