首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apolipoprotein (apo) A-I induces rapid translocation of protein kinase Calpha and phospholipase Cgamma, and slow translocation of caveolin-1 and newly synthesized cholesterol to the cytosolic lipid-protein particle (CLPP) fraction in rat astrocytes. In order to understand the function of CLPP, we investigated the interaction with cytoskeletons of CLPP-related proteins such as caveolin-1 and protein kinase Calpha and of CLPP-related lipids in rat astrocytes. Under the conditions that microtubules were depolymerized, association of cytosolic caveolin-1 with protein kinase Calpha and alpha-tubulin was enhanced when the cells were treated with apoA-I for 5 min. This association was suppressed by a scaffolding domain-peptide of caveolin-1. Association with the microtubule-like filaments of cytosolic lipids, caveolin-1 and protein kinase Calpha was also increased by the apoA-I treatment and inhibited by the scaffolding domain peptide. Paclitaxel (taxol), a compound to stabilize microtubules, suppressed the apoA-I-mediated intracellular translocation and release from the cells of the de novo synthesized cholesterol and phospholipid. The findings suggested that the association of CLPP with microtubules is mediated by a scaffolding domain of caveolin-1, induced by apoA-I and involved in regulation of intracellular cholesterol trafficking for assembly of cellular lipids to apoA-I-high-density lipoprotein (HDL).  相似文献   

2.
We previously identified cytosolic lipid–protein particles (CLPP) having size and density of HDL in rat astrocytes, to which apoA-I induces translocation of cholesterol, caveolin-1 and protein kinase Cα (PKCα) following its association with microtubules prior to cholesterol release/biogenesis of HDL (JBC 277: 7929, 2002; JLR 45: 2269, 2004). To further understand the physiological relevance of these findings, we investigated the CLPP/microtubule association and its role in intracellular cholesterol trafficking by using a technique of reconstituted microtubule-like filaments (rMT) in rat astrocyte cytosol. When the cells were pretreated with apoA-I, α-tubulin as a 52-kDa protein in rMT was found phosphorylated while α-tubulin in a soluble monomeric form was little phosphorylated. The phosphorylation took place coincidentally to apoA-I-induced association with rMT of CLPP, a complex containing PKCα, and was suppressed by a PKC inhibitor, Bis indolylmaleimide 1 (BIM). α-Tubulin dissociated from CLPP when phosphorylated, and it poorly bound to CLPP once dissociated. BIM did not influence association of PKCα with rMT but suppressed apoA-I-induced cholesterol translocation to the cytosol from the ER/Golgi apparatus and apoA-I-mediated cholesterol release. We thereby concluded that α-tubulin phosphorylation by PKCα on CLPP is involved in reversible CLPP association with the microtubules and intracellular cholesterol trafficking for apoA-I-dependent HDL biogenesis/cholesterol release in rat astrocytes.  相似文献   

3.
Apolipoprotein A-I (apoA-I) induces the translocation of newly synthesized cholesterol as well as caveolin-1 to the cytosolic lipid-protein particle (CLPP) fraction in astrocytes before its appearance in high density lipoprotein generated in the medium (Ito, J., Y. Nagayasu, K. Kato, R. Sato, and S. Yokoyama. 2002. Apolipoprotein A-I induces translocation of cholesterol, phospholipid, and caveolin-1 to cytosol in rat astrocytes. J. Biol. Chem. 277: 7929-7935). We here report the association of signal-related molecules with CLPP. ApoA-I induces rapid translocation of protein kinase Calpha to the CLPP fraction and its phosphorylation in astrocytes. ApoA-I also induces the translocation of phospholipase Cgamma to CLPP. Diacylglyceride (DG) production is increased by apoA-I in the cells, with a maximum at 5 min after the stimulation, and the increase takes place also in the CLPP fraction. An inhibitor of receptor-coupled phospholipase C, U73122, inhibited all the apoA-I-induced events, such as DG production, cholesterol translocation to the cytosol, release of cholesterol, and translocation of protein kinase Calpha into the CLPP fraction. CLPP may thus be involved in the apoA-I-initiated signal transduction in astrocytes that is related to intracellular cholesterol trafficking for the generation of high density lipoprotein in the brain.  相似文献   

4.
In order to investigate the mechanism for female gonadal hormones to regulate the plasma high-density lipoprotein (HDL) level, the effect of 17 beta-estradiol and progestogens was examined in vitro on the assembly of HDL by free apolipoprotein A-I (apoA-I) with cellular cholesterol and phospholipid. ApoA-I generated HDL particles by removing cholesterol and phospholipid from human fibroblasts, MRC-5. While 17 beta-estradiol did not influence this reaction, progesterone suppressed the removal by apoA-I of both cholesterol and phospholipid, with the extent of the inhibition more for cholesterol than phospholipid. Three other synthetic progestogens showed the similar inhibitory effect on the cellular cholesterol release. Cellular cholesterol de novo-synthesized from mevalonolactone entered more into the acyl-esterified cholesterol compartment and less to the unesterified compartment in the presence of progesterone. On the other hand, progesterone did not influence the overall mass ratio of free and esterified cholesterol in the cell. Cell-surface cholesterol was also uninfluenced by progesterone when probed by extracellular cholesterol oxidase reaction or by diffusion-mediated cellular cholesterol release to cyclodextrin. Neither caveolin-1 nor ABCA1 expression was influenced by progesterone. Progesterone thus seems primarily to alter the specific intracellular cholesterol compartment that is related to the apoA-I-mediated HDL assembly. This mechanism might contribute to the decrease of plasma HDL by administration of progestogen in women under hormone replacement therapy.  相似文献   

5.
Helical apolipoprotein(apo)s generate pre-beta-high density lipoprotein (HDL) by removing cellular cholesterol and phospholipid upon the interaction with cells. To investigate its physiological relevance, we studied the effect of an in vitro inhibitor of this reaction, probucol, in mice on the cell-apo interaction and plasma HDL levels. Plasma HDL severely dropped in a few days with probucol-containing chow while low density protein decreased more mildly over a few weeks. The peritoneal macrophages were assayed for apoA-I binding, apoA-I-mediated release of cellular cholesterol and phospholipid and the reduction by apoA-I of the ACAT-available intracellular cholesterol pool. All of these parameters were strongly suppressed in the probucol-fed mice. In contrast, the mRNA levels of the potential regulatory proteins of the HDL level such as apoA-I, apoE, LCAT, PLTP, SRB1 and ABC1 did not change with probucol. The fractional clearance rate of plasma HDL-cholesteryl ester was uninfluenced by probucol, but that of the HDL-apoprotein was slightly increased. No measurable CETP activity was detected either in the control or probucol-fed mice plasma. The change in these functional parameters is consistent with that observed in the Tangier disease patients. We thus concluded that generation of HDL by apo-cell interaction is a major source of plasma HDL in mice.  相似文献   

6.
Differential regulation has been suggested for cellular cholesterol and phospholipid release mediated by apolipoprotein A-I (apoA-I)/ABCA1. We investigated various factors involved in cholesterol mobilization related to this pathway. ApoA-I induced a rapid decrease of the cellular cholesterol compartment that is in equilibrium with the ACAT-accessible pool in cells that generate cholesterol-rich HDL. Pharmacological and genetic inactivation of ACAT enhanced the apoA-I-mediated cholesterol release through upregulation of ABCA1 and through cholesterol enrichment in the HDL generated. Pharmacological activation of protein kinase C (PKC) also decreased the ACAT-accessible cholesterol pool, not only in the cells that produce cholesterol-rich HDL by apoA-I (i.e., human fibroblast WI-38 cells) but also in the cells that generate cholesterol-poor HDL (mouse fibroblast L929 cells). In L929 cells, the PKC activation caused an increase in apoA-I-mediated cholesterol release without detectable change in phospholipid release and in ABCA1 expression. These results indicate that apoA-I mobilizes intracellular cholesterol for the ABCA1-mediated release from the compartment that is under the control of ACAT. The cholesterol mobilization process is presumably related to PKC activation by apoA-I.  相似文献   

7.
Most peripheral cells generate cholesterol-rich high-density lipoprotein (HDL) with exogenous apolipoprotein as one of the mechanisms for the maintenance of cellular cholesterol homeostasis. Astrocytes isolated from fetal rat brain showed a unique behavior in this reaction. Consistent with previous findings, the astrocytes synthesized apolipoprotein (apo) E and generated cholesterol-rich pre-beta-HDL-like lipoprotein with this apoE, and cellular cholesterol and phospholipids. When exogenous apoA-I and E were added to the medium, they caused generation of additional HDL with cellular phospholipid. It is interesting that this additional part was very poor in cholesterol except for the generation of relatively cholesterol-rich HDL only in the initial few hours of the incubation. The mobilization of intracellular cholesterol for this reaction was also very limited, reflecting the poor cholesterol incorporation into the HDL. Thus, the results demonstrated a unique profile of HDL generation and cholesterol efflux by apolipoproteins in rat astrocytes, with endogenous apoE producing cholesterol-rich HDL and exogenous apolipoproteins producing cholesterol-poor HDL. These lipoproteins may play differential roles in cholesterol transport in the CNS.  相似文献   

8.
When sphingomyelin is digested by sphingomyelinase in the plasma membrane of rat astrocytes, productions of sphingomyelin, diacylglycerol, and phosphatidylcholine are stimulated. D609, an inhibitor of phosphatidylcholine-specific phospholipase C, suppressed these effects. Similarly, when apolipoprotein A-I removed cellular cholesterol, phosphatidylcholine, and sphingomyelin to generate high density lipoprotein, cholesterol synthesis from acetate subsequently increased, and sphingomyelin synthesis from acetate and serine also increased. D609 inhibited these effects again. D609 also inhibited the cholesterol removal by apoA-I not only from the astrocytes but also from BALB/3T3 and RAW264 cells. D609 decreased cholesterol synthesis, although D609 did not directly inhibit hydroxymethylglutaryl-CoA reductase. ApoA-I-stimulated translocation of newly synthesized cholesterol to cytosol was also decreased by D609. A diacylglycerol analog increased the apoA-I-mediated cholesterol release, whereas ceramide did not influence it. We concluded that removal of cellular sphingomyelin by apolipoproteins is replenished by transfer of phosphorylcholine from phosphatidylcholine to ceramide, and this reaction may limit the removal of cholesterol by apoA-I. This reaction also produces diacylglycerol that potentially triggers subsequent cellular signal cascades and regulates intracellular cholesterol trafficking.  相似文献   

9.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

10.
Astrocytes play a key role in cholesterol metabolism in central nervous system. We have shown that fetal rat astrocytes in primary culture secrete cholesterol-rich HDL with the endogenous apolipoprotein (apo) E and generate cholesterol-poor HDL with exogenous apoE and apoA-I [Ito et al. (1999) J. Neurochem. 72, 2362]. In order to study these reactions in relation to the stage of cell differentiation, we examined generation of HDL by rat astrocytoma cells. Lack of apoE secretion was found in three astrocytoma cell lines, human T98G, rat C6, and GA-1 [Kano-Tanaka et al. (1986) Proc. Jpn. Acad. Ser. B 62, 109]. GA-1 produced apoE at very low level and therefore generated much less HDL by itself than the astrocytes in primary culture. In contrast, GA-1 interacted with exogenous apoE and apoA-I to produce cholesterol-rich HDL while the astrocytes produced cholesterol-poor HDL with these apolipoproteins. Cholesterol biosynthesis rate measured from mevalonate was higher and down-regulated more by LDL in the astrocytes than GA-1. On the other hand, the cellular cholesterol level, uptake of LDL, and cyclodextrin-mediated non-specific diffusion of cholesterol from cell surface were same between these two cells. Treatment of GA-1 with acidic fibroblast growth factor influenced neither the production of apoE nor the baseline lipid secretion, but increased the cholesterol synthesis from mevalonate and the magnitude of its down-regulation by LDL, and decreased cholesterol content in the HDL produced by exogenous apoA-I. In conclusion, suppression of apoE biosynthesis in the undifferentiated astrocytes GA-1 resulted in poor secretion of cholesterol-rich HDL and in turn more production of HDL with exogenous apolipoprotein. Cellular cholesterol homeostasis was altered accordingly.  相似文献   

