首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large predatory fishes have long played an important role in marine ecosystems and fisheries. Overexploitation, however, is gradually diminishing this role. Recent estimates indicate that exploitation has depleted large predatory fish communities worldwide by at least 90% over the past 50-100 years. We demonstrate that these declines are general, independent of methodology, and even higher for sensitive species such as sharks. We also attempt to predict the future prospects of large predatory fishes. (i) An analysis of maximum reproductive rates predicts the collapse and extinction of sensitive species under current levels of fishing mortality. Sensitive species occur in marine habitats worldwide and have to be considered in most management situations. (ii) We show that to ensure the survival of sensitive species in the northwest Atlantic fishing mortality has to be reduced by 40-80%. (iii) We show that rapid recovery of community biomass and diversity usually occurs when fishing mortality is reduced. However, recovery is more variable for single species, often because of the influence of species interactions. We conclude that management of multi-species fisheries needs to be tailored to the most sensitive, rather than the more robust species. This requires reductions in fishing effort, reduction in bycatch mortality and protection of key areas to initiate recovery of severely depleted communities.  相似文献   

2.
Evolutionary responses to the long-term exploitation of individuals from a population may include reduced growth rate, age at maturation, body size and productivity. Theoretical models suggest that these genetic changes may be slow or impossible to reverse but rigorous empirical evidence is lacking. Here, we provide the first empirical demonstration of a genetically based reversal of fishing-induced evolution. We subjected six populations of silverside fish (Menidia menidia) to three forms of size-selective fishing for five generations, thereby generating twofold differences among populations in mean weight and yield (biomass) at harvest. This was followed by an additional five generations during which size-selective harvest was halted. We found that evolutionary changes were reversible. Populations evolving smaller body size when subjected to size-selective fishing displayed a slow but significant increase in size when fishing ceased. Neither phenotypic variance in size nor juvenile survival was reduced by the initial period of selective fishing, suggesting that sufficient genetic variation remained to allow recovery. By linear extrapolation, we predict full recovery in about 12 generations, although the rate of recovery may taper off near convergence. The recovery rate in any given wild population will also depend on other agents of selection determined by the specifics of life history and environment. By contrast, populations that in the first five generations evolved larger size and yield showed little evidence of reversal. These results show that populations have an intrinsic capacity to recover genetically from harmful evolutionary changes caused by fishing, even without extrinsic factors that reverse the selection gradient. However, harvested species typically have generation times of 3–7 years, so recovery may take decades. Hence, the need to account for evolution in managing fisheries remains.  相似文献   

3.
The Isostichopus fuscus fishery in Mexico was heavily exploited until 1994, when it was closed due to overfishing. However, no information existed on the status of the populations. The fishery was evaluated through an age structured simulation model, and according to our analysis of the stock, the fishery can be feasible and sustainable as long as fishing mortality and age of first catch are optimized. In order to evaluate exploitation strategies, several scenarios were simulated considering different combinations of fishing intensities and ages of first catch. Input data for the model included population parameters, commercial catch and costs and benefits of the fishing operations. Yield production was strongly influenced by the fishing pressure and by the age of first capture. When the first one increased, significant decreases in yield and profits occurred. The best exploitation strategy was these parameters: fishing mortality level F = 0.15, age at first capture t(c) = 4 years, and yielding of approