首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The translocon at the inner envelope membrane of chloroplasts (Tic) plays a central role in plastid biogenesis by coordinating the sorting of nucleus-encoded preproteins across the inner membrane and coordinating the interactions of preproteins with the processing and folding machineries of the stroma. Despite these activities, the precise roles of known Tic proteins in translocation, sorting, and preprotein maturation have not been defined. In this report, we examine the in vivo function of a major Tic component, Tic110. We demonstrate that Arabidopsis thaliana Tic110 (atTic110) is essential for plastid biogenesis and plant viability. The downregulation of atTic110 expression results in the reduced accumulation of a wide variety of plastid proteins. The expression of dominant negative mutants of atTic110 disrupts assembly of Tic complexes and the translocation of preproteins across the inner envelope membrane. Together, these data suggest that Tic110 plays a general role in the import of nuclear-encoded preproteins as a common component of Tic complexes.  相似文献   

2.
The function of Tic40 during chloroplast protein import was investigated. Tic40 is an inner envelope membrane protein with a large hydrophilic domain located in the stroma. Arabidopsis null mutants of the atTic40 gene were very pale green and grew slowly but were not seedling lethal. Isolated mutant chloroplasts imported precursor proteins at a lower rate than wild-type chloroplasts. Mutant chloroplasts were normal in allowing binding of precursor proteins. However, during subsequent translocation across the inner membrane, fewer precursors were translocated and more precursors were released from the mutant chloroplasts. Cross-linking experiments demonstrated that Tic40 was part of the translocon complex and functioned at the same stage of import as Tic110 and Hsp93, a member of the Hsp100 family of molecular chaperones. Tertiary structure prediction and immunological studies indicated that the C-terminal portion of Tic40 contains a TPR domain followed by a domain with sequence similarity to co-chaperones Sti1p/Hop and Hip. We propose that Tic40 functions as a co-chaperone in the stromal chaperone complex that facilitates protein translocation across the inner membrane.  相似文献   

3.
Tic20 is a central, membrane-embedded component of the precursor protein translocon of the inner envelope of chloroplasts (TIC). In Arabidopsis thaliana, four different isoforms of Tic20 exist. They are annotated as atTic20-I, -II, -IV and -V and form two distinct phylogenetic subfamilies in embryophyta. Consistent with atTic20-I being the only essential isoform for chloroplast development, we show that the protein is exclusively targeted to the chloroplasts inner envelope. The same result is observed for atTic20-II. In contrast, atTic20-V is localized in thylakoids and atTic20-IV dually localizes to chloroplasts and mitochondria. These results together with the previously established expression profiles explain the recently described phenotypes of Tic20 knockout plants and point towards a functional diversification of these proteins within the family. For all Tic20 proteins a 4-helix topology is proposed irrespective of the targeted membrane, which in part could be confirmed in vivo by application of a self-assembling GFP-based topology approach. By the same approach we show that the inner envelope localized Tic20 proteins expose their C-termini to the chloroplast stroma. This localization would be consistent with the positive inside rule considering a stromal translocation intermediate as discussed.  相似文献   

4.
A multisubunit translocon of the inner envelope membrane, termed Tic, mediates the late stages of protein import into chloroplasts. Membrane proteins, Tic110 and Tic40, and a stromal chaperone, Hsp93, have been proposed to function together within the Tic complex. In Arabidopsis, single genes, atTIC110 and atTIC40, encode the Tic proteins, and two homologous genes, atHSP93-V and atHSP93-III, encode Hsp93. These four genes exhibited relatively uniform patterns of expression, suggesting important roles for plastid biogenesis throughout development and in all tissues. To investigate the roles played by these proteins in vivo, we conducted a comparative study of T-DNA knockout mutants for each Tic gene, and for the most abundantly expressed Hsp93 gene, atHSP93-V. In the homozygous state, the tic110 mutation caused embryo lethality, implying an essential role for atTic110 during plastid biogenesis. Homozygous tic110 embryos exhibited retarded growth, developmental arrest at the globular stage and a 'raspberry-like' embryo-proper phenotype. Heterozygous tic110 plants, and plants homozygous for the tic40 and hsp93-V mutations, exhibited chlorosis, aberrant chloroplast biogenesis, and inefficient chloroplast-import of both photosynthetic and non-photosynthetic preproteins. Non-additive interactions amongst the mutations occurred in double mutants, suggesting that the three components may cooperate during chloroplast protein import.  相似文献   

5.
The import of nucleus-encoded preproteins into plastids requires the coordinated activities of membrane protein complexes that facilitate the translocation of polypeptides across the envelope double membrane. Tic20 was identified previously as a component of the import machinery of the inner envelope membrane by covalent cross-linking studies with trapped preprotein import intermediates. To investigate the role of Tic20 in preprotein import, we altered the expression of the Arabidopsis Tic20 ortholog (atTic20) by antisense expression. Several antisense lines exhibited pronounced chloroplast defects exemplified by pale leaves, reduced accumulation of plastid proteins, and significant growth defects. The severity of the phenotypes correlated directly with the reduction in levels of atTic20 expression. In vitro import studies with plastids isolated from control and antisense plants indicated that the antisense plastids are defective specifically in protein translocation across the inner envelope membrane. These data suggest that Tic20 functions as a component of the protein-conducting channel at the inner envelope membrane.  相似文献   

6.
Preproteins are believed to be imported into chloroplasts through membrane contact sites where the translocon complexes of the outer (TOC) and inner (TIC) envelope membranes are assembled together. However, a single TOC–TIC supercomplex containing preproteins undergoing active import has not yet been directly observed. We optimized the blue native polyacrylamide gel electrophoresis (PAGE) (BN‐PAGE) system to detect and resolve megadalton (MD)‐sized complexes. Using this optimized system, the outer‐membrane channel Toc75 from pea chloroplasts was found in at least two complexes: the 880‐kD TOC complex and a previously undetected 1‐MD complex. Two‐dimensional BN‐PAGE immunoblots further showed that Toc75, Toc159, Toc34, Tic20, Tic56 and Tic110 were all located in the 880‐kD to 1.3‐MD region. During active preprotein import, preproteins were transported mostly through the 1‐MD complex and a smaller amount of preproteins was also detected in a complex of 1.25 MD. Antibody‐shift assays showed that the 1‐MD complex is a TOC–TIC supercomplex containing at least Toc75, Toc159, Toc34 and Tic110. Results from crosslinking and import with Arabidopsis chloroplasts suggest that the 1.25‐MD complex is also a supercomplex. Our data provide direct evidence supporting that chloroplast preproteins are imported through TOC–TIC supercomplexes, and also provide the first size estimation of these supercomplexes. Furthermore, unlike in mitochondria where translocon supercomplexes are only transiently assembled during preprotein import, in chloroplasts at least some of the supercomplexes are preassembled stable structures.  相似文献   

7.
The development and maintenance of chloroplasts relies on the contribution of protein subunits from both plastid and nuclear genomes. Most chloroplast proteins are encoded by nuclear genes and are post-translationally imported into the organelle across the double membrane of the chloroplast envelope. Protein import into the chloroplast consists of two essential elements: the specific recognition of the targeting signals (transit sequences) of cytoplasmic preproteins by receptors at the outer envelope membrane and the subsequent translocation of preproteins simultaneously across the double membrane of the envelope. These processes are mediated via the co-ordinate action of protein translocon complexes in the outer (Toc apparatus) and inner (Tic apparatus) envelope membranes.  相似文献   

8.
We have investigated the interactions of two nuclear-encoded preproteins with the chloroplast protein import machinery at three stages in import using a label-transfer crosslinking approach. During energy-independent binding at the outer envelope membrane, preproteins interact with three known components of the outer membrane translocon complex, Toc34, Toc75, and Toc86. Although Toc75 and Toc86 are known to associate with preproteins during import, a role for Toc34 in preprotein binding previously had not been observed. The interaction of Toc34 with preproteins is regulated by the binding, but not hydrolysis of GTP. These data provide the first evidence for a direct role for Toc34 in import, and provide insights into the function of GTP as a regulator of preprotein recognition. Toc75 and Toc86 are the major targets of cross-linking upon insertion of preproteins across the outer envelope membrane, supporting the proposal that both proteins function in translocation at the outer membrane as well as preprotein recognition. The inner membrane proteins, Tic(21) and Tic22, and a previously unidentified protein of 14 kD are the major targets of crosslinking during the late stages in import. These data provide additional support for the roles of these components during protein translocation across the inner membrane. Our results suggest a defined sequence of molecular interactions that result in the transport of nuclear-encoded preproteins from the cytoplasm into the stroma of chloroplasts.  相似文献   

