首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Supraspinatus tendon tears are common and often propagate into larger tears that include the infraspinatus tendon, resulting in loss of function and increased pain. Previously, we showed that the supraspinatus and infraspinatus tendons mechanically interact through a range of rotation angles, potentially shielding the torn supraspinatus tendon from further injury while subjecting the infraspinatus tendon to increased risk of injury. Surgical repair of torn supraspinatus tendons is common, yet the effect of the repair on the infraspinatus tendon is unknown. Since we have established a relationship between strain in the supraspinatus and infraspinatus tendons the success of a supraspinatus tendon repair depends on its effect on the loading environment in the infraspinatus tendon. More specifically, the effect of transosseous supraspinatus tendon repair in comparison to one that utilizes suture anchors, as is commonly done with arthroscopic repairs, on this interaction through these joint positions will be evaluated. We hypothesize that at all joint positions evaluated, both repairs will restore the interaction between the two tendons. For both repairs, (1) increasing supraspinatus tendon load will increase infraspinatus tendon strain and (2) altering the rotation angle from internal to external will increase strain in the infraspinatus tendon. Strains were measured in the infraspinatus tendon insertion through a range of joint rotation angles and supraspinatus tendon loads, for the intact, transosseous, and suture anchor repaired supraspinatus tendons. Images corresponding to specific supraspinatus tendon loads were isolated for the infraspinatus tendon insertion for analysis. The effect of supraspinatus tendon repair on infraspinatus tendon strain differed with joint position. Altering the joint rotation did not change strain in the infraspinatus tendon for any supraspinatus tendon condition. Finally, increasing supraspinatus tendon load resulted in an increase in average maximum and decrease in average minimum principal strain in the infraspinatus tendon. There is a significant difference in infraspinatus tendon strain between the intact and arthroscopically (but not transosseous) repaired supraspinatus tendons that increases with greater loads. Results suggest that at low loads neither supraspinatus tendon repair technique subjects the infraspinatus tendon to potentially detrimental loads; however, at high loads, transosseous repairs may be more advantageous over arthroscopic repairs for the health of the infraspinatus tendon. Results emphasize the importance of limiting loading of the repaired supraspinatus tendon and that at low loads, both repair techniques restore the interaction to the intact supraspinatus tendon case.  相似文献   

2.
Mechanobiology of tendon   总被引:9,自引:0,他引:9  
Tendons are able to respond to mechanical forces by altering their structure, composition, and mechanical properties--a process called tissue mechanical adaptation. The fact that mechanical adaptation is effected by cells in tendons is clearly understood; however, how cells sense mechanical forces and convert them into biochemical signals that ultimately lead to tendon adaptive physiological or pathological changes is not well understood. Mechanobiology is an interdisciplinary study that can enhance our understanding of mechanotransduction mechanisms at the tissue, cellular, and molecular levels. The purpose of this article is to provide an overview of tendon mechanobiology. The discussion begins with the mechanical forces acting on tendons in vivo, tendon structure and composition, and its mechanical properties. Then the tendon's response to exercise, disuse, and overuse are presented, followed by a discussion of tendon healing and the role of mechanical loading and fibroblast contraction in tissue healing. Next, mechanobiological responses of tendon fibroblasts to repetitive mechanical loading conditions are presented, and major cellular mechanotransduction mechanisms are briefly reviewed. Finally, future research directions in tendon mechanobiology research are discussed.  相似文献   

3.
4.
Tendon injuries are common musculoskeletal system disorders in clinical, but the regeneration ability of tendon is limited. Tendon stem cells (TSCs) have shown promising effect on tissue engineering and been used for the treatment of tendon injury. Exosomes that serve as genetic information carriers have been implicated in many diseases and physiological processes, but effect of exosomes from TSCs on tendon injury repair is unclear. The aim of this study is to make clear that the effect of exosomes from TSCs on tendon injury healing. Exosomes were harvested from conditioned culture media of TSCs by a sequential centrifugation process. Rat Achilles tendon tendinopathy model was established by collagenase‐I injection. This was followed by intra‐Achilles‐tendon injection with TSCs or exosomes. Tendon healing and matrix degradation were evaluated by histology analysis and biomechanical test at the post‐injury 5 weeks. In vitro, TSCs treated with interleukin 1 beta were added by conditioned medium including exosomes or not, or by exosomes or not. Tendon matrix related markers and tenogenesis related markers were measured by immunostaining and western blot. We found that TSCs injection and exosomes injection significantly decreased matrix metalloproteinases (MMP)‐3 expression, increased expression of tissue inhibitor of metalloproteinase‐3 (TIMP‐3) and Col‐1a1, and increased biomechanical properties of the ultimate stress and maximum loading. In vitro, conditioned medium with exosomes and exosomes also significantly decreased MMP‐3, and increased expression of tenomodulin, Col‐1a1 and TIMP‐3. Exosomes from TSCs could be an ideal therapeutic strategy in tendon injury healing for its balancing tendon extracellular matrix and promoting the tenogenesis of TSCs.  相似文献   

5.
Tendons transfer muscular forces efficiently and painlessly, facilitating joint motion. Whilst the tribology of articular cartilage is constantly explored, a poorer understanding remains of tendon lubrication and friction. This study reports experimental data describing the tribological characteristics of tendon and its surrounding tissue, before presenting an arithmetic solution to facilitate numerical modelling. The experimental characteristics of the tensile (i.e. mid-substance) and compressive (i.e. fibrocartilaginous) regions of bovine flexor tendon were investigated using a pin-on-plate tribometer, with immunofluroscence analysis describing the relative intensity and distribution of surface-bound lubricin. Arithmetic analysis considering the digital extensor tendon determined that, in physiological conditions, the tensile tendon region was able to generate elastohydrodynamic lubrication (EHL). The equivalent region of compressive tendon exhibited a higher intensity of surface-bound lubricin which, it is hypothesised, serves to minimise the increased frictional resistance due to generating only mixed or boundary lubrication regimes. Arithmetic analysis indicates that, given a more favourable biomechanical environment, this region can also generate EHL. Whilst acknowledging the limitations of transferring data from an animal model to a clinical environment, by providing the first data and equations detailing the film thicknesses and lubrication regime for these two tendon regions it is hoped that clinicians, engineers and scientists can consider improved clinical strategies to tackle both tendinopathy and tendon rupture.  相似文献   

6.
7.
A tendon approximator designed to hold tendon ends together for suturing is described. The method of use and the situations where it may be of value are described.  相似文献   

8.
Diabetic foot ulcer (DFU) is a kind of common and disabling complication of Diabetes Mellitus (DM). Emerging studies have demonstrated that tendon fibroblasts play a crucial role in remodeling phase of wound healing. However, little is known about the mechanism underlying high glucose (HG)-induced decrease in tendon fibroblasts viability. In the present study, the rat models of DFU were established, and collagen deposition, autophagy activation and cell apoptosis in tendon tissues were assessed using Hematoxylin–Eosin (HE) staining, immunohistochemistry (IHC), and TdT-mediated dUTP Nick-End Labeling (TUNEL) assay, respectively. Tendon fibroblasts were isolated from Achilles tendon of the both limbs, and the effect of HG on autophagy activation in tendon fibroblasts was assessed using Western blot analysis, Cell Counting Kit-8 (CCK-8) assay, and flow cytometry. We found that cell apoptosis was increased significantly and autophagy activation was decreased in foot tendon tissues of DFU rats compared with normal tissues. The role of HG in regulating tendon fibroblasts viability was then investigated in vitro, and data showed that HG repressed cell viability and increased cell apoptosis. Furthermore, HG treatment reduced LC3-II expression and increased p62 expression, indicating that HG repressed autophagy activation of tendon fibroblasts. The autophagy activator rapamycin reversed the effect. More importantly, rapamycin alleviated the suppressive role of HG in tendon fibroblasts viability. Taken together, our data demonstrate that HG represses tendon fibroblasts proliferation by inhibiting autophagy activation in tendon injury.  相似文献   

