首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 16 毫秒
1.
Ca(2+)-activated K+ channels in human leukemic T cells   总被引:9,自引:0,他引:9  
Using the patch-clamp technique, we have identified two types of Ca(2+)-activated K+ (K(Ca)) channels in the human leukemic T cell line. Jurkat. Substances that elevate the intracellular Ca2+ concentration ([Ca2+]i), such as ionomycin or the mitogenic lectin phytohemagglutinin (PHA), as well as whole-cell dialysis with pipette solutions containing elevated [Ca2+]i, activate a voltage-independent K+ conductance. Unlike the voltage-gated (type n) K+ channels in these cells, the majority of K(Ca) channels are insensitive to block by charybdotoxin (CTX) or 4-aminopyridine (4-AP), but are highly sensitive to block by apamin (Kd less than 1 nM). Channel activity is strongly dependent on [Ca2+]i, suggesting that multiple Ca2+ binding sites may be involved in channel opening. The Ca2+ concentration at which half of the channels are activated is 400 nM. These channels show little voltage dependence over a potential range of -100 to 0 mV and have a unitary conductance of 4-7 pS in symmetrical 170 mM K+. In the presence of 10 nM apamin, a less prevalent type of K(Ca) channel with a unitary conductance of 40-60 pS can be observed. These larger-conductance channels are sensitive to block by CTX. Pharmacological blockade of K(Ca) channels and voltage-gated type n channels inhibits oscillatory Ca2+ signaling triggered by PHA. These results suggest that K(Ca) channels play a supporting role during T cell activation by sustaining dynamic patterns of Ca2+ signaling.  相似文献   

2.
Membrane potential has a major influence on stimulus-secretion coupling in various excitable cells. The role of membrane potential in the regulation of parathyroid hormone secretion is not known. High K+-induced depolarization increases secretion from parathyroid cells. The paradox is that increased extracellular Ca2+, which inhibits secretion, has also been postulated to have a depolarizing effect. In this study, human parathyroid cells from parathyroid adenomas were used in patch clamp studies of K+ channels and membrane potential. Detailed characterization revealed two K+ channels that were strictly dependent of intracellular Ca2+ concentration. At high extracellular Ca2+, a large K+ current was seen, and the cells were hyperpolarized (-50.4 +/- 13.4 mV), whereas lowering of extracellular Ca2+ resulted in a dramatic decrease in K+ current and depolarization of the cells (-0.1 +/- 8.8 mV, p < 0.001). Changes in extracellular Ca2+ did not alter K+ currents when intracellular Ca2+ was clamped, indicating that K+ channels are activated by intracellular Ca2+. The results were concordant in cell-attached, perforated patch, whole-cell and excised membrane patch configurations. These results suggest that [Ca2+]o regulates membrane potential of human parathyroid cells via Ca2+-activated K+ channels and that the membrane potential may be of greater importance for the stimulus-secretion coupling than recognized previously.  相似文献   

3.
Mechanical deformation of normal ATP-replete human erythrocytes increased their permeability to Ca2+ sufficiently to turn on the Ca(2+)-activated K+ channel (the Gardos channel). When Ca2+ is absent, mechanical deformation of normal erythrocytes induces an equivalent increase the permeability of both Na+ and K+, In the presence of 0.1 to 1 mM Ca2+, a further increase in the K+ efflux rate was seen. There was no increase in Na+ flux above that induced by deformation itself. The involvement of the Ca(2+)-activated H channel was verified by showing the specific inhibitors of the channel, quinine and charybdotoxin, prevent the Ca(2+)-induced increase in K+ efflux. These results are consistent with a model of sickle cell dehydration proposed by Bookchin et al. ((1987) Prog. Clin. Biol. Res. 240, 193-200). The estimated rate of Ca2+ entry under these conditions (37 degrees C, 1000 dyne/cm2, and laminar shear) was about 1 mmol/loc per h.  相似文献   

4.
Membrane voltage controls the passage of ions through voltage-gated K (K(v)) channels, and many studies have demonstrated that this is accomplished by a physical gate located at the cytoplasmic end of the pore. Critical to this determination were the findings that quaternary ammonium ions and certain peptides have access to their internal pore-blocking sites only when the channel gates are open, and that large blocking ions interfere with channel closing. Although an intracellular location for the physical gate of K(v) channels is well established, it is not clear if such a cytoplasmic gate exists in all K(+) channels. Some studies on large-conductance, voltage- and Ca(2+)-activated K(+) (BK) channels suggest a cytoplasmic location for the gate, but other findings question this conclusion and, instead, support the concept that BK channels are gated by the pore selectivity filter. If the BK channel is gated by the selectivity filter, the interactions between the blocking ions and channel gating should be influenced by the permeant ion. Thus, we tested tetrabutyl ammonium (TBA) and the Shaker "ball" peptide (BP) on BK channels with either K(+) or Rb(+) as the permeant ion. When tested in K(+) solutions, both TBA and the BP acted as open-channel blockers of BK channels, and the BP interfered with channel closing. In contrast, when Rb(+) replaced K(+) as the permeant ion, TBA and the BP blocked both closed and open BK channels, and the BP no longer interfered with channel closing. We also tested the cytoplasmically gated Shaker K channels and found the opposite behavior: the interactions of TBA and the BP with these K(v) channels were independent of the permeant ion. Our results add significantly to the evidence against a cytoplasmic gate in BK channels and represent a positive test for selectivity filter gating.  相似文献   

