首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Guye, M. G, Vigh, L. and Wilson, J. M. 1987. Chilling-inducedethylene production in relation to chill-sensitivity in Phaseolusspp.—J. exp. Bot. 38: 680–690. Ethylene production from the primary leaves of six bean (Phaseolusspp.) cultivars known to differ in chill-sensitivity, was monitoredat 23 ?C following chilling of whole plants at 5 ?C for 24 h.The more chill-tolerant cultivars produced greater amounts ofchilling-induced ethylene than the chill-sensitive cultivars.The onset of maximum ethylene production rates and the followingdecline in rates was more rapid in chill-tolerant cultivars.This pattern of ethylene production was also similar when chill-tolerancewas chemically enhanced by choline treatment. The low levelsof ethylene production in chill-sensitive genotypes was alsoreflected by their poor ability to convert the exogenously appliedethylene precursor, 1-aminocyclopropane-l-carboxylic acid (ACC),to ethylene. Moderate levels of leaf water deficit induced by chilling chill-tolerantcultivars and choline treated plants appeared to stimulate chilling-inducedethylene production. High levels of leaf wilt, shown by morechill-sensitive cultivars, reduced this stimulatory effect.Ethylene production was slightly greater when warming was carriedout in the light rather than in the dark. Key words: Ethylene, ACC, choline, chill-sensitivity, Phaseolus  相似文献   

2.
Polyamine Titre in Relation to Chill-Sensitivity in Phaseolus sp.   总被引:2,自引:0,他引:2  
Guye, M G., Vigh, L. and Wilson, J. M. 1986. Polyamine titrein relation to chill-sensitivity in Phaseolus sp.—J. exp.Bot. 37: 1036–1043. Endogenous levels of the polyamines putrescine, spermidine andspermine were quantified in the primary leaves of five cultivarsof bean (Phaseolus sp.) differing in their ‘wilting response’to a chilling exposure of 5 ?C for 24 h. Levels of polyamines prior to chilling treatment did not appearto be correlated with chill-tolerance as levels in the non-chilledcontrols were highest in cultivars of medium chill-sensitivity.Plants grown under a vapour saturation deficit (VSD) of 8?4gm–3 day/6?1 g m–3 night exhibited a mild hardeningas compared to plants grown under a VSD of 5?7 gm–3 day/4?1gm–3 night, as the former showed less wilting on chilling.Hardening at high VSD had the effect of slightly lowering theputrescine content of non-chilled tissue but total polyaminecontent remained unchanged. However, on chilling, the largestrelative increase in polyamine levels, in particular that ofputrescine, occurred in hardened plants. There was also a significantrelative increase in putrescine titre in response to chillingin non-hardened genotypes of high chill-tolerance, whereas morechill-sensitive genotypes remained unchanged or slightly declinedin putrescine content on chilling. Relative changes in putrescine content rather than absolutelevels appears to be correlated with chill-tolerance. Theseresults are discussed in view of present knowledge on the adaptivesignificance of stress-induced changes in polyamines, especiallywith regard to membrane stability Key words: Chilling, polyamines, Phaseolus sp.  相似文献   

3.
Guye, M. G, Vigh, L. and Wilson, J. M. 1987. Recovery afterchilling: an assessment of chill-tolerance in Phaseolus spp.—J.exp. BoL, 38: 691–701. The chill-sensitivity of three Phaseolus spp. (eight cultivars)was assessed by measuring five different physiological parameters(leaf pigment loss, leaf diffusion resistance, relative growthrate recovery, change in leaf water content and the severityof leaf necrosis) on return to the warmth (23 ?C/18 ?C) followinga brief but severe chilling treatment (24 h at 5 ?C). In thisway the genotypes could be ranked in order of increasing chill-sensitivityas follows: P. coccineus cvs Prizewinner and Streamline, P.vulgaris cv. 251 < P. vulgaris cvs 194, 222 and Seafarer< P. vulgaris cv. Tendergreen < P. aweus cv. Berken. Key words: Chill-tolerance ranking, chlorophyll, leaf diffusion resistance, leaf water content, growth rate, carotenoid, Phaseolus  相似文献   

4.
Mung bean (Vigna radiata L. Wilcz. cv. Berken) seedlings wereraised hydroponically in 0, 5 and 15 mol m–3 choline.Fourteen-day-old plants were chilled at 5°C (under lightconditions) for 24 h and then returned to warm conditions fora further 24 h. Primary leaf lamina tissue was used for thedetermination of phospholipid, mole ratio of sterol to phospholipid(ST/PL), sterol composition, and ethylene-forming enzyme (EFE)activity for the various choline-temperature treatments employed.Chilling caused an irreversible loss of lipid in the absence,of choline. Differential loss of lipid resulted in an increasein ST/PL and a decline in the mole ratio of sitosterol to stigmasterol(S/S). There was no recovery of EFE activity following chillingin the absence of choline. Choline (5 and 15 mol m–3)enhanced phospholipid and sterol levels prior to chilling andmaintained lipid levels throughout the chill-warm cycle, withoutany significant change in ST/PL. At 5.0 mol m–3 choline,the chilling-induced decline in S/S was reduced, while at 15mol m–3 S/S increased following chilling. Choline treatment,though reducing EFE activity prior to chilling, allowed recoveryof EFE activity following transfer of plants from chilling towarm conditions. Key words: Chill sensitivity, choline, phospholipid, sterol ethylene forming enzyme, Vigna radiata  相似文献   

5.
The effects of in vivo Cd treatments on pea root plasma membrane(PM) lipid composition were studied. In the long-term experiment,plants were supplied with Cd: moderate stress (10 µM)or strong stress (50 µM) for 10 d. Growth of root andshoot was severely affected in 50 µM Cd-treated plants,as evidenced by the approximately 7-fold reduction in theirRelative Growth Increment (RGI). Treatment with Cd (10 µM)resulted in changes to the lipid composition of the pea rootPM, including increases in the degree of unsaturation of phospholipid-associatedfatty acids and in the relative amount of stigmasterol (30–42%).This change was accompanied by a reduction in sitosterol content(26.8 to 17.4 µg mg–1 protein). However, the sterolcomposition was not altered in plants treated with 50 µMCd for 10 d. The content of phosphatidylethanolamine and phosphatidylcholine(major phospholipids present in pea root PM) decreased as Cdlevel increased, but the ratio between them remained unaffected.In the short-term experiment, plants exposed to Cd (50 µM)accumulated less sitosterol (from 27.7 to 14.0 µg g mg–1protein) over 72 h, but no significant effect on other measuredlipids was observed. The physiological repercussions of changesin plasma membrane lipid composition, as a result of Cd exposureare discussed. Key words: Cadmium, lipids, pea, Pisum sativum, plasma membranes  相似文献   

6.
Molecular roles of sterols in plant development remain to be elucidated. To investigate sterol composition during embryogenesis, the occurrence of 25 steroid compounds in stages of developing seeds and pods of Pisum sativum was examined by GC-MS analysis. Immature seeds containing very young embryos exhibited the greatest concentrations of sterols. Regression models indicated that the natural log of seed or pod fr. wt was a consistent predictor of declining sterol content during embryonic development. Although total sterol levels were reduced in mature embryos, the composition of major sterols sitosterol and campesterol remained relatively constant in all 12 seed stages examined. In mature seeds, a significant decrease in isofucosterol was observed, as well as minor changes such as increases in cycloartenol branch sterols and campesterol derivatives. In comparison to seeds and pods, striking differences in composition were observed in sterol profiles of stems, shoots, leaves, flowers and flower buds, as well as cotyledons versus radicles. The highest levels of isofucosterol, a precursor to sitosterol, occurred in young seeds and flower buds, tissues that contain rapidly dividing cells and cells undergoing differentiation. Conversely, the highest levels of stigmasterol, a derivative of sitosterol, were found in fully-differentiated leaves while all seed stages exhibited low levels of stigmasterol. The observed differences in sterol content were correlated to mRNA expression data for sterol biosynthesis genes from Arabidopsis. These findings implicate the coordinated expression of sterol biosynthesis enzymes in gene regulatory networks underlying the embryonic development of flowering plants.  相似文献   

7.
ABA Levels and Effects in Chilled and Hardened Phaseolus vulgaris   总被引:3,自引:0,他引:3  
Leaf abscisic acid (ABA) levels of chilled P. vulgaris weremeasured after 18 h chilling at 5°C, at a saturation deficitof 1.24 g m–3 (SD), and after chilling in a water-saturatedatmosphere. Changes were also followed during a chill hardeningperiod of 4 d at 12°C, 2.1 g m–3 SD. It was foundthat hardening resulted in an almost 5. fold increase in ABAlevels after 3 d at 12°C, and this decreased to approximatelycontrol levels on the fourth day. Subsequent chilling of hardenedplants produced no change in ABA levels from that of controlplants (22° C). In contrast, non-hardened plants chilledat 1.24 g m–3 SD had ABA levels almost 3 times the levelof control plants. However, chilling in a water-saturated atmosphereresulted in a decrease in ABA levels. In addition, the response of leaf diffusion resistance (LDR)to exogenous ABA fed via the transpiration stream was measuredat 5 ° C and 22° C in hardened and non-hardened plants.Use of tritium-labelled ABA was made to calculate the stomatalsensitivity to ABA. It was found that exogenous ABA caused anincreased in LDR at 22°C in both hardened and non-hardenedplants. However, the sensitivity of the hardened plants to ABAwas greater in terms of rate of closure and amount of ABA requiredto close the stomata. At 5°C, however, ABA caused stomatalopening and the maintainance of open stomata in non-hardenedplants. In hardened plants, ABA caused stomatal closure at 5°C.These results are discussed in relation to the locking-openresponse of chilled P. vulgaris stomata. Key words: Chilling, Stomata, ABA, Phaseolus vulgaris  相似文献   

8.
The dietary sterols, cholesterol, campesterol, sitosterol, stigmasterol and 24-methylenecholesterol, were tested for their ability to support brood rearing in the honey bee, Apis mellifera L., by adding them singly to a chemically-defined worker bee diet. Diet supplemented with 24-methylenecholesterol supported the greatest survival of worker bees, but diet supplemented with either 24-methylenecholesterol or cholesterol supported the production of nearly equivalent amounts of sealed brood and more than any of the other three sterols tested. Diets containing stigmasterol, sitosterol, campesterol, or no supplement produced less sealed brood, in decreasing order.  相似文献   

9.
We have characterized cytochromes P450, CYP710A13, and CYP710A14, as the sterol C22-desaturase in the moss Physcomitrella patens. GC–MS analyses demonstrated that P. patens accumulated stigmasterol as the major sterol (56–60% of total sterol) and sitosterol to a lesser extent (8–12%); this sterol profile contrasts with those in higher plants accumulating stigmasterol as a minor component. Recombinant CYP710A13 and CYP710A14 proteins prepared using a baculovirus/insect cell system exhibited the C22-desaturase activity with β-sitosterol to produce stigmasterol, while campesterol and 24-epi-campesterol were not accepted as the substrates. The K m values for β-sitosterol of CYP710A13 (1.0 ± 0.043 μM) and CYP710A14 (2.1 ± 0.17 μM) were at comparable levels of those reported with higher plant CYP710A proteins. In Arabidopsis T87 cells over-expressing CYP710A14, stigmasterol contents reached a level 20- to 72-fold higher than those in the basal level of T87 cells, confirming the C22-desaturase activity of this P450 enzyme. The occurrence of the end-products together with the enzymes involved in the last step of the pathway substantiated the presence of an entire sterol biosynthetic pathway in P. patens, providing evidence for the conservation of the sterol biosynthetic pathway through the evolutionary process of land plants. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Upon inoculation with pathogenic microbes, plants induce an array of metabolic changes that potentially contribute to induced resistance or even enhance susceptibility. When analysing leaf lipid composition during the Arabidopsis thaliana–Pseudomonas syringae interaction, we found that accumulation of the phytosterol stigmasterol is a significant plant metabolic process that occurs upon bacterial leaf infection. Stigmasterol is synthesized from β‐sitosterol by the cytochrome P450 CYP710A1 via C22 desaturation. Arabidopsis cyp710A1 mutant lines impaired in pathogen‐inducible expression of the C22 desaturase and concomitant stigmasterol accumulation are more resistant to both avirulent and virulent P. syringae strains than wild‐type plants, and exogenous application of stigmasterol attenuates this resistance phenotype. These data indicate that induced sterol desaturation in wild‐type plants favours pathogen multiplication and plant susceptibility. Stigmasterol formation is triggered through perception of pathogen‐associated molecular patterns such as flagellin and lipopolysaccharides, and through production of reactive oxygen species, but does not depend on the salicylic acid, jasmonic acid or ethylene defence pathways. Isolated microsomal and plasma membrane preparations exhibited a similar increase in the stigmasterol/β‐sitosterol ratio as whole‐leaf extracts after leaf inoculation with P. syringae, indicating that the stigmasterol produced is incorporated into plant membranes. The increased contents of stigmasterol in leaves after pathogen attack do not influence salicylic acid‐mediated defence signalling but attenuate pathogen‐induced expression of the defence regulator flavin‐dependent monooxygenase 1. P. syringae thus promotes plant disease susceptibility through stimulation of sterol C22 desaturation in leaves, which increases the stigmasterol to β‐sitosterol ratio in plant membranes.  相似文献   

11.
In seeds and leaves of oats (Avena sativa L.) 12 different sterols (cholesterol, cholstanol, 7-cholestenol, campesterol, campestanol, stigmasterol, lophenol, sitosterol, stigmastanol, 5-avenasterol, 7-avenasterol and 7-stigmastenol) have been identified. The sterol pattern is qualitatively the same, but the relative composition is different in leaves and in seeds. Leaves contain mainly sitosterol, stigmasterol, cholesterol and campesterol, but only minor portions of avenasterols. Seeds contain sitosterol, 5- and 7-avenasterol, campesterol, but only minor amounts of stigmasterol and cholesterol. In leaf lipids 1-hexacosanol (2.35 wt % of total lipid) has also been identified.  相似文献   

12.
Arnqvist L  Persson M  Jonsson L  Dutta PC  Sitbon F 《Planta》2008,227(2):309-317
Sitosterol and stigmasterol are major sterols in vascular plants. An altered stigmasterol:sitosterol ratio has been proposed to influence the properties of cell membranes, particularly in relation to various stresses, but biosynthesis of stigmasterol is poorly understood. Recently, however, Morikawa et al. (Plant Cell 18:1008–1022, 2006) showed in Arabidopsis thaliana that synthesis of stigmasterol and brassicasterol is catalyzed by two separate sterol C-22 desaturases, encoded by the genes CYP710A1 and CYP710A2, respectively. The proteins belong to a small cytochrome P450 subfamily having four members, denoted by CYP710A1-A4, and are related to the yeast sterol C-22 desaturase Erg5p acting in ergosterol synthesis. Here, we report on our parallel investigation of the Arabidopsis CYP710A family. To elucidate the function of CYP710A proteins, transgenic Arabidopsis plants were generated overexpressing CYP710A1 and CYP710A4. Compared to wild-type plants, both types of transformant displayed a normal phenotype, but contained increased levels of free stigmasterol and a concomitant decrease in the level of free sitosterol. CYP710A1 transformants also displayed higher levels of esterified forms of stigmasterol, cholesterol, 24-methylcholesterol and isofucosterol. The results confirm the findings of Morikawa et al. (Plant Cell 18:1008–1022, 2006) regarding the function of CYP710A1 in stigmasterol synthesis, and show that CYP710A4 also has this capacity. Furthermore, our results suggest that an increased stigmasterol level alone is sufficient to stimulate esterification of other major sterols.  相似文献   

13.
In 3- and 14-day-old seedlings and in the leaves of Calendula officinalis the following sterols were identified: cholestanol, campestanol, stigmastanol, cholest-7-en-3-β-ol, 24-methylcholest-7-en-3β-ol, stigmast-7-en-3β-ol, cholesterol, campesterol, sitosterol, 24-methylcholesta-5,22-dien-3β-ol, 24-methylenecholesterol, stigmasterol and clerosterol. Sitosterol was predominant in young and stigmasterol in old tissues. Young tissues contained relatively more campesterol but in old tissues a C28Δ5,22 diene was present suggesting transformation of campesterol to its Δ5,22 analog, similar to that of sitosterol to stigmasterol. All the identified sterols were present as free compounds and also in the steryl esters, glucosides, acylated glucosides and water-soluble complexes. The variations in the amounts of these fractions in the embryo axes and cotyledons of 3- and 14-day-old seedlings and the distribution of individual sterols among the fractions are discussed.  相似文献   

14.
Sterol Changes during Germination of Nicotiana tabacum Seeds   总被引:6,自引:5,他引:1       下载免费PDF全文
The identity, composition, and concentration of the total, free, esterified, and glycosidic sterol fractions were determined during germination of tobacco seeds. The total, free, and esterified sterols increased, with stigmasterol and campesterol accounting for most of the increase. Steryl glycosides decreased during germination, and stigmasteryl and sitosteryl glycosides showed the largest decrease. During germination, sitosterol was the major sterol in all fractions but stigmasterol and campesterol showed the greatest changes. The fatty acid composition of the steryl esters and acylated steryl glycosides most closely resembled the di- and triglycerides.  相似文献   

15.
Soybeans (Glycine max) exposed to chronic levels of ozone showed a linear decrease in biomass with increasing concentration. The foliar free sterols increased while the steryl ester, and the steryl glycosides, a minor component, decreased with increasing pollutant concentration. Of the free sterols, stigmasterol showed the largest increase, followed by sitosterol; campesterol, however, decreased. All steryl esters decreased; sitosterol showed the largest decrease and campesterol the least.  相似文献   

16.
Eight soybean varieties and lines representing insect-susceptible and -resistant genotypes, and differing in plant maturity group, showed no difference in leaf dry wt. Over the growing season the total and bound sterols increased while the free sterols decreased. Sitosterol, stigmasterol and campesterol were the major sterols. Over the season sitosterol increased while stigmasterol decreased. No difference due to insect resistance could be established but early maturing plants showed a larger change in sterols.  相似文献   

17.
Sterols of both roots and nodules of three species of Alnus were found to consist only of sitosterol, whereas Casuarina cunninghamiana contained substantial amounts of campesterol, stigmasterol and sitosterol. In all four cases more sterol was extracted from nodules than from roots.  相似文献   

18.
We have studied metabolism of plant sterols and squalene administered intravenously in the form of lipid emulsion mimicking chylomicrons (CM). The CM-like lipid emulsion was prepared by dissolving squalene in commercially available Intralipid. The emulsion was given as an intravenous bolus injection of 30 ml containing 6.3 mg of cholesterol, 1.9 mg of campesterol, 5.7 mg of sitosterol, 1.6 mg of stigmasterol, 18.1 mg of squalene, and 6 g of triglycerides in six healthy volunteers. Blood samples were drawn from the opposite arm before and serially 2.5 -180 min after the injections. The decay of CM squalene, plant sterols, and triglycerides was monoexponential. The half-life of CM squalene was 74 +/- 8 min, that of campesterol was 37 +/- 5 min (P < 0.01 from squalene), and those of sitosterol, stigmasterol, and triglycerides were 17 +/- 2, 15 +/- 1, and 17 +/- 2 min, respectively (P < 0.01 from squalene and campesterol). The CM squalene concentration still exceeded the baseline level 180 min after injection (P = 0.02), whereas plant sterols and triglycerides returned to the baseline level between 45 and 120 min after injection. The half-lives of squalene and campesterol were positively correlated with their fasting CM concentrations. In addition, VLDL squalene, campesterol, and triglyceride concentrations, VLDL, LDL, and HDL sitosterol concentrations, as well as VLDL and LDL stigmasterol concentrations were increased significantly. Cholesterol concentrations increased in VLDL (P < 0.05), but were unchanged in CM after injection. These data suggest that squalene clearance occurs more slowly than that of plant sterols and triglycerides from CM, and that squalene is more tightly associated with triglyceride-rich lipoproteins than are plant sterols in injected CM-like emulsions.  相似文献   

19.
The norbornenodiazetine plant growth regulator tetcyclacis, when applied to roots of Avena sativa, caused a substantial increase in the cholesterol content of the shoots. Amounts of the C-24 alkylated sterols campesterol, stigmasterol and sitosterol all declined. A similar alteration in the sterol profile was observed for a plasma membrane preparation from the shoots. Changes in the sterol composition of root tissue were much less pronounced.  相似文献   

20.
《Plant science》1987,53(3):209-213
Chill-stressed or aged bean (Phaseolus vulgaris cv. 194) plants showed relative increase in the campesterol content of the primary leaves. Sitosterol/stigmasterol ratio declined significantly 24 h following transfer of chilled plants to warmer conditions. Sitosterol/stigmasterol varied markedly according to plant age, showing a decline during the leaf greening phase but an increase by the senescent (leaf-yellowing) phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号