11.
ATP-binding cassette transporter A1 (ABCA1) mediates transport of cellular cholesterol and phospholipids to high density lipoprotein (HDL) apolipoproteins, such as apoA-I. ABCA1 mutations can cause a severe HDL deficiency and atherosclerosis. Here we show that the protein-tyrosine kinase (TK) Janus kinase 2 (JAK2) modulates the apolipoprotein interactions with ABCA1 required for removing cellular lipids. The protein kinase A (PKA) inhibitor H89, the TK inhibitor genistein, and the JAK2 inhibitor AG490 suppressed apoA-I-mediated cholesterol and phospholipid efflux from ABCA1-expressing cells without altering the membrane ABCA1 content. Whereas PKA inhibition had no effect on apoA-I binding to cells or to ABCA1, TK and JAK2 inhibition greatly reduced these activities. Conversely, PKA but not JAK2 inhibition significantly reduced the intrinsic cholesterol translocase activity of ABCA1. Mutant cells lacking JAK2 had a severely impaired apoA-I-mediated cholesterol and phospholipid efflux and apoA-I binding despite normal ABCA1 protein levels and near normal cholesterol translocase activity. Thus, although PKA modulates ABCA1 lipid transport activity, JAK2 appears to selectively modulate apolipoprotein interactions with ABCA1. TK-mediated phosphorylation of ABCA1 was undetectable, implicating the involvement of another JAK2-targeted protein. Acute incubation of ABCA1-expressing cells with apoA-I had no effect on ABCA1 phosphorylation but stimulated JAK2 autophosphorylation. These results suggest that the interaction of apolipoproteins with ABCA1-expressing cells activates JAK2, which in turn activates a process that enhances apolipoprotein interactions with ABCA1 and lipid removal from cells.  相似文献   

12.
After receptor-mediated endocytosis of triglyceride-rich lipoproteins (TRL) into the liver, TRL particles are immediately disintegrated in peripheral endosomal compartments. Whereas core lipids and apoprotein B are delivered for degradation into lysosomes, TRL-derived apoE is efficiently recycled back to the plasma membrane. This is followed by apoE re-secretion and association of apoE with high density lipoproteins (HDL). Because HDL and apoE can independently promote cholesterol efflux, we investigated whether recycling of TRL-derived apoE in human hepatoma cells and fibroblasts could be linked to intracellular cholesterol transport. In this study we demonstrate that HDL(3) does not only act as an extracellular acceptor for recycled apoE but also stimulates the recycling of internalized TRL-derived apoE. Furthermore, radioactive pulse-chase experiments indicate that apoE recycling is accompanied by cholesterol efflux. Confocal imaging reveals co-localization of apoE and cholesterol in early endosome antigen 1-positive endosomes. During apoE re-secretion, HDL(3)-derived apoA-I is found in these early endosome antigen 1, cholesterol-containing endosomes. As shown by time-lapse fluorescence microscopy, apoE recycling involves the intracellular trafficking of apoA-I to pre-existing and TRL-derived apoE/cholesterol-containing endosomes in the periphery. Thus, these studies provide evidence for a new intracellular link between TRL-derived apoE, cellular cholesterol transport, and HDL metabolism.  相似文献   

13.
14.
Lipoproteins, present in serum of chow-fed rats, were fractionated according to size by chromatography of serum on 6% agarose columns. The distributions of apolipoprotein (apo) A-I, E, and A-IV within the high density lipoprotein (HDL) size range (i.e., lipoprotein complexes smaller than low density lipoproteins) showed the existence of lipoprotein subclasses with different size and chemical composition. Sequential immunoprecipitations were performed on these fractions obtained by agarose column chromatography, using specific antisera against apoA-I, apoE, and apoA-IV. The resulting precipitates and supernatants were analyzed for cholesteryl esters, unesterified cholesterol, phospholipids, triglycerides, and specific lipoproteins. The following conclusions were drawn from these experiments. Sixty-three +/- 3% of apoE in the total HDL size range is present on a large particle (mol wt 750,000). This lipoprotein contains apoE as its sole protein constituent and is called LpE. Thirty-nine +/- 4% of the cholesterol found in the HDL size range is present in this fraction. The cholesterol:phospholipid ratio is 1:1.1. Sixty-nine +/- 8% of apoA-I in the total HDL size range is present on a smaller particle (mol wt 250,000). This apoA-I-HDL has apoA-I as its major protein component and possibly contains minor amounts of C apoproteins and A-II, but neither apoE nor apoA-IV. It contains 39 +/- 8% of the total cholesterol found in the HDL size range and the cholesterol:phospholipid ratio is 1:1.6.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Helical apolipoproteins interact with cellular surface and generate high density lipoprotein (HDL) by removing phospholipid and cholesterol from cells. We have reported that the HDL is generated by this reaction with the fetal rat astrocytes and meningeal fibroblasts but cholesterol is poorly available to this reaction with the astrocytes (Ito et al. 1999. J. Neurochem. 72: 2362;-2369). Partial digestion of the membrane by extracellular sphingomyelinase increased the incorporation of cholesterol into thus-generated HDL from both types of cell. This increase was diminished by supplement of endogenous or exogenous sphingomyelin to the cells. The sphingomyelinase treatment decreased cholesterol in the membrane mainly in the detergent-resisting domain. The intracellular cholesterol used by acylCoA:cholesterol acyltransferase increased by the sphingomyelinase treatment in the absence of apoA-I, more remarkably in the fibroblast than in the astrocytes. ApoA-I suppressed this increase completely in the astrocytes, but only partially in the fibroblast. The effect of the sphingomyelin digestion was more prominent for the apolipoprotein-mediated reaction than the diffusion-mediated cellular cholesterol efflux. Thus, cholesterol molecules restricted by sphingomyelin in the domain of the plasma membrane appear to be primarily used for the HDL assembly upon the apolipoprotein;-cell interaction.  相似文献   