5.
Nitrendipine, a classical blocker of L-type Ca2+ channels, is shown to be a potent inhibitor of the Ca(2+)-activated K+ channel of human erythrocytes. In erythrocytes suspended in a solution with physiological Na+ and K+ concentrations and in which the channel was activated using the Ca2+ ionophore ionomycin, nitrendipine inhibited K+(86Rb+) influx with an I50 of around 130 nM. Similar results were obtained for K+(86Rb+) efflux, and for K+(86Rb+) influx into cells suspended in a high-K+ medium.  相似文献   

6.
Chemical modifications of scyllatoxin (leiurustoxin I) have shown that two arginines in the sequence, Arg6 and Arg13, are essential both for binding to the Ca(2+)-activated K+ channel protein and for the functional effect of the toxin. His31 is important both for the binding activity of the toxin and for the induction of contractions on taenia coli. However, although its iodination drastically decreases the toxin activity, it does not abolish it. Chemical modification of lysine residues or of Glu27 does not significantly alter toxin binding, but it drastically decreases potency with respect to contraction of taenia coli. The same observation has been made after chemical modification of the lysine residues. The brain distribution of scyllatoxin binding sites has been analyzed by quantitative autoradiographic analysis. It indicates that apamin (a bee venom toxin) binding sites are colocalized with scyllatoxin binding sites. The results are consonant with the presence of apamin/scyllatoxin binding sites associated with Ca(2+)-activated K+ channels. High-affinity binding sites for apamin can be associated with very-high-affinity (less than 70 pM), high-affinity (approximately 100-500 pM), or moderate-affinity (greater than 800 pM) binding sites for scyllatoxin.  相似文献   

7.
Single IK(Ca) channels of human erythrocytes were studied with the patch-clamp technique to define their modulation by endogenous protein kinase C (PKC). The perfusion of the cytoplasmic side of freshly excised patches with the PKC activator, phorbol 12-myristate 13-acetate (PMA), inhibited channel activity. This effect was blocked by PKC(19-31), a peptide inhibitor specific for PKC. Similar results were obtained by perfusing the membrane patches with the structurally unrelated PKC activator 1-oleoyl-2-acetylglycerol (OAG). Blocking of this effect was induced by perfusion with PKC(19-31) or chelerythrine. Channel activity was not inhibited by the PMA analog 4alpha-phorbol 12,13-didecanoate (4alphaPDD), which has no effect on PKC. Activation of endogenous cAMP-dependent protein kinase (PKA), which is known to up-modulate IK(Ca) channels, restored channel activity previously inhibited by OAG. The application of OAG induced a reversible reduction of channel activity previously up-modulated by the activation of PKA, indicating that the effects of the two kinases are commutative, and antagonistic. Kinetic analysis showed that down-regulation by PKC mainly changes the opening frequency without significantly affecting mean channel open time and conductance. These results provide evidence that an endogenous PKC down-modulates the activity of native IK(Ca) channels of human erythrocytes. Our results show that PKA and PKC signal transduction pathways integrate their effects, determining the open probability of the IK(Ca) channels.  相似文献   

8.
In this study, single-channel recordings of high-conductance Ca(2+)-activated K+ channels from rat skeletal muscle inserted into planar lipid bilayer were used to analyze the effects of two ionic blockers, Ba2+ and Na+, on the channel's gating reactions. The gating equilibrium of the Ba(2+)-blocked channel was investigated through the kinetics of the discrete blockade induced by Ba2+ ions. Gating properties of Na(+)-blocked channels could be directly characterized due to the very high rates of Na+ blocking/unblocking reactions. While in the presence of K+ (5 mM) in the external solution Ba2+ is known to stabilize the open state of the blocked channel (Miller, C., R. Latorre, and I. Reisin. 1987. J. Gen. Physiol. 90:427-449), we show that the divalent blocker stabilizes the closed-blocked state if permeant ions are removed from the external solution (K+ less than 10 microM). Ionic substitutions in the outer solution induce changes in the gating equilibrium of the Ba(2+)-blocked channel that are tightly correlated to the inhibition of Ba2+ dissociation by external monovalent cations. In permeant ion-free external solutions, blockade of the channel by internal Na+ induces a shift (around 15 mV) in the open probability--voltage curve toward more depolarized potentials, indicating that Na+ induces a stabilization of the closed-blocked state, as does Ba2+ under the same conditions. A kinetic analysis of the Na(+)-blocked channel indicates that the closed-blocked state is favored mainly by a decrease in opening rate. Addition of 1 mM external K+ completely inhibits the shift in the activation curve without affecting the Na(+)-induced reduction in the apparent single-channel amplitude. The results suggest that in the absence of external permeant ions internal blockers regulate the permeant ion occupancy of a site near the outer end of the channel. Occupancy of this site appears to modulate gating primarily by speeding the rate of channel opening.  相似文献   

