首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The types of dendro-dendritic synapses and their participation in the synaptic, organization of superficial layers of the quadrigeminum superior tubercles were studied electron microscopically. In addition to simple forms of dendro-dentritic synapses the reciprocal dendro-dendritic synapses were revealed. Presynaptic dendrites formed the synaptic fields and glomerules of the superficial grey layer. The terminals of optical, cortical fibres from the visual cortex and other types of terminals terminated on presynaptic dendrites.  相似文献   

2.
Comparative quantitative analysis of the synaptic pool of the neuropil in the molecular layer at the temporal epilepsy and cerebral chronic hypoxia (brain tumor, that is not accompanied with a convulsive syndrome) has been performed using biopsy material. As a control the brain of practically healthy persons, who died a sudden death, has been used. The contrasting method of the phosphoric tungsten acid alcohol solution and OsO4 has been applied. An essential complication in the cerebral cortex synaptic structure in the zone with a regular epileptic activity, as well as preservation of quantitative density of synapses near to the control level at epilepsy have been revealed. At the chronic hypoxia simplification in organization of interneuronal connections at the level of synapses and reduction in the quantitative density of synapses have been noted. The complication of the cerebral cortex synaptic structure and epileptic changes++ of the brain is considered as an increase in the neuropil informativity, contributing to keeping a long-term memory about the character of epileptic manifestations.  相似文献   

3.
Quantitative electronmicroscopic studies have been made on the development of synapses in two modally different areas of the brain (V-VI layers of the visual and auditory cortex) in the rat and mouse Acomys cahirinus within first two weeks of their postnatal life. The density of synapses as well the relative amount of different types of synapses (symmetrical, asymmetrical, axo-spinal and synapses with large amounts of synaptic vesicles) were measured. It was shown that only in rats the development of synapses in the visual area usually is faster than in the auditory one.  相似文献   

4.
By means of silver nitrate impregnation after Fink-Heimer and Golgi-Kopsch structural peculiarities have been revealed in the neurons of the ventral lateral nucleus (VL) of the cat thalamus and its connections with the motor cortex. The results of the observations demonstrate a complex morphological organization of the VL. It makes reciprocal connections with the field 4 of the motor cortex. Terminal fibers from the VL end in the layers I, III, V and VI of the field 4 gamma and in the whole thickness of the fundal field anatomically having no layers. No degenerating fibers are found after destruction in the fields 4 delta and 4 sfu. Basing on measurements of neuronal nuclei in the VL two cell populations are revealed, that demonstrates presence of two types of the neurons in the VL--large relay and small short axonal, each of them having several varieties. Complex synaptic contacts in the VL in the form of serial synapses and triads are also demonstrated.  相似文献   

5.
Summary Cells in the visual cortex (area 17) of adult rats were impregnated by the rapid Golgi method and characterized by light microscopy. Selected cells were then sectioned for electron microscopy and their cytological characteristics and the pattern of synapses on their cell bodies and dendrites were studied Twelve classical pyramidal cells from layers II–VI, two pyramid-like cells from layer VI, two inverted pyramidal cells from layers V and VI, ten spine-free non-pyramidal cells from layers II–VI and two spinous non-pyramidal cells from layer IV were examined.The cytoplasmic features of the identified cells, where these could be discerned, corresponded to those previously reported for the different cell types in conventionally prepared tissue. Pyramidal Cells received exclusively type 2 synaptic contacts on their cell bodies, type 1 contacts on their dendritic spines and a mixture of synaptic types (type II predominating) on their shafts, where synaptic density was relatively low. This pattern of synaptic contacts was consistent for all portions of the dendritic tree; inverted pyramidal cells and pyramid-like cells showed the same synaptic organization as classical pyramids. The axon collaterals of pyramidal cells established type I contacts with dendritic spines (or, rarely, shafts) of unknown origin. Non-Pyramidal Cells received both type 1 and type 2 contacts (the former predominating) on their cell bodies and dendrites. The spinous variety also received type I contacts on their dendritic spines. Axon terminal of spine-free non-pyramidal cells established type II synaptic contacts with dendritic shafts of unknown origin. The similarity in synaptic organization between the spine-free and spinous non-pyramidal cells examined in this study suggest that the latter correspond to the sparsely spinous stellate cells rather than to the spinous stellate cells of cat and monkey visual cortex.We thank the Medical Research Council for financial support  相似文献   

