首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Auxin-induced changes of wall-rheological properties during different growth rates of rye coleoptile segments (Secale cereale L.) were investigated. In addition, changes of osmotic concentration and turgor pressure were measured. Decrease of turgor and of osmotic concentration followed a synchronous time course. Auxin-incubated segments exhibited a faster decrease and eventually lower values of both parameters. Creep test extensibility measurements demonstrate that apparent plastic as well as elastic extensibility of distilled-water-incubated segments strongly decreased during 24 h. In auxin-incubated segments apparent plastic as well as elastic extensibilities were strongly increased, even in the absence of growth due to insufficient turgor pressure. The increasing effect of auxin on elastic wall properties is also reflected by an increase in relative reversible length (part of segment length by which segments shrink after freezing/thawing as referred to total length) and a complementary decrease of relative irreversible length (remaining length after turgor elimination as referred to turgid length); again the effects were independent of growth rate and turgor pressure. Cellulose synthesis inhibition of approx. 80% by dichlorobenzonitrile (DCB) had no significant effect either on growth or on wall-rheological properties. Independent of whether the changed rheological wall behaviour of auxin-incubated segments is causally related to the mechanism of auxin-induced wall loosening, it indicates changes of wall polymer properties and/or interactions which are conserved when no actual length increase occurs due to insufficient turgor pressure. The results suggest that IAA-induced wall loosening may be primarily mediated by cell wall changes other than cleavage of covalent, load-bearing bonds as hypothesized in various wall loosening models.  相似文献   

2.
M. J. Vesper 《Planta》1985,166(1):96-104
To determine the relationship between apparent pH of the wall solution and shoot segment elongation, curves for the initial growth rates as a function of pH of the external solution were determined for maize (Zea mays L.) coleoptiles and sunflower (Helianthus annuus L.) hypocotyls and used to predict apparent wall pH in segments responding to indole-3-acetic acid (IAA) and fusicoccin (FC). When a solution having a pH predicted for walls of coleoptile segments responding to IAA was applied to the segments in the presence of IAA, this pH was not maintained. However, when the same was done for coleoptile segments responding to FC, the predicted pH was maintained in the external solution. Sunflower hypocotyl tissue did not maintain the external pH at the predicted value in the presence of either IAA or FC. The results indicate that wall loosening in coleoptiles caused by IAA may not be solely controlled by pH in the wall, yet growth (wall loosening) caused by FC apparently is directly related to wall pH. In sunflower the growth response to neither IAA nor FC appears to be directly correlated with wall pH.  相似文献   

3.
U. Kutschera 《Planta》1990,181(3):316-323
The relationship between growth and increase in cell-wall material (wall synthesis) was investigated in hypocotyls of sunflower seedlings (Helianthus annuus L.) that were either grown in the dark or irradiated with continuous white light (WL). The peripheral three to four cell layers comprised 30–50% of the entire wall material of the hypocotyl. The increase in wall material during growth in the dark and WL, respectively, was larger in the inner tissues than in the peripheral cell layers. The wall mass per length decreased continuously, indicating that wall thinning occurs during growth of the hypocotyl. When dark-grown seedlings were transfered to WL, a 70% inhibition of growth was observed, but the increase in wall mass was unaffected. Likewise, the composition of the cell walls (cellulose, hemicellulose, pectic substances) was not affected by WL irradiation. Upon transfer of dark-grown seedlings into WL a drastic increase in wall thickness and a concomitant decrease in cell-wall plasticity was measured. The results indicate that cell-wall synthesis and cell elongation are independent processes and that, as a result, WL irradiation of etiolated hypocotyls leads to a thickening and mechanical stiffening of the cell walls.  相似文献   

4.
The effect of gibberellic acid (GA) and naphthylacetic acid (NAA) on hypocotyl elongation and cell wall polysaccharides was studied using Phaseolus vulgaris seedlings grown in light condition. The hypocotyl was demarcated into two segments — one near the root was called lower and the one near the cotyledon was called upper. The upper segment showed a typical sigmoidal growth curve while lower segment did not show any growth at all. GA promoted the growth of upper segment while NAA showed clear inhibition in both the segments. Xyloglucan content showed a clear inverse correlation with growth. Pectic polysaccharides did not show a clear trend, though showed an initial inverse correlation with growth. It is concluded that degradation of low and high molecular weight xyloglucans are involved in cell wall loosening which in turn may be responsible for the elongation growth of Phaseolus hypocotyls in light.  相似文献   