9.
Three components of the chloroplast protein translocon, Tic110, Hsp93 (ClpC), and Tic40, have been shown to be important for protein translocation across the inner envelope membrane into the stroma. We show the molecular interactions among these three components that facilitate processing and translocation of precursor proteins. Transit-peptide binding by Tic110 recruits Tic40 binding to Tic110, which in turn causes the release of transit peptides from Tic110, freeing the transit peptides for processing. The Tic40 C-terminal domain, which is homologous to the C terminus of cochaperones Sti1p/Hop and Hip but with no known function, stimulates adenosine triphosphate hydrolysis by Hsp93. Hsp93 dissociates from Tic40 in the presence of adenosine diphosphate, suggesting that Tic40 functions as an adenosine triphosphatase activation protein for Hsp93. Our data suggest that chloroplasts have evolved the Tic40 cochaperone to increase the efficiency of precursor processing and translocation.  相似文献   

10.
Two components of the chloroplast envelope, Tic20 and Tic22, were previously identified as candidates for components of the general protein import machinery by their ability to covalently cross-link to nuclear-encoded preproteins trapped at an intermediate stage in import across the envelope (Kouranov, A., and D.J. Schnell. 1997. J. Cell Biol. 139:1677–1685). We have determined the primary structures of Tic20 and Tic22 and investigated their localization and association within the chloroplast envelope. Tic20 is a 20-kD integral membrane component of the inner envelope membrane. In contrast, Tic22 is a 22-kD protein that is located in the intermembrane space between the outer and inner envelope membranes and is peripherally associated with the outer face of the inner membrane. Tic20, Tic22, and a third inner membrane import component, Tic110, associate with import components of the outer envelope membrane. Preprotein import intermediates quantitatively associate with this outer/inner membrane supercomplex, providing evidence that the complex corresponds to envelope contact sites that mediate direct transport of preproteins from the cytoplasm to the stromal compartment. On the basis of these results, we propose that Tic20 and Tic22 are core components of the protein translocon of the inner envelope membrane of chloroplasts.  相似文献   

11.
Teng YS  Su YS  Chen LJ  Lee YJ  Hwang I  Li HM 《The Plant cell》2006,18(9):2247-2257
An Arabidopsis thaliana mutant defective in chloroplast protein import was isolated and the mutant locus, cia5, identified by map-based cloning. CIA5 is a 21-kD integral membrane protein in the chloroplast inner envelope membrane with four predicted transmembrane domains, similar to another potential chloroplast inner membrane protein-conducting channel, At Tic20, and the mitochondrial inner membrane counterparts Tim17, Tim22, and Tim23. cia5 null mutants were albino and accumulated unprocessed precursor proteins. cia5 mutant chloroplasts were normal in targeting and binding of precursors to the chloroplast surface but were defective in protein translocation across the inner envelope membrane. Expression levels of CIA5 were comparable to those of major translocon components, such as At Tic110 and At Toc75, except during germination, at which stage At Tic20 was expressed at its highest level. A double mutant of cia5 At tic20-I had the same phenotype as the At tic20-I single mutant, suggesting that CIA5 and At Tic20 function similarly in chloroplast biogenesis, with At Tic20 functioning earlier in development. We renamed CIA5 as Arabidopsis Tic21 (At Tic21) and propose that it functions as part of the inner membrane protein-conducting channel and may be more important for later stages of leaf development.  相似文献   