6.
Electron microscopic investigation of synaptogenesis in the sensomotor cortex and in the caudate nucleus has been performed in the prenatal ontogenesis (16-22 days) and in newborn rats. The first immature synapses are demonstrated to appear beginning on the 16th day of embryogenesis. At the end of the prenatal development and especially in newborn animals desmosome-like, asymmetric and symmetric, mixed and complex forms of the synaptic contacts are revealed. As a result of the analysis performed on the ultrastructural organization of the contacts, a hypothesis explaining mechanisms of development of various elements of the synapses has been suggested. A part of the synaptic contacts of the asymmetric and symmetric types is supposed to be genetically programmed and membrane specialization of these contacts is formed earlier than synaptic vesicles appear. Other part of the synapses undergoes certain stages of differentiation before the functionally mature contact is formed. The initial stage in the synapses formation in formation of the desmosome-like junction. The second stage is appearance of synaptic vesicles in the area of this contact. The third stage includes development of pre- and postsynaptic membranous specialization and owing to this the contact acquires either asymmetric or symmetric appearance. For the ontogenetic periods investigated establishment of complex forms of the intercellular junctions (tangent, reciprocal, etc.) is specific; this evidently demonstrates certain plastic rearrangements in the synapses during the process of development.  相似文献   

7.
J J Chun  C J Shatz 《Neuron》1988,1(4):297-310
To examine the distribution of synaptic vesicle antigens during development of the cerebral cortex, antibodies against synapsin I and p65 were used on sections of cat cerebral cortex between E40 and adulthood. In the adult, the layers of the cerebral cortex are immunoreactive for each of these antigens, while the white matter is free of staining. In contrast, the fetal and neonatal pattern of immunostaining is reversed: the cortical plate (future cortical layers) is devoid of immunoreactivity, while the marginal (future layer 1) and the intermediate zones (future white matter) are stained. Electron microscopic immunohistochemistry shows that immunolabeling is associated with presynaptic nerve terminals in the adult and during development. These observations suggest that during development the white matter is a transient synaptic neuropil and that a global redistribution of synapses takes place as the mature pattern of connections within the cerebral cortex emerges.  相似文献   

8.
The synaptic organization of the parietal cortex in the zone of a chronic mirror epileptic focus was studied in rats electron microscopically. The synaptoarchitectonics was found to change as compared with control material in the mirror focus. Part of synapses were reduced due to degeneration of interhemisphere fibres. The amount of fine preterminal axons and axo-axonal contacts increased, the organization of complex synaptic conjunction grew more complicated. These data suggest possible newformation of interneuronal connections under the influence of an intensive stream of impulses from the primary focus.  相似文献   

9.
Owing to the microscopical investigation, using selective neurotoxin 5,7-dihydroxytryptamine, it has been possible to reveal the serotoninergic system and targets of its innervation in the rat cerebral cortex motor area. The serotoninergic axonal varicosities and synaptic boutons are present in all layers of the neocortex. Their large amount is revealed in the I and II layers. The terminals form contacts with dendrites of small size, sometimes they terminate on the head of the spines, as well as on bodies of neurons in different layers. According to their position and ultrastructural organization these neurons are, perhaps, pyramidal, that is glutamatergic, and those less in their size--refer to interneurons and can be GABAergic ones. Basing on own data and those of the literature, concerning the existence of nonsynaptic link for transmission of serotoninergic effects, a conclusion is made that a coordinating functioning of the synaptic and non-synaptic intercellular integrative mechanisms ensure a wide range of functions of the serotoninergic system in the cerebral cortex.  相似文献   