5.
Effects of indole-3-acetic acid (IAA) on the mechanical properties of cell walls and structures of cell wall polysaccharides in outer and inner tissues of segments of dark grown squash (Cucurbita maxima Duch.) hypocotyls were investigated. IAA induced the elongation of unpeeled, intact segments, but had no effect on the elongation of peeled segments. IAA induced the cell wall loosening in outer tissues as studied by the stress-relaxation analysis but not in inner tissues. IAA-induced changes in the net sugar content of cell wall fractions in outer and inner tissues were very small. Extracted hemicellulosic xyloglucans derived from outer tissues had a molecular weight about two times as large as in inner tissues, and the molecular weight of xyloglucans in both outer and inner tissues decreased during incubation. IAA substantially accelerated the depolymerization of xyloglucans in outer tissues, while it prevented that in inner tissues. These results suggest that IAA-induced growth in intact segments is due to the cell wall loosening in outer tissues, and that IAA-accelerated depolymerization of hemicellulosic xyloglucans in outer tissues is involved in the cell wall loosening processes.  相似文献   

6.
The longitudinal distribution of unaltered radioactive indole-3-acetic acid (IAA), after application of [5-3H]-IAA to decapitated etiolated lupin hypocotyls. exhibited a wave-like pattern similar to that obtained with endogenous IAA. Waves of radioactive IAA were localizated both in the elongation zone and in the non-growing basal region of the hypocotyl. These IAA waves were transient because of basipetal polar transport and metabolism of IAA.
The level of endogenous IAA in different zones of the hypocotyl varied with age, following a wave-like pattern. During the elongation period of each zone, IAA was parallel to the bell-shaped curve of the growth rate. In addition, a role in secondary cell wall deposition is suggested for the other IAA wave that appeared after the cell elongation period, since an electron microscopic morphometric analysis of the cell wall showed that the cell wall thickness increased once the cell elongation ceased.
As the oscillation of endogenous IAA level occured in both space (distribution along the hypocotyl) and time (variation with age), it is suggested that the level of IAA really depended on the growth status of the cells. The response of the cells to the positional information submitted by the auxin waves as regards the growth status of the cell is discussed.  相似文献   

7.
Hydroxyl radicals (OH) are capable of unspecifically cleaving cell-wall polysaccharides in a site-specific reaction. I investigated the hypothesis that cell-wall loosening underlying the elongation growth of plant organs is controlled by apoplastically produced OH attacking load-bearing cell-wall matrix polymers. Isolated cell walls (operationally, frozen/thawed, abraded segments from coleoptiles or hypocotyls, respectively) from maize, cucumber, soybean, sunflower or Scots pine seedlings were pre-loaded with catalytic Cu or Fe ions and then incubated in a mixture of ascorbate + H2O2 for generating OH in the walls. This treatment induced irreversible wall extension (creep) in walls stretched in an extensiometer. The reaction could be promoted by acid pH and inhibited by several OH scavengers. Generation of OH by the same reaction in living coleoptile or hypocotyl segments caused elongation growth. Auxin-induced elongation growth of maize coleoptiles could be inhibited by OH scavengers. Auxin promoted the production of superoxide radicals (O2(-)), an OH precursor, in the growth-controlling outer epidermis of maize coleoptiles. It is concluded that OH fulfils basic criteria for a wall-loosening factor acting in auxin-mediated elongation growth of plant species with widely differing cell-wall polysaccharide compositions.  相似文献   

8.
It has been proposed that cell wall loosening during plant cell growth may be mediated by the endotransglycosylation of load-bearing polymers, specifically of xyloglucans, within the cell wall. A xyloglucan endotransglycosylase (XET) with such activity has recently been identified in several plant species. Two cell wall proteins capable of inducing the extension of plant cell walls have also recently been identified in cucumber hypocotyls. In this report we examine three questions: (1) Does XET induce the extension of isolated cell walls? (2) Do the extension-inducing proteins possess XET activity? (3) Is the activity of the extension-inducing proteins modulated by a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2)? We found that the soluble proteins from growing cucumber (cucumis sativum L.) hypocotyls contained high XET activity but did not induce wall extension. Highly purified wall-protein fractions from the same tissue had high extension-inducing activity but little or no XET activity. The XET activity was higher at pH 5.5 than at pH 4.5, while extension activity showed the opposite sensitivity to pH. Reconstituted wall extension was unaffected by the presence of a xyloglucan nonasaccharide (Glc4-Xyl3-Gal2), an oligosaccharide previously shown to accelerate growth in pea stems and hypothesized to facilitate growth through an effect on XET-induced cell wall loosening. We conclude that XET activity alone is neither sufficient nor necessary for extension of isolated walls from cucumber hypocotyls.  相似文献   

9.
A relationship between the activity of NADH oxidase of the plasma membrane and the IAA-induced elongation growth of hypocotyl segments in etiolated soybean (Glycine max Merr.) seedlings was investigated. The plasma membrane NADH oxidase activity increased in parallel to IAA effect on elongation growth in hypocotyl segments. Actually, NADH oxidase activity was stimulated 3-fold by 1 u,M IAA, and the elongation rate of segments was stimulated 10-fold by 10 iM IAA. The short-term elongation growth kinetics, however, showed that the IAA-induced elongation of hypocotyl segments was completely inhibited by plasma membrane redox inhibitors such as actinomycin D and adriamycin, at 80 μM and 50 μM respectively. In addition, 1 mM actinomycin D inhibited the IAA-stimulated NADH oxidase activity by about 80%. However, adriamycin had no effect on NADH oxidase activity of plasma membrane vesicles. Based on these results, the plasma membrane redox reactions seemed to be involved in IAA-induced elongation growth of hypocotyls, and the redox component responding to IAA was suggested to be NADH oxidase.  相似文献   

10.
The effects of auxin and osmotic stress on elongation growth of maize (Zea mays L.) coleoptile segments are accompanied by characteristic changes in the extensibility of the growth-limiting cell walls. At full turgor auxin causes growth by an increase in wall extensibility (wall looseining). Growth can be stopped by an osmotically produced step-down in turgor of 0.45 MPa. Under these conditions auxin causes the accumulation of a potential for future wall extension which is released after restoration of full turgor. Turgor reduction causes a reversible decrease in wall extensibility (wall stiffening) both in the presence and absence of auxin. These changes in vivo are correlated with corresponding changes in the rheological properties of the cell walls in vitro which can be traced back to specific modifications in the shape of the hysteretic stress-strain relationship. The longitudinally load-bearing walls of the coleoptile demonstrate almost perfect viscoelasticity as documented by a nearly closed hysteresis loop. Auxin-mediated wall loosening causes an increase of loop width and thus affects primarily the amount of hysteresis in the isolated wall. In contrast, turgor reduction by osmotic stress reduces loop length and thus affects primarily the amount of viscoelastic wall extensibility. Pretreatment of segments with anoxia and H2O2 modify the hysteresis loop in agreement with the conclusion that the wall-stiffening reaction visualized under osmotic stress in vivo is an O2-dependent process in which O2 can be substituted by H2O2. Cycloheximide specifically inhibits auxin-mediated wall loosening without affecting wall stiffening, and this is mirrored in specific changes of the hysteresis loop. Corroborating a previous in vivo study (Hohl et al. 1995, Physiol. Plant. 94: 491–498) these results show that cell wall stiffening in vivo can also be demonstrated by Theological measurements with the isolated cell wall and that this process can be separated from cell wall loosening by specific changes in the shape of the hysteresis loop.  相似文献   

11.
U. Kutschera 《Planta》1991,184(1):61-66
The relationship between growth, change in cell osmotic pressure and accumulation of osmotic solutes was investigated in hypocotyls of sunflower (Helianthus annum L.) seedlings. During growth in darkness the osmotic pressure decreased by 50% between days 2 and 6 after sowing. After irradiation of dark-grown seedlings with continuous white light (WL) an inhibition of hypocotyl growth was measured, but the osmotic pressure of the growing cells was not lower than in the dark-grown control. Growth in darkness and after WL irradiation was accompanied by an increase in the amount of osmotic substances (soluble sugars) which was proportional to the increase in length of the organ. During growth in continuous WL the cell osmotic pressure decreased by 45 % between days 2 and 6 after sowing. The transfer of WL-grown seedlings to darkness (“re-etiolation”) resulted in a rapid acceleration of hypocotyl growth, but the cell osmotic pressure was the same as that of the WL grown control. Growth in continuous WL was accompanied by a corresponding accumulation of osmotic substances (soluble sugars). The transition from WL to darkness resulted in an enhanced accumulation of osmotica and an increase in cell-wall extensibility. The results indicate that the relative maintenance of cell osmotic pressure during rapid hypocotyl growth in darkness is caused by an enhanced accumulation of soluble sugars into the growing cells of the organ.  相似文献   

12.
The effects of auxin and gibberellic acid on cell wall composition in various regions of epicotyls of azuki bean ( Vigna angularis Ohwi and Ohashi cv. Takara) were investigated with the following results. (1) Young segments excised from apical regions of the epicotyl elongated in response to added 10−4 M indole-3-acetic acid (IAA). When the segments were supplied with 50 m M sucrose, the IAA-induced segment growth was accompanied by enhanced overall synthesis of cell wall polysaccharides, such as xyloglucans, polyuronides and cellulose. This IAA effect on the cell wall synthesis is a consequence of extension growth induced by IAA. Gibberellic acid (GA) at 10−4 M synergistically enhanced the IAA-induced cell wall synthesis as well as IAA-induced extension growth, although GA by itself neither stimulated the cell wall synthesis nor extension growth. In the absence of sucrose, cell wall synthesis was not induced by IAA or GA. (2) In mature segments excised from basal regions of the epicotyl, no extension growth was induced by IAA or GA. GA enhanced the synthesis of xylans and cellulose when the segments were supplied with 50 m M sucrose. IAA had no effect on the cell wall synthesis. These findings indicate that synthesis of polyuronides, xyloglucans and cellulose, which occurs during extension growth of the apical region of the epicotyl, is regulated chiefly by auxin whereas synthesis of xylans and cellulose during cell maturation in the basal region of the epicotyl is regulated by GA.  相似文献   

13.
In a recent publication (Kutschera, 1996), it was reported thatthe cell walls of growing rye coleoptiles exhibit irreversible(plastic) extensibility in a rheological extension test. Basicallysimilar measurements with cell walls of maize coleoptiles hadpreviously shown that the apparent plastic extensibility determinedin this material is in reality due to the slowly reversible(viscoelastic) extensibility of the walls. A recent reinvestigationof this discrepancy showed that rye coleoptile walls also behaveas a perfectly viscoelastic material if precautions are takento prevent measuring artefacts. Similar results were obtainedwith cell walls from the growing zone of various other seedlingorgans (maize mesocotyl, maize root, cucumber hypocotyl). Itis concluded that plastic extensibility has not yet been convincinglydemonstrated by rheological tests that determine the intrinsicmaterial properties of cell walls. Reported changes in mechanicalmaterial properties of cell walls produced by growth-controllingfactors such as auxin or light may generally be attributed tochanges in viscoelasticity which are not directly related tothe chemo-rheological processes controlling wall extension ofgrowing cells. Key words: Cell wall extensibility, extension growth, plastic cell wall extensibility, viscoelastic cell wall extensibility  相似文献   

14.
Respiration-dependent water uptake and turgor change were observedby the xylem perfusion technique. Immediate and reversible shrinkagewith anoxia were repeatedly demonstrated under appropriate osmoticstress in elongating cow pea hypocotyl segments. Such shrinkageand re-elongation were always preceded by reversible inhibitionand re-activation of the electrogenic xylem pump, respectively.In mature zone segments where cell wall extensibility had beenshown to be practically null by means of the turgor jump method,anoxia and reaeration caused elastic shrinkage and expansion,respectively. The extent of respiration-dependent turgor wascalculated from the amplitudes of the elastic volume changeinduced by pressure jump and anoxia. In such segments, the directionof water flow across the xylem-symplast interface should bedetermined solely by the cell wall elasticity and the changein apoplasmic concentration of osmotica controlled by the xylempump activity, irrespective of any change in water conductivityor cell wall extensibility. (Received December 11, 1987; Accepted February 20, 1988)  相似文献   