12.
TIC62 redox-regulated translocon composition and dynamics   总被引:2,自引:0,他引:2  
The preprotein translocon at the inner envelope of chloroplasts (Tic complex) facilitates the import of nuclear-encoded preproteins into the organelle. Seven distinct subunits have been identified so far. For each of those, specific functions have been proposed based on structural prediction or experimental evidence. Three of those subunits possess modules that could act as redox-active regulatory components in the import process. To date, however, the mode of redox regulation of the import process remains enigmatic. To investigate how the chloroplast redox state influences translocon behavior and composition, we studied the Tic component and the putative redox sensor Tic62 in more detail. The experimental results provide evidence that Tic62 can act as a bona fide dehydrogenase in vitro, and that it changes its localization in the chloroplast dependent on the NADP+/NADPH ratio in the stroma. Moreover, the redox state influences the interactions of Tic62 with the translocon and the flavoenzyme ferredoxin-NADP+ oxidoreductase. Additionally, we give initial experimental insights into the Tic62 structure using circular dichroism measurements and demonstrate that the protein consists of two structurally different domains. Our results indicate that Tic62 possesses redox-dependent properties that would allow it to fulfill a role as redox sensor protein in the chloroplast.  相似文献   

13.
The post-translational import of nucleus-encoded preproteins into chloroplasts occurs through multimeric translocons in the outer (Toc) and inner (Tic) membranes. The high fidelity of the protein import process is maintained by specific recognition of the transit peptide of preproteins by the coordinate activities of two homologous GTPase Toc receptors, Toc34 and Toc159. Structural and biochemical studies suggest that dimerization of the Toc receptors functions as a component of the mechanism to control access of preproteins to the membrane translocation channel of the translocon. We show that specific mutations that disrupted receptor dimerization in vitro reduced the rate of protein import in transgenic Arabidopsis compared with the wild type receptor. The mutations did not affect the GTPase activities of the receptors. Interestingly, these mutations did not decrease the initial preprotein binding at the receptors, but they reduced the efficiency of the transition from preprotein binding to membrane translocation. These data indicate that dimerization of receptors has a direct role in protein import and support a hypothesis in which receptor-receptor interactions participate in the initiation of membrane translocation of chloroplast preproteins as part of the molecular mechanism of GTP-regulated protein import.  相似文献   

14.
Hsp70 family proteins function as motors driving protein translocation into mitochondria and the endoplasmic reticulum. Whether Hsp70 is involved in protein import into chloroplasts has not been resolved. We show here Arabidopsis thaliana knockout mutants of either of the two stromal cpHsc70s, cpHsc70-1 and cpHsc70-2, are defective in protein import into chloroplasts during early developmental stages. Protein import was found to be affected at the step of precursor translocation across the envelope membranes. From solubilized envelope membranes, stromal cpHsc70 was specifically coimmunoprecipitated with importing precursors and stoichiometric amounts of Tic110 and Hsp93. Moreover, in contrast with receptors at the outer envelope membrane, cpHsp70 is important for the import of both photosynthetic and nonphotosynthetic proteins. These data indicate that cpHsc70 is part of the chloroplast translocon for general import and is important for driving translocation into the stroma. We further analyzed the relationship of cpHsc70 with the other suggested motor system, Hsp93/Tic40. Chloroplasts from the cphsc70-1 hsp93-V double mutant had a more severe import defect than did the single mutants, suggesting that the two proteins function in parallel. The cphsc70-1 tic40 double knockout was lethal, further indicating that cpHsc70-1 and Tic40 have an overlapping essential function. In conclusion, our data indicate that chloroplasts have two chaperone systems facilitating protein translocation into the stroma: the cpHsc70 system and the Hsp93/Tic40 system.  相似文献   