9.
The Achilles is the thickest tendon in the body and is the primary elastic energy-storing component during running. The form and function of the human Achilles is complex: twisted structure, intratendinous interactions, and differential motor control from the triceps surae muscles make Achilles behavior difficult to intuit. Recent in vivo imaging of the Achilles has revealed nonuniform displacement patterns that are not fully understood and may result from complex architecture and musculotendon interactions. In order to understand which features of the Achilles tendon give rise to the nonuniform deformations observed in vivo, we used computational modeling to predict the mechanical contributions from different features of the tendon. The aims of this study are to: (i) build a novel computational model of the Achilles tendon based on ultrashort echo time MRI, (ii) compare simulated displacements with published in vivo ultrasound measures of displacement, and (iii) use the model to elucidate the effects of tendon twisting, intratendon sliding, retrocalcaneal insertion, and differential muscle forces on tendon deformation. Intratendon sliding and differential muscle forces were found to be the largest factors contributing to displacement nonuniformity between tendon regions. Elimination of intratendon sliding or muscle forces reduced displacement nonuniformity by 96% and 85%, respectively, while elimination of tendon twist and the retrocalcaneal insertion reduced displacement nonuniformity by only 35% and 3%. These results suggest that changes in the complex internal structure of the tendon alter the interaction between muscle forces and tendon behavior and therefore may have important implications on muscle function during movement.  相似文献   

10.
Rather than the usual mammalian scheme in which tendon and sheath surfaces provide as little friction as possible, the tendons and sheaths of many bats have a locking segment on the manual and pedal flexor tendon complex. This tendon locking mechanism (TLM) exists opposite the proximal phalanges of each toe and pollex of many bats. Its structure, similar to a ratchet mechanism, assists bats in hanging with little muscular effort. The third digit of the pelvic limb and the pollex of species representing 15 chiropteran families were studied to determine the presence or absence, morphology, and function of the TLM. Most of the species studied have a TLM consisting of a patch of tubercles on the ventral surface of the flexor tendon associated with the proximal phalanx of each pollex or toe. The sheath adjacent to this portion of the flexor tendon has a series of transverse folds or ridges, which, when engaged with the tubercles on the tendon, lock the tendon in place. The TLM is similar in megachiropterans and microchiropterans possessing it. The TLM is absent, however, in some of the microchiropterans studied, most notably in the phyllostomids. Since many birds have a TLM similar to that of bats, it is an excellent example of the convergent evolution of a feature brought about by similar functional pressures on birds and bats. © 1993 Wiley-Liss, Inc.  相似文献   

11.
Tendon graft harvesting is a challenging part of hand surgery. It is not only a time-consuming procedure but also carries the potential complications associated with it. Various alternatives for this procedure are presented in the literature to overcome these difficulties. In this paper, we are presenting a series of cases in which a newly modified tendon stripper was used for tendon graft harvesting.  相似文献   

12.
Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P = 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.  相似文献   

13.
Golgi tendon organs are encapsulated mechanoreceptors present at the myo-tendinous and myo-aponeurotic junctions of mammalian skeletal muscles. Within the tendon organ capsule, the terminal branches of a large diameter afferent fibre, called Ib fibre, are intertwined with collagen bundles in continuity with tendon or aponeurosis at one end. The other end is connected with a fascicle of 5-25 muscle fibres, contributed by several motor units. The contraction of these fibres, exerting strain on the collagenous bundle and causing deformation of sensory terminals, is the adequate stimulus of the tendon organ. For this stimulus, the tendon organ has a very low threshold, so that a single fibre twitch can elicit a discharge from the receptor. A tendon organ can thus signal the contraction of a single one of the 10-15 motor units which contribute fibres to the fascicle connected with the receptor. The number of tendon organs present in a muscle, taken together with the fact that a given motor unit can activate several tendon organs, strongly suggests that the contraction of every motor unit in this muscle is monitored by at least one tendon organ. The exact nature of the information provided by tendon organs to the central nervous system remains an open question because no simple relation could be established between the discharge frequency of a receptor and the contractile forces of its activating motor units. It is known, however, that, due to their dynamic sensitivity, tendon organs are efficient in signaling rapid variations of contractile force. The dynamic parameters of muscle contraction prevail in the information carried by afferent discharges from tendons organs.  相似文献   