15.
Since xyloglucan depolymerization has been proposed as one of the biochemical bases for cell wall‐loosening in gymnosperms, we characterized xyloglucan endotransglycosylase (XET) activity during pine hypocotyl growth to establish a possible relationship. XET activity was measured as the incorporation of [3H]XXXGol into partially purified pine hypocotyl xyloglucan. XET specific and total activity was determined in the subapical and basal segments of pine hypocotyls at two different stages of growth in different subcellular fractions. XET activity was found in the apoplastic fluid, the symplastic fluid, and in the fraction of proteins ionically and covalently bound to the cell walls with different distribution profiles. The results showed a relationship between XET activity and hypocotyl growth in all the fractions, suggesting an important role for XET during growth. Consequently, the suggested growth‐promoting effect of XET in angiosperms can also be extended to gymnosperms. Also, the results demonstrate that XET bound to the cell wall is able to act on endogenous wall‐bound xyloglucan as well as soluble polymeric xyloglucan, using them as substrates for the endotransglycosylation reaction.  相似文献   

16.
Cell Wall Acidification and its Role in Auxin-Stimulated Growth   总被引:2,自引:0,他引:2  
The role of cell wall acidification in auxin-stimulated growthwas examined in abraded hypocotyl segments of etiolated Cucumis.sativus seedlings. Acidification of the medium by these segmentswas strongly inhibited by a pretreatment and the continued presenceof 1?0 mol m–3 vanadate, widely used as an inhibitor ofplasma membrane ATPase activity. Elongation of segments in pH6?5 buffer was almost completely inhibited by such a treatmentwith vanadate, and the promotion of growth by indole-3-aceticacid (IAA) seen in the absence of vanadate was completely abolished.However, both inhibited and uninhibited segments showed a pronouncedelongation in response to pH 4?0) buffer. In pH 4?0 buffer,in contrast to the results obtained at pH 6?5, IAA significantlypromoted growth in both the presence and absence of vanadate.The results indicate that IAA can promote growth in the absenceof endogenous acidification, but that an acid wall is necessaryfor wall loosening to occur. Key words: Acidification, auxin-stimulated growth, Cucumis sativus, vanadate  相似文献   

17.
We have studied the role of endogenous auxin on adventitious rooting in hypocotyls of derooted sunflower (Helianthus annuus L. var. Dahlgren 131) seedlings. Endogenous free and conjugated indole-3-acetic acid (IAA) were measured in three segments of hypocotyls of equal length (apical, middle, basal) by using gas chromatography-mass spectrometry with [13C6]-IAA as an internal standard. At the time original roots were excised (0 h), the free IAA level in the hypocotyls showed an acropetally decreasing gradient, but conjugated IAA level increased acropetally; i.e. free to total IAA ratio was highest in the basal portion of hypocotyls. The basal portion is the region where most of root primordia were found. Some primordia were seen in this region within 24 h after the roots were excised. The quantity of free IAA in the middle portion of the hypocotyl increased up to 15 h after excision and then decreased. In this middle region there were fewer root primordia, and they could not be seen until 72 h. In the apical portion the amount of free IAA steadily increased and no root primordia were seen by 72 h. Surgical removal of various parts of the hypocotyl tissues caused adventitious root formation in the hypocotyl regions where basipetally transported IAA could accumulate. Reduction in the basipetal flow of auxin by N-1-naphthylphthalamic acid and 2,3,5-tri-iodobenzoic acid resulted in fewer adventitious roots. The fewest root primordia were seen if the major sources of endogenous auxin were removed by decapitation of the cotyledons and apical bud. Exogenous auxins promoted rooting and were able to completely overcome the inhibitory effect of 2,3,5-tri-iodobenzoic acid. Exogenous auxins were only partially able to overcome the inhibitory effect of decapitation. We conclude that in sunflower hypocotyls endogenously produced auxin is necessary for adventitious root formation. The higher concentrations of auxin in the basal portion may be partially responsible for that portion of the hypocotyl producing the greatest number of primordia. In addition to auxins, other factors such as wound ethylene and lowered cytokinin levels caused by excision of the original root system cuttings must also be important.  相似文献   