15.
Three stromal chaperone ATPases, cpHsc70, Hsp90C, and Hsp93, are present in the chloroplast translocon, but none has been shown to directly bind preproteins in vivo during import, so it remains unclear whether any function as a preprotein-translocating motor and whether they have different functions during the import process. Here, using protein crosslinking followed by ionic detergent solubilization, we show that Hsp93 directly binds to the transit peptides of various preproteins undergoing active import into chloroplasts. Hsp93 also binds to the mature region of a preprotein. A time course study of import, followed by coimmunoprecipitation experiments, confirmed that Hsp93 is present in the same complexes as preproteins at an early stage when preproteins are being processed to the mature size. In contrast, cpHsc70 is present in the same complexes as preproteins at both the early stage and a later stage after the transit peptide has been removed, suggesting that cpHsc70, but not Hsp93, is important in translocating processed mature proteins across the envelope.Most chloroplast proteins are encoded by the nuclear genome as higher Mr preproteins that are fully synthesized in the cytosol before being imported into the chloroplast. The import process is initiated by binding of the N-terminal transit peptide of the preprotein to the translocon at the outer envelope membrane of chloroplasts (TOC) complex, in which Toc159 and Toc34 function as receptors and Toc75 is the outer membrane channel. This step is followed by binding of the transit peptide to the translocon at the inner envelope membrane of chloroplasts (TIC) machinery, the central components of which include the Tic20/Tic56/Tic100/Tic214 channel complex and Tic110. Tic110 functions as the stromal receptor for transit peptides and also as a scaffold for tethering other translocon components (for reviews, see Li and Chiu, 2010; Shi and Theg, 2013; Paila et al., 2015). The actual translocation of the bound preproteins across the envelope is powered by hydrolysis of ATP in the stroma (Pain and Blobel, 1987; Theg et al., 1989), and it is therefore assumed that some stromal ATPase motor proteins bind the preproteins as they emerge from the inner membrane and use the energy of ATP hydrolysis to translocate the preproteins across the envelope into the stroma.Three stromal ATPases have been identified in the translocon complex: cpHsc70 (chloroplast heat shock cognate protein 70 kD), Hsp90C (chloroplast heat shock protein 90), and Hsp93/ClpC (93-kD heat shock protein). Hsp93, the first to be identified, belongs to the Hsp100 subfamily of AAA+ proteins (ATPases associated with various cellular activities) and was detected in coimmunoprecipitation experiments in complexes containing other translocon components and preproteins undergoing import (Akita et al., 1997; Nielsen et al., 1997; Chou et al., 2003; Rosano et al., 2011). In Arabidopsis (Arabidopsis thaliana), Hsp93 exists as two isoforms encoded by the genes HSP93III and HSP93V. Removal of the more abundant Hsp93V results in protein import defects, while double knockout of the two genes causes lethality (Constan et al., 2004; Kovacheva et al., 2007; Chu and Li, 2012; Lee et al., 2015). Purified recombinant Hsp93III can bind to the transit peptide of pea (Pisum sativum) ferredoxin-NADP+ reductase in vitro (Rosano et al., 2011). In addition, the N-terminal domain of Hsp93 is critical both for its in vivo functions and its association with chloroplast membranes and Tic110, suggesting that one of the major functions of Hsp93 requires it to be localized at the envelope with Tic110 (Chu and Li, 2012). However, because many prokaryotic Hsp100 family proteins function as the regulatory components of the Clp proteases (Kress et al., 2009; Nishimura and van Wijk, 2015), and, in Arabidopsis, some Clp proteolytic core components have also been found at the envelope fraction, it has been proposed that Hsp93 is involved in degradation of misfolded or damaged proteins at the envelope (Sjögren et al., 2014). However, whether the Clp proteolytic core can form a stable complex with Hsp93 in higher plant chloroplasts remains to be shown.In mitochondria and the endoplasmic reticulum, protein import is driven by the Hsp70 family of proteins. In chloroplasts, accumulating evidence also supports that Hsp70 is important for chloroplast protein import. Purified recombinant Hsp70 can bind in vitro to the transit peptide of the small subunit of RuBP carboxylase preprotein (prRBCS; Ivey et al., 2000). Stromal Hsp70 can be coimmunoprecipitated with preproteins undergoing import and with other translocon components, and mutations resulting in reduced or altered stromal Hsp70 activity cause protein import defects (Shi and Theg, 2010; Su and Li, 2010). Recently, it has been shown, in moss, that increasing the Km for Hsp70 ATP hydrolysis results in an increased Km for ATP usage in chloroplast protein import, indicating that stromal Hsp70 is indeed one of the proteins supplying ATP-derived energy to power import (Liu et al., 2014). Finally, stromal Hsp90C has been shown to be part of active translocon complexes in coimmunoprecipitation experiments (Inoue et al., 2013). As further evidence that Hsp90 is important for protein import into chloroplasts, the Hsp90 ATPase activity inhibitor radicicol reversibly inhibits the import of preproteins into chloroplasts (Inoue et al., 2013).Presence of the three ATPases in the translocon was demonstrated by coimmunoprecipitation after solubilization of chloroplast membranes under conditions that preserve the large membrane protein complexes, either by solubilization with nonionic detergents or by treating chloroplasts with crosslinkers that link all proteins in a complex together (Akita et al., 1997; Nielsen et al., 1997; Shi and Theg, 2010; Su and Li, 2010; Inoue et al., 2013). These complexes contain translocon components that directly bind to preproteins, and also other proteins that are associated with these translocon components but have no direct contacts with the preproteins. For example, Nielsen et al. (1997) demonstrated the presence of Hsp93 in the translocon by binding of prRBCS to isolated pea chloroplasts and then solubilization of chloroplast membranes with the nonionic detergent decylmaltoside. Under these conditions, an anti-Hsp93 antibody specifically immunoprecipitated Hsp93 together with Toc159, Toc75, Toc34, Tic110, and prRBCS (Nielsen et al., 1997). The result showed that Hsp93 is in the same complexes with these proteins but did not provide information whether Hsp93 directly binds to them. It is possible that Hsp93 only has direct contacts with, for example, Tic110, which then binds to prRBCS. Direct binding, in particular to the transit peptide region, would provide strong evidence that an ATPase functions as a protein translocating motor, rather than in assisting the assembly of other translocon components or in the folding or degradation of imported proteins. Furthermore, if all three ATPases were found to be involved in preprotein translocation, it would be important to understand how they work together; for example, whether they preferentially bind different preproteins, bind to different regions of a preprotein, or act at different stages of the import process.Here, we examined whether Hsp93 can directly bind to preproteins undergoing import into chloroplasts, and compared the timing of the binding of Hsp93 and cpHsc70 to the preproteins. We used isolated pea chloroplasts, rather than isolated Arabidopsis chloroplasts, because pea chloroplasts exhibit more robust import ability (Fitzpatrick and Keegstra, 2001). Various crosslinkers that react with cysteines were then used to achieve more specific crosslinkings, followed by solubilization with the ionic detergent lithium dodecyl sulfate (LDS) to thoroughly solubilize chloroplast membranes and to disrupt noncovalent protein-protein interactions. Our results show that Hsp93 directly binds to preproteins undergoing import. Import time course experiments further revealed that Hsp93 functions primarily during the early stage of import, whereas cpHsc70 associates with substrates being imported at both the early stage and a later stage after transit peptide removal.  相似文献   