14.
Tendon defects remain a major concern in plastic surgery because of the limited availability of tendon autografts. Whereas immune rejection prohibits the use of tendon allografts, most prosthetic replacements also fail to achieve a satisfactory long-term result of tendon repair. The tissue engineering technique, however, can generate different tissues using autologous cells and thus may provide an optimal approach to address this concern. The purpose of this study was to test the feasibility of engineering tendon tissues with autologous tenocytes to bridge a tendon defect in either a tendon sheath open model or a partial open model in the hen. In a total of 40 Leghorn hens, flexor tendons were harvested from the left feet and were digested with 0.25% type II collagenase. The isolated tenocytes were expanded in vitro and mixed with unwoven polyglycolic acid fibers to form a cell-scaffold construct in the shape of a tendon. The constructs were wrapped with intestinal submucosa and then cultured in Dulbecco's Modified Eagle Medium plus 10% fetal bovine serum for 1 week before in vivo transplantation. On the feet, a defect of 3 to 4 cm was created at the second flexor digitorum profundus tendon by resecting a tendon fragment. The defects were bridged either with a cell-scaffold construct in the experimental group ( n= 20) or with scaffold material alone in the control group ( n= 20). Specimens were harvested at 8, 12, and 14 weeks postrepair for gross and histologic examination and for biomechanical analysis. In the experimental group, a cordlike tissue bridging the tendon defect was formed at 8 weeks postrepair. At 14 weeks, the engineered tendons resembled the natural tendons grossly in both color and texture. Histologic examination at 8 weeks showed that the neo-tendon contained abundant tenocytes and collagen; most collagen bundles were randomly arranged. The undegraded polyglycolic acid fibers surrounded by inflammatory cells were also observed. At 12 weeks, tenocytes and collagen fibers became longitudinally aligned, with good interface healing to normal tendon. At 14 weeks, the engineered tendons displayed a typical tendon structure hardly distinguishable from that of normal tendons. Biomechanical analysis demonstrated increased breaking strength of the engineered tendons with time, which reached 83 percent of normal tendon strength at 14 weeks. In the control group, polyglycolic acid constructs were mostly degraded at 8 weeks and disappeared at 14 weeks. However, the breaking strength of the scaffold materials accounted for only 9 percent of normal tendon strength. The results of this study indicated that tendon tissue could be engineered in vivo to bridge a tendon defect. The engineered tendons resembled natural tendons not only in gross appearance and histologic structure but also in biomechanical properties.  相似文献   

15.
Quadriceps tendon with a patellar bone block may be a viable alternative to Achilles tendon for anterior cruciate ligament reconstruction (ACL-R) if it is, at a minimum, a biomechanically equivalent graft. The objective of this study was to directly compare the biomechanical properties of quadriceps tendon and Achilles tendon allografts. Quadriceps and Achilles tendon pairs from nine research-consented donors were tested. All specimens were processed to reduce bioburden and terminally sterilized by gamma irradiation. Specimens were subjected to a three phase uniaxial tension test performed in a custom environmental chamber to maintain the specimens at a physiologic temperature (37 ± 2 °C) and misted with a 0.9 % NaCl solution. There were no statistical differences in seven of eight structural and mechanical between the two tendon types. Quadriceps tendons exhibited a significantly higher displacement at maximum load and significantly lower stiffness than Achilles tendons. The results of this study indicated a biomechanical equivalence of aseptically processed, terminally sterilized quadriceps tendon grafts with bone block to Achilles tendon grafts with bone block. The significantly higher displacement at maximum load, and lower stiffness observed for quadriceps tendons may be related to the failure mode. Achilles tendons had a higher bone avulsion rate than quadriceps tendons (86 % compared to 12 %, respectively). This was likely due to observed differences in bone block density between the two tendon types. This research supports the use of quadriceps tendon allografts in lieu of Achilles tendon allografts for ACL-R.  相似文献   