10.
Axo-dendritic synaptic profiles were quantified along the whole depth of the visual cortex of 10-day-old male and female rats. In both sexes the numerical density of synaptic profiles on spine-like structures was greater than the numerical density of synapses on dendritic shafts. Females had a significantly greater numerical density of synaptic profiles on spine-like structures, than did males at a distance of 200–400 and 500–600 μm from the pia surface, which corresponds to layers II–III and IV of the cortex, respectively. A small percentage (2%–4%) of spine-like structures received two presynaptic terminals. This type of double synapses was three times more abundant in females. No sex differences were found in the numerical density of synapses on dendritic shafts in any cortical layer. 1994 John Wiley & Sons, Inc.  相似文献   

11.
As it has been demonstrated microscopically, the corticofugal fibers in the AII and Ep zones of the auditory cortex in all the auditory subcortical centers (medial geniculate body, posterior colliculi of the tectum mesencephali and the superior olive nuclei) terminate by means of single axodendritic synapses, having an asymmetrically active zone, and mixed (by their form) synaptic vesicles. Small and middle dendrites make their postsynaptic part. A comparison has been carried out on distribution and form of synapses, completing the projection fibers from the zone of the primary acoustic responses (AI) and of the primary acoustic zone (AIV). Basing on the morphological data, concerning distribution and form of the synaptic terminals, a suggestion is made that physiological influence of each acoustic cortex zone is different for the medial geniculate body and posterior colliculi of the tectum mesencephali, but it is unitypical for the superior olive level.  相似文献   

12.
Kunze A  Valero A  Zosso D  Renaud P 《PloS one》2011,6(10):e26187
Native functional brain circuits show different numbers of synapses (synaptic densities) in the cerebral cortex. Until now, different synaptic densities could not be studied in vitro using current cell culture methods for primary neurons. Herein, we present a novel microfluidic based cell culture method that combines 3D micropatterning of hydrogel layers with linear chemical gradient formation. Micropatterned hydrogels were used to encapsulate dissociated cortical neurons in laminar cell layers and neurotrophic factors NGF and B27 were added to influence the formation of synapses. Neurotrophic gradients allowed for the positioning of distinguishable synaptic densities throughout a 3D micropatterned neural culture. NGF and B27 gradients were maintained in the microfluidic device for over two weeks without perfusion pumps by utilizing a refilling procedure. Spatial distribution of synapses was examined with a pre-synaptic marker to determine synaptic densities. From our experiments, we observed that (1) cortical neurons responded only to synergistic NGF/B27 gradients, (2) synaptic density increased proportionally to synergistic NGF/B27 gradients; (3) homogeneous distribution of B27 disturbed cortical neurons in sensing NGF gradients and (4) the cell layer position significantly impacted spatial distribution of synapses.  相似文献   

13.
Pathways linking the thalamus and cortex mediate our daily shifts from states of attention to quiet rest, or sleep, yet little is known about their architecture in high-order neural systems associated with cognition, emotion and action. We provide novel evidence for neurochemical and synaptic specificity of two complementary circuits linking one such system, the prefrontal cortex with the ventral anterior thalamic nucleus in primates. One circuit originated from the neurochemical group of parvalbumin-positive thalamic neurons and projected focally through large terminals to the middle cortical layers, resembling 'drivers' in sensory pathways. Parvalbumin thalamic neurons, in turn, were innervated by small 'modulatory' type cortical terminals, forming asymmetric (presumed excitatory) synapses at thalamic sites enriched with the specialized metabotropic glutamate receptors. A second circuit had a complementary organization: it originated from the neurochemical group of calbindin-positive thalamic neurons and terminated through small 'modulatory' terminals over long distances in the superficial prefrontal layers. Calbindin thalamic neurons, in turn, were innervated by prefrontal axons through small and large terminals that formed asymmetric synapses preferentially at sites with ionotropic glutamate receptors, consistent with a driving pathway. The largely parallel thalamo-cortical pathways terminated among distinct and laminar-specific neurochemical classes of inhibitory neurons that differ markedly in inhibitory control. The balance of activation of these parallel circuits that link a high-order association cortex with the thalamus may allow shifts to different states of consciousness, in processes that are disrupted in psychiatric diseases.  相似文献   