9.
10.
Exposure of the inner surface of intact red cells or red cell ghosts to Ca2+ evokes unitary currents that can be measured in cell-attached and cell-free membrane patches. The currents are preferentially carried by K+ (PK/PNa 17) and show rectification. Increasing the Ca2+ concentration from 0 to 5 microM increases the probability of the open state of the channels parallel to the change of K+ permeability as observed in suspensions of red cell ghosts. Prolonged incubation of red cell ghosts in the absence of external K+ prevents the Ca2+ from increasing K+ permeability. Similarly, the probability to find Ca2+-activated unitary currents in membrane patches is drastically reduced. These observations suggest that the Ca2+-induced changes of K+ permeability observed in red cell suspensions are causally related to the appearance of the unitary K+ currents. Attempts to determine the number of K+ channels per cell were made by comparing fluxes measured in suspensions of red cells with the unitary currents in membrane patches as determined under comparable ionic conditions. At 100 mM KCl in the external medium, where no net movements of K+ occur, the time course of equilibration of 86Rb+ does not follow a single exponential. This indicates a heterogeneity of the response to Ca2+ of the cells in the population. The data are compatible with the assumption that 25% of the cells respond with Pk = 33.2 X 10(-14)cm3/s and 75% with Pk = 3.1 X 10(-14)cm3/s. At 100 mM external K+ the zero current permeability of a single channel is 6.1 X 10(-14)cm3/s (corresponding to a conductance of 22 pS).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
We have investigated the effects of intracellular K+ and Rb+ on single-channel currents recorded from the large-conductance Ca(2+)-activated K+ (BK) channel of the embryonic rat telencephalon using the inside-out patch-clamp technique. Our novel observation concerns the effects of these ions on rapid flickering of channel openings. Specifically, flicker gating was voltage dependent, i.e., it was reduced by depolarization in the -60 to -10 mV range with equimolar concentrations of K+ ions (150 Ko+/150 Ki+). Removal of Ki+ resulted in significant flickering at all potentials in this voltage range. In other words, the voltage dependence of flicker gating was effectively eliminated by the removal of Ki+. This suggests that a K+ ion entering the channel from the intracellular medium binds, in a voltage-dependent manner, at a site that locks the flicker gate in its open position. No effects of changes in Ki+ were observed on the primary, voltage-dependent gate of the channel. The change in flickering did not cause a change in the mean burst duration, which indicates that the primary gate is stochastically independent of the flicker gate. Intracellular Rb+ can substitute for--and is even more effective than--Ki+ with regard to suppression of flickering. Substitution of Rbi+ for Ki+ also increased the mean burst duration for V > or = -30 mV. Both effects of Rbi+ were removed by membrane hyperpolarization.  相似文献   

12.
13.
Role of Ca2+-activated K+ channels in human erythrocyte apoptosis   总被引:10,自引:0,他引:10  
Exposure of erythrocytes to the Ca2+ ionophore ionomycin has recently been shown to induce cell shrinkage, cell membrane blebbing, and breakdown of phosphatidylserine asymmetry, all features typical of apoptosis of nucleated cells. Although breakdown of phosphatidylserine asymmetry is thought to result from activation of a Ca2+-sensitive scramblase, the mechanism and role of cell shrinkage have not been explored. The present study was performed to test whether ionomycin-induced activation of Ca2+-sensitive Gardos K+ channels and subsequent cell shrinkage participate in ionomycin-induced breakdown of phosphatidylserine asymmetry of human erythrocytes. According to on-cell patch-clamp experiments, ionomycin (1 µM) induces activation of inwardly rectifying K+-selective channels in the erythrocyte membrane. Fluorescence-activated cell sorter analysis reveals that ionomycin leads to a significant decrease of forward scatter, reflecting cell volume, an effect blunted by an increase of extracellular K+ concentration to 25 mM and exposure to the Gardos K+ channel blockers charybdotoxin (230 nM) and clotrimazole (5 µM). As reflected by annexin binding, breakdown of phosphatidylserine asymmetry is triggered by ionomycin, an effect again blunted, but not abolished, by an increase of extracellular K+ concentration and exposure to charybdotoxin (230 nM) and clotrimazole (5 µM). Similar to ionomycin, glucose depletion leads (within 55 h) to annexin binding of erythrocytes, an effect again partially reversed by an increase of extracellular K+ concentration and exposure to charybdotoxin. K-562 human erythroleukemia cells similarly respond to ionomycin with cell shrinkage and annexin binding, effects blunted by antisense, but not sense, oligonucleotides against the small-conductance Ca2+-activated K+ channel isoform hSK4 (KCNN4). The experiments disclose a novel functional role of Ca2+-sensitive K+ channels in erythrocytes, i.e., their participation in regulation of erythrocyte apoptosis. cell volume; charybdotoxin; osmolarity; phosphatidylserine; annexin  相似文献   