18.
M. Hohl  P. Schopfer 《Planta》1992,187(4):498-504
Segments of maize (Zea mays L.) coleoptiles demonstrate plastic cell-wall extensibility (Epl) as operationally defined by the amount of irreversible strain elicited by stretching living or frozen-thawed tissue under constant load in an extensiometer (creep test). Changes of Epl are correlated with auxin- and abscisic-acid-dependent growth responses and have therefore been causally related to hormone-controlled cell-wall loosening. Auxin induces an increase of Epl specifically in the outer epidermal wall of maize coleoptiles which is considered as the growth-limiting wall of the organ. However, detailed kinetic measurements of load-induced extension of frozen-thawed coleoptile segments necessitates a revision of the view that Epl represents a true plastic (irreversible) wall deformation. Segments demonstrate no significant irreversible extension when completely unloaded between loading cycles. Moreover, Epl can be demonstrated repeatedly if the same segment is subjected to repeated loading cycles in the extensiometer. It is shown that these phenomena result from the hysteresis behaviour of the cell wall. Stress-strain curves for loading and unloading form a closed hysteresis loop, the width of which represents Epl at a particular load. Auxin-treatment of segments leads to a deformation of the hysteresis loop, thereby giving rise to an increase of Epl. These results show that the creep test estimates the viscoelastic (retarded elastic) properties rather than the plastic properties of the wall.Abbreviations Etot, Eel, Epl total, elastic, and plastic cell-wall extensibility as defined by the standard creep test - L load Supported by Deutsche Forschungsgemeinschaft (SFB 206).  相似文献   

19.
Rapid effects of indole-3-acetic acid (IAA) on the mechanical properties of cell wall, and sugar compositions, intrinsic viscosity and molecular weight distribution of cell wall polysaccharides were investigated with excised epicotyl segments of Vigna angularis Ohwi et Ohashi cv. Takara.
  • 1 IAA caused cell wall loosening as studied by stress-relaxation analysis within 15 min after the IAA application.
  • 2 IAA stimulated the decrease in the content of arabinose and galactose in the hemicellulose 1 h after its application. The amounts of other component sugars in the cell wall polysaccharides remained constant during the IAA-induced segment growth.
  • 3 The intrinsic viscocity of the pectin increased as early as 30 min after the IAA application. This effect was not prevented when elongation growth of the segment was osmotically suppressed by 0.15 M mannitol.
  • 4 Gel permeation chromatography of the pectin on a Sepharose 4 B column demonstrated that IAA caused increase in the mass-average molecular weight of the pectin. Analysis of the sugar compositions of the pectin eluted from the Sepharose 4 B column indicated that IAA increased the molecular weight of the polysaccharides composed of uronic acid, galactose, rhamnose and arabinose. This effect became apparent within 30 min after the IAA application. Furthermore, IAA increased the molecular weight of the pectin when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
  • 5 Hemicellulose of the cell wall chromatographed on a Sepharose CL-4 B column. Analysis of the neutral sugar compositions and the iodine staining property (specific for xyloglucans) of the polysaccharide solution eluted from the column indicated that the hemicellulose consisted of xyloglucans, arabinogalactans and polysaccharides composed of xylose and/or mannose. IAA caused a decrease in the arabinogalactan content and depolymerization of xyloglucans. These IAA effects became apparent within 30 min after the IAA application. These changes occurred even when elongation growth of the epicotyl segments was osmotically suppressed by 0.15 M mannitol.
Polymerization of the pectin, degradation of arabinogalactans and depolymerization of xyloglucans appear to be involved in the mechanism by which IAA induces cell wall loosening and therefore extension growth of cells.  相似文献   

20.
Auxin-mediated elongation growth of maize ( Zea mays L.) coleoptile segments can be nullified by lowering the turgor pressure by 0.45 MPa. Under these conditions irreversible segment length (lin) measured after freezing/thawing increases steadily over a period of 8 h although the in vivo length (ltot) remains constant. This phenomenon, designated as 'cryptic growth', is an indication of a wall-stiffening process which appears to be an intrinsic component of irreversible cell wall extension. Using a range of metabolic inhibitors it is demonstrated that cryptic growth is caused by a temperature-sensitive biochemical process in the cell wall which depends on the presence of O2 and active peroxidase, but not on ATP and protein synthesis. Inhibition of cryptic growth by anaerobic conditions can be alleviated by extermal H2O2. Moreover, cryptic growth can be partially inhibited by the antioxidant ascorbate. It is concluded that cryptic growth represents a wall-stiffening reaction mediated by peroxidase-catalyzed, H2O2-dependent cross-linking of phenolic residues of wall polymers. The experimental demonstration of a wall-stiffening reaction in a rapidly growing organ supports the concept that irreversible cell elongation (growth) is caused by an interplay of two chemorheological reactions, a turgor-dependent wall-loosening reaction and a separate wall-stiffening reaction which fixes the viscoelastically extended wall structure through oxidative cross-linking and thus conferring irreversibility to wall extension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号