14.
In the mammalian cortex, neurons form extremely complicated networks and exchange information at synapses. Changes in synaptic strength, as well as addition/removal of synapses, occur in an experience-dependent manner, providing the structural foundation of neuronal plasticity. As postsynaptic components of the most excitatory synapses in the cortex, dendritic spines are considered to be a good proxy of synapses. Taking advantages of mouse genetics and fluorescent labeling techniques, individual neurons and their synaptic structures can be labeled in the intact brain. Here we introduce a transcranial imaging protocol using two-photon laser scanning microscopy to follow fluorescently labeled postsynaptic dendritic spines over time in vivo. This protocol utilizes a thinned-skull preparation, which keeps the skull intact and avoids inflammatory effects caused by exposure of the meninges and the cortex. Therefore, images can be acquired immediately after surgery is performed. The experimental procedure can be performed repetitively over various time intervals ranging from hours to years. The application of this preparation can also be expanded to investigate different cortical regions and layers, as well as other cell types, under physiological and pathological conditions.  相似文献   

15.
Ethanolic phosphotungstic acid (EPTA) has been used to elucidate the structure of certain organelles contained within retinal cells not clearly discernible using conventional preparations. Both synaptic and nonsynaptic components of the guinea pig neural retina have been analyzed. Within the photoreceptor (PR) cell EPTA-stained components include the connecting cilia, their basal bodies, and the root filament system. Cross-striated fibrillar organelles, similar in appearance to the root filaments, are also observed in the nuclear region, the synaptic terminal and other parts of the PR cell. The possible structural continuity and significance of these structures are discussed. Within retinal synapses of both the inner and outer plexiform layers, ribbons and associated paramembranous specializations are stained. The photoreceptor ribbons have a trialaminar structure with filamentous, tufted borders. Synaptic cleft material and postsynaptic densities are also stained. Bipolar cell synapses in the inner plexiform layer contain stained short ribbons as well as closely associated peg-like densities extending towards the presynaptic membrane.  相似文献   

16.
Postsynaptic density (PSD) is a protein supramolecule lying underneath the postsynaptic membrane of excitatory synapses and has been implicated to play important roles in synaptic structure and function in mammalian central nervous system. Here, PSDs were isolated from two distinct regions of porcine brain, cerebral cortex and cerebellum. SDS-PAGE and Western blotting analyses indicated that cerebral and cerebellar PSDs consisted of a similar set of proteins with noticeable differences in the abundance of various proteins between these samples. Subsequently, protein localization in these PSDs was analyzed by using the Nano-Depth-Tagging method. This method involved the use of three synthetic reagents, as agarose beads whose surface was covalently linked with a fluorescent, photoactivable, and cleavable chemical crosslinker by spacers of varied lengths. After its application was verified by using a synthetic complex consisting of four layers of different proteins, the Nano-Depth-Tagging method was used here to yield information concerning the depth distribution of various proteins in the PSD. The results indicated that in both cerebral and cerebellar PSDs, glutamate receptors, actin, and actin binding proteins resided in the peripheral regions within ~ 10 nm deep from the surface and that scaffold proteins, tubulin subunits, microtubule-binding proteins, and membrane cytoskeleton proteins found in mammalian erythrocytes resided in the interiors deeper than 10 nm from the surface in the PSD. Finally, by using the immunoabsorption method, binding partner proteins of two proteins residing in the interiors, PSD-95 and α-tubulin, and those of two proteins residing in the peripheral regions, elongation factor-1α and calcium, calmodulin-dependent protein kinase II α subunit, of cerebral and cerebellar PSDs were identified. Overall, the results indicate a striking similarity in protein organization between the PSDs isolated from porcine cerebral cortex and cerebellum. A model of the molecular structure of the PSD has also been proposed here.  相似文献   