16.
Chu CC  Li HM 《Plant physiology》2012,158(4):1656-1665
Chloroplast 93-kD heat shock protein (Hsp93/ClpC), an Hsp100 family member, is suggested to have various functions in chloroplasts, including serving as the regulatory chaperone for the ClpP protease in the stroma and acting as a motor component of the protein translocon at the envelope. Indeed, although Hsp93 is a soluble stromal protein, a portion of it is associated with the inner envelope membrane. The mechanism and functional significance of this Hsp93 membrane association have not been determined. Here, we mapped the region important for Hsp93 membrane association by creating various deletion constructs and found that only the construct with the amino-terminal domain deleted, Hsp93-ΔN, had reduced membrane association. When transformed into Arabidopsis (Arabidopsis thaliana), most atHsp93V-ΔN proteins did not associate with membranes and atHsp93V-ΔΝ failed to complement the pale-green and protein import-defective phenotypes of an hsp93V knockout mutant. The residual atHsp93V-ΔN at the membranes had further reduced association with the central protein translocon component Tic110. However, the degradation of chloroplast glutamine synthetase, a potential substrate for the ClpP protease, was not affected in the hsp93V mutant or in the atHSP93V-ΔN transgenic plants. Hsp93-ΔN also had the same ATPase activity as that of full-length Hsp93. These data suggest that the association of Hsp93 with the inner envelope membrane through its amino-terminal domain is important for the functions of Hsp93 in vivo.  相似文献   

17.
Chloroplast protein import across the inner envelope is facilitated by the translocon of the inner envelope of chloroplasts (Tic). Here we have identified Tic32 as a novel subunit of the Tic complex. Tic32 can be purified from solubilized inner envelope membranes by chromatography on Tic110 containing affinity matrix. Co-immunoprecipitation experiments using either Tic32 or Tic110 antisera indicated a tight association between these polypeptides as well as with other Tic subunits, e.g. Tic40, Tic22, or Tic62, whereas the outer envelope protein Toc75 was not found in this complex. Chemical cross-linking suggests that Tic32 is involved late in the overall translocation process, because both the precursor form as well as the mature form of Rubisco small subunit can be detected. We were unable to isolate Arabidopsis null mutants of the attic32 gene, indicating that Tic32 is essential for viability. Deletion of the attic32 gene resulted in early seed abortion because the embryo was unable to differentiate from the heart stage to the torpedo stage. The homology of Tic32 to short-chain dehydrogenases suggests a dual role of Tic32 in import, one as a regulatory component and one as an important subunit in the assembly of the entire complex.  相似文献   

18.
The multimeric translocon at the outer envelope membrane of chloroplasts (Toc) initiates the recognition and import of nuclear-encoded preproteins into chloroplasts. Two Toc GTPases, Toc159 and Toc33/34, mediate preprotein recognition and regulate preprotein translocation. Although these two proteins account for the requirement of GTP hydrolysis for import, the functional significance of GTP binding and hydrolysis by either GTPase has not been defined. A recent study indicates that Toc159 is equally distributed between a soluble cytoplasmic form and a membrane-inserted form, raising the possibility that it might cycle between the cytoplasm and chloroplast as a soluble preprotein receptor. In the present study, we examined the mechanism of targeting and insertion of the Arabidopsis thaliana orthologue of Toc159, atToc159, to chloroplasts. Targeting of atToc159 to the outer envelope membrane is strictly dependent only on guanine nucleotides. Although GTP is not required for initial binding, the productive insertion and assembly of atToc159 into the Toc complex requires its intrinsic GTPase activity. Targeting is mediated by direct binding between the GTPase domain of atToc159 and the homologous GTPase domain of atToc33, the Arabidopsis Toc33/34 orthologue. Our findings demonstrate a role for the coordinate action of the Toc GTPases in assembly of the functional Toc complex at the chloroplast outer envelope membrane.  相似文献   

19.
Chloroplast protein import is mediated by two hetero-oligomeric protein complexes, the Tic and Toc translocons, which are located in the inner and outer envelope membranes. At the inner membrane, many Tic components have been identified and characterized, but it remains unclear how these Tic proteins are organized to form a protein-conducting channel or whether a stable Tic core complex that binds translocating preproteins exists. Here, we report the identification of a 1-megadalton (MD) translocation complex as an intermediate during protein translocation across the inner membrane in Arabidopsis thaliana and pea (Pisum sativum). This complex can be detected by blue native PAGE using the mild detergent digitonin without any chemical cross-linkers. The preprotein arrested in the 1-MD complex can be chased into its fully translocated form after a subsequent incubation. While Tic20 and Tic21 appear to be involved in the 1-MD complex, Tic110, a well-characterized Tic component, exists as a distinct entity from the complex. Several lines of evidence suggest that the 1-MD complex functions in between the Toc and Tic110-containing complexes, most likely as a protein-conducting channel at the inner envelope.  相似文献   

20.
A Caliebe  R Grimm  G Kaiser  J Lübeck  J Soll    L Heins 《The EMBO journal》1997,16(24):7342-7350
Transport of precursor proteins across the chloroplastic envelope membranes requires the interaction of protein translocons localized in both the outer and inner envelope membranes. Analysis by blue native gel electrophoresis revealed that the translocon of the inner envelope membranes consisted of at least six proteins with molecular weights of 36, 45, 52, 60, 100 and 110 kDa, respectively. Tic110 and ClpC, identified as components of the protein import apparatus of the inner envelope membrane, were prominent constituents of this complex. The amino acid sequence of the 52 kDa protein, deduced from the cDNA, contains a predicted Rieske-type iron-sulfur cluster and a mononuclear iron-binding site. Diethylpyrocarbonate, a Rieske-type protein-modifying reagent, inhibits the translocation of precursor protein across the inner envelope membrane, whereas binding of the precursor to the outer envelope membrane is still possible. In another independent experimental approach, the 52 kDa protein could be co-purified with a trapped precursor protein in association with the chloroplast protein translocon subunits Toc86, Toc75, Toc34 and Tic110. Together, these results strongly suggest that the 52 kDa protein, named Tic55 due to its calculated molecular weight, is a member of the chloroplastic inner envelope protein translocon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号