16.
Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs.  相似文献   

17.
Proteoglycans of fetal bovine tendon   总被引:6,自引:0,他引:6  
The proteoglycans (PG) of bovine fetal tendon (4-8 months in utero) were extracted with 4 M guanidine HCl and partially purified by ion exchange chromatography. Proteoglycans from fetal tendon were virtually entirely small molecules (Kav approximately equal to 0.55 by Sepharose CL-4B chromatography). These small proteoglycans had dermatan sulfate glycosaminoglycan chains and a core protein (after chondroitinase ABC digestion) with Mr approximately equal to 45,000 on sodium dodecyl sulfate-polyacrylamide gels. By electrophoretic mobility, immunocross-reactivity, and V8 protease sensitivity, these proteoglycans were determined to be of both PG I and PG II types. In contrast, adult tendon contains only the PG II type of small proteoglycan. Proteoglycans synthesized by fetal tendon explant cultures were, by both chromatographic and electrophoretic mobilities, somewhat larger than those extracted from the same tissue. There was no difference in the spectrum of proteoglycans observed between those regions of fetal tendon destined to receive only tensional forces (proximal) and those regions that will be subjected as well to compressive forces (distal) in the adult. These observations indicate that the proteoglycan content and synthetic capability of all regions of fetal tendon are constant and significantly different from those of both the tensional and fibrocartilaginous regions of adult tendon.  相似文献   

18.
This paper hypothesizes that average muscle length and minimum tendon strain govern muscle and tendon length adaptation in all situations. A model has been implemented to test this hypothesis, and simulations have been performed for normal development, bone lengthening, immobilization, and retinacular release experiments in young and adult animals. The simulation results predict that both muscle and tendon lengthen during normal development, with the rate of tendon growth slowing faster than the rate of muscle growth. The results also predict that muscle length increases during bone lengthening in both young and adult animals, while tendon length increases only in young animals. For immobilization in adult animals, the results predict that muscle length increases when the muscle is immobilized in a lengthened position and decreases when the muscle is immobilized in a shortened position with no change in tendon length. For immobilization in young animals, the results predict reduced muscle growth and increased tendon growth regardless of immobilization position. Finally, the simulations predict that retinacular release which increases excursion of the musculotendinous unit leads to increased muscle length with decreased tendon length in young animals and decreased muscle length with no change in tendon length in adult animals. These simulation results are consistent with experimental findings reported in the literature by other investigators. This suggests that average muscle length and minimum tendon strain may represent general principles that govern muscle and tendon length adaptation.  相似文献   

19.
Tendons are strong hierarchical structures, but how tensile forces are transmitted between different levels remains incompletely understood. Collagen fibrils are thought to be primary determinants of whole tendon properties, and therefore we hypothesized that the whole human patellar tendon and its distinct collagen fibrils would display similar mechanical properties. Human patellar tendons (n = 5) were mechanically tested in vivo by ultrasonography. Biopsies were obtained from each tendon, and individual collagen fibrils were dissected and tested mechanically by atomic force microscopy. The Young's modulus was 2.0 ± 0.5 GPa, and the toe region reached 3.3 ± 1.9% strain in whole patellar tendons. Based on dry cross-sectional area, the Young's modulus of isolated collagen fibrils was 2.8 ± 0.3 GPa, and the toe region reached 0.86 ± 0.08% strain. The measured fibril modulus was insufficient to account for the modulus of the tendon in vivo when fibril content in the tendon was accounted for. Thus, our original hypothesis was not supported, although the in vitro fibril modulus corresponded well with reported in vitro tendon values. This correspondence together with the fibril modulus not being greater than that of tendon supports that fibrillar rather than interfibrillar properties govern the subfailure tendon response, making the fibrillar level a meaningful target of intervention. The lower modulus found in vitro suggests a possible adverse effect of removing the tissue from its natural environment. In addition to the primary work comparing the two hierarchical levels, we also verified the existence of viscoelastic behavior in isolated human collagen fibrils.  相似文献   

20.
Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号