14.
Motivated by the results of Neyton and Miller (1988. J. Gen. Physiol. 92:549-586), suggesting that the Ca(2+)-activated K+ channel has four high affinity ion binding sites, we propose a physically attractive variant of the single-vacancy conduction mechanism for this channel. Simple analytical expressions for conductance, current, flux ratio exponent, and reversal potential under bi-ionic conditions are found. A set of conductance data are analyzed to determine a realistic range of parameter values. Using these, we find qualitative agreement with a variety of experimental results previously reported in the literature. The exquisite selectivity of the Ca(2+)-activated K+ channel may be explained as a consequence of the concerted motion of the "stack" in the proposed mechanism.  相似文献   

15.
16.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

17.
P Sah  E M McLachlan 《Neuron》1991,7(2):257-264
We examined the possibility that Ca2+ released from intracellular stores could activate K+ currents underlying the afterhyperpolarization (AHP) in neurons. In neurons of the dorsal motor nucleus of the vagus, the current underlying the AHP had two components: a rapidly decaying component that was maximal following the action potential (GkCa,1) and a slower component that had a distinct rising phase (GkCa,2). Both components required influx of extracellular Ca2+ for their activation, and neither was blocked by extracellular TEA (10 mM). GkCa,1 was selectively blocked by apamin, whereas GkCa,2 was selectively reduced by noradrenaline. The time course of GkCa,2 was markedly temperature sensitive. GkCa,2 was selectively blocked by application of ryanodine or sodium dantrolene, or by loading cells with ruthenium red. These results suggest that influx of Ca2+ directly gates one class of K+ channels and leads to release of Ca2+ from intracellular stores, which activates a different class of K+ channel.  相似文献   

18.
19.
In whole-cell recordings from HaCaT keratinocytes, ATP, bradykinin, and histamine caused a biphasic change of the membrane potential consisting of an initial transient depolarization, followed by a pronounced and long-lasting hyperpolarization. Flash photolysis of caged IP3 mimicked the agonist-induced voltage response, suggesting that intracellular Ca2+ release and subsequent opening of Ca2+-activated ion channels serve as the common transduction mechanism. In contrast, cAMP- and PKC-dependent pathways were not involved in the electrophysiological effects of the extracellular signaling molecules. The depolarization was predominantly mediated by a DIDS- and niflumic acid-sensitive Cl- current, whereas a charybdotoxin- and clotrimazole-sensitive K+ current underlay the prominent hyperpolarization. Consistent with the electrophysiological data, RT-PCR showed that HaCaT keratinocytes express two types of Ca2+-activated Cl- channels, CaCC2 and CaCC3 (CLCA2), as well as the Ca2+-activated K+ channel hSK4. That the pronounced hSK4-mediated hyperpolarization bears significance on the growth and differentiation properties of keratinocytes is suggested by RNase protection assays showing that hSK4 mRNA expression is strongly down-regulated under conditions that allow keratinocyte differentiation. hSK4 might thus play a role in linking changes in membrane potential to the biological fate of keratinocytes.  相似文献   

20.
Elevated levels of intracellular Ca2+ activate a K+-selective permeability in the membrane of human erythrocytes. Currents through single channels were analysed in excised inside-out membrane patches. The effects of several ions that are known to inhibit K+ fluxes are described with respect to the single-channel events. The results suggest that the blocking ions can partly move into the channels (but cannot penetrate) and interact with other ions inside the pore. The reduction of single-channel conductance by Cs+, tetraethylammonium and Ba2+ and of single-channel activity by quinine and Ba2+ is referred to different rates of access to the channel. The concentration- and voltage-dependent inhibition by ions with measurable permeability (Na+ and Rb+) can be explained by their lower permeability, with single-file movement and ionic interactions inside the pore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号