16.
ABCA1 plays a major role in HDL metabolism. Cholesterol secretion by ABCA1 is dependent on the presence of extracellular acceptors, such as lipid-free apolipoprotein A-I (apoA-I). However, the importance of the direct interaction between apoA-I and ABCA1 in HDL formation remains unclear. In contrast, ABCB4 mediates the secretion of phospholipids and cholesterol in the presence of sodium taurocholate (NaTC) but not in the presence of apoA-I. In this study, we analyzed apoA-I binding and NaTC-dependent lipid efflux by ABCA1. ABCA1 mediated the efflux of cholesterol and phospholipids in the presence of NaTC as well as in the presence of apoA-I in an ATP-dependent manner. The Tangier disease mutation W590S, which resides in the extracellular domain and impairs apoA-I-dependent lipid efflux, greatly decreased NaTC-dependent cholesterol and phospholipid efflux. However, the W590S mutation did not impair apoA-I binding and, conversely, retarded the dissociation of apoA-I from ABCA1. These results suggest that the W590S mutation impairs ATP-dependent lipid translocation and that lipid translocation or possibly lipid loading, facilitates apoA-I dissociation from ABCA1. NaTC is a good tool for analyzing ABCA1-mediated lipid efflux and allows dissection of the steps of HDL formation by ABCA1.  相似文献   

17.
Internalization of apoE-containing very low density protein (VLDL) by hepatocytes in vivo and in vitro leads to apoE recycling and resecretion. Because of the role of apoE in VLDL metabolism, apoE recycling may influence lipoprotein assembly or remnant uptake. However, apoE is also a HDL protein, and apoE recycling may be related to reverse cholesterol transport. To investigate apoE recycling, apoE(-/-) mouse hepatocytes were incubated (pulsed) with wild-type mouse lipoproteins, and cells and media were collected at chase periods up to 24 h. When cells were pulsed with VLDL, apoE was resecreted within 30 min. Although the mass of apoE in the media decreased with time, it could be detected up to 24 h after the pulse. Intact intracellular apoE was also detectable 24 h after the pulse. ApoE was also resecreted when cells were pulsed with HDL. When apoA-I was included in the chase media after a pulse with VLDL, apoE resecretion increased 4-fold. Furthermore, human apoE was resecreted from wild-type mouse hepatocytes after a pulse with human VLDL. Finally, apoE was resecreted from mouse peritoneal macrophages after pulsing with VLDL. We conclude that 1) HDL apoE recycles in a quantitatively comparable fashion to VLDL apoE; 2) apoE recycling can be modulated by extracellular apoA-I but is not affected by endogenous apoE; and 3) recycling occurs in macrophages as well as in hepatocytes, suggesting that the process is not cell-specific.  相似文献   

18.
Eight proteins potentially involved in cholesterol efflux [ABCA1, ABCG1, CYP27A1, phospholipid transfer protein (PLTP), scavenger receptor type BI (SR-BI), caveolin-1, cholesteryl ester transfer protein, and apolipoprotein A-I (apoA-I)] were overexpressed alone or in combination in RAW 264.7 macrophages. When apoA-I was used as an acceptor, overexpression of the combination of ABCA1, CYP27A1, PLTP, and SR-BI (Combination I) enhanced the efflux by 4.3-fold. It was established that the stimulation of efflux was due to increased abundance of ABCA1 and increased apoA-I binding to non-ABCA1 sites on macrophages. This combination caused only a small increase of the efflux to isolated HDL. When HDL was used as an acceptor, overexpression of caveolin-1 or a combination of caveolin-1 and SR-BI (Combination II) was the most active, doubling the efflux to HDL, without affecting the efflux to apoA-I. When tested in the in vivo mouse model of cholesterol efflux, overexpression of ABCA1 and Combination I elevated cholesterol export from macrophages to plasma, liver, and feces, whereas overexpression of caveolin-1 or Combination II did not have an effect. We conclude that pathways of cholesterol efflux using apoA-I as an acceptor make a predominant contribution to cholesterol export from macrophages in vivo.  相似文献   

19.
The severe depletion of cholesteryl ester (CE) in adrenocortical cells of apoA-I(-/-) mice suggests that apolipoprotein (apo) A-I plays an important role in the high density lipoprotein (HDL) CE selective uptake process mediated by scavenger receptor BI (SR-BI) in vivo. A recent study showed that apoA-I(-/-) HDL binds to SR-BI with the same affinity as apoA-I(+/+) HDL, but apoA-I(-/-) HDL has a decreased V(max) for CE transfer from the HDL particle to adrenal cells. The present study was designed to determine the basis for the reduced selective uptake of CE from apoA-I(-/-) HDL. Variations in apoA-I(-/-) HDL particle diameter, free cholesterol or phospholipid content, or the apoE or apoA-II content of apoA-I(-/-) HDL had little effect on HDL CE selective uptake into Y1-BS1 adrenal cells. Lecithin cholesterol acyltransferase treatment alone or addition of apoA-I to apoA-I(-/-) HDL alone also had little effect. However, addition of apoA-I to apoA-I(-/-) HDL in the presence of lecithin cholesterol acyltransferase reorganized the large heterogeneous apoA-I(-/-) HDL to a more discrete particle with enhanced CE selective uptake activity. These results show a unique role for apoA-I in HDL CE selective uptake that is distinct from its role as a ligand for HDL binding to SR-BI. These data suggest that the conformation of apoA-I at the HDL surface is important for the efficient transfer of CE to the cell.  相似文献   

20.
The regulation of lipoprotein assembly and secretion at a molecular level is incompletely understood. To begin to identify the determinants of apoprotein synthesis and distribution among lipoprotein classes, we have examined the effects of chylomicron remnants which deliver triglyceride and cholesterol, and beta very low density lipoprotein (beta VLDL), which deliver primarily cholesterol, on apolipoprotein synthesis and secretion by the human hepatoma Hep G2. Hep G2 cells were incubated with remnants or beta VLDL for 24 h, the medium was changed and the cells then incubated with [35S]methionine. The secreted lipoproteins were separated by gradient ultracentrifugation and the radiolabeled apoproteins were isolated by immunoprecipitation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis and counted. Remnants caused a 14-fold, and beta VLDL a 7-fold, increase in VLDL apoprotein (apo) secretion; the apoB/apoE ratio in this class was unchanged. Preincubation with either of the lipoproteins also stimulated low density lipoprotein apoB secretion. Preincubation with beta VLDL, but not with remnants, significantly increased apoE and apoA-I secreted in high density lipoprotein (HDL). In addition, the apoE/apoA-I ratio precipitated from the HDL of beta VLDL-treated cells by anti-apoE was 2.2-fold higher than that precipitated by anti-apoA-I. There was no difference in the ratios precipitated from control HDL. This was due to the secretion of a lipoprotein, subsequently isolated by immunoaffinity chromatography, that contained predominantly apoE. When Hep G2 cells were preincubated with oleic acid alone, total apoprotein secretion was not altered. However, cholesterol-rich liposomes stimulated secretion of newly synthesized apoE, but not apoB, while apoA-I secretion was variably affected. Cholesterol-poor liposomes had no effect. Thus, lipid supply is a determinant of apoprotein synthesis and secretion, and cholesterol may be of particular importance in initiating apoprotein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号