17.
Distribution of synapses formed by straight corticofugal fibers running from the zone A1 and A4 of the acoustic cortex in the main basilar nuclei of the cat superior olive has been studied electron microscopically. These synapses are presented as axodendritic structures situating on processes of small and middle diameters, predominantly at the side of the operation (both in the medial and lateral complexes). Problems on functional influence of the acoustic cortex projections on subcortical acoustic centers depending on the form and amount of the synaptic terminals are discussed.  相似文献   

18.
Loss of one type of sensory input can cause improved functionality of other sensory systems. Whereas this form of plasticity, cross-modal plasticity, is well established, the molecular and cellular mechanisms underlying it are still unclear. Here, we show that visual deprivation (VD) increases extracellular serotonin in the juvenile rat barrel cortex. This increase in serotonin levels facilitates synaptic strengthening at layer 4 to layer 2/3 synapses within the barrel cortex. Upon VD, whisker experience leads to trafficking of the AMPA-type glutamate receptors (AMPARs) into these synapses through the activation of ERK and increased phosphorylation of AMPAR subunit GluR1 at the juvenile age when natural whisker experience no longer induces synaptic GluR1 delivery. VD thereby leads to sharpening of the functional whisker-barrel map at layer 2/3. Thus, sensory deprivation of one modality leads to serotonin release in remaining modalities, facilitates GluR1-dependent synaptic strengthening, and refines cortical organization.  相似文献   

19.
Electron microscope research was conducted on the synaptic apparatus of the feline primary auditory cortex (Al). A total of 2096 profiles of axonal terminals (AT) were found over a total area of 8230 µm2 of ultrathin slices at different layers of this cortical layer — an average of 255 profiles per 1000 µm2 of the surface area on these slices. The AT profiles occupied about 8.9% of the surface of these cross-sections. It was found that 52% of the AT containing synaptic vesicles formed asymmetrical or symmetrical synaptic contacts (83.9% and 16.1% respectively) and that AT had no contacts which could be considered synaptic junctions on 48% of slices. It was also observed that 45.3% of the AT forming contacts synapsed on spines, 48.5% on dendrites, and 6.2% on neuronal somata. Finally, 95.4% and 4.6% of axo-spinal synapses contained rounded and flattened vesicles respectively; equivalent figures for axodendritic synapses were 79.4% and 20.6% respectively and 19.8 and 80.2% for axosomatic synapses. Calculations revealed an average of 322.8 × 106 AT over 1 mm3 of cat auditory cortex. Organizational aspects of synaptic apparatus at different layers of area A1 were ascertained.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 22, No. 4, pp. 533–543, July–August, 1990.  相似文献   

20.
Sjöström PJ  Häusser M 《Neuron》2006,51(2):227-238
Pyramidal neurons in the cerebral cortex span multiple cortical layers. How the excitable properties of pyramidal neuron dendrites allow these neurons to both integrate activity and store associations between different layers is not well understood, but is thought to rely in part on dendritic backpropagation of action potentials. Here we demonstrate that the sign of synaptic plasticity in neocortical pyramidal neurons is regulated by the spread of the backpropagating action potential to the synapse. This creates a progressive gradient between LTP and LTD as the distance of the synaptic contacts from the soma increases. At distal synapses, cooperative synaptic input or dendritic depolarization can switch plasticity between LTD and LTP by boosting backpropagation of action potentials. This activity-dependent switch provides a mechanism for associative learning across different neocortical layers that process distinct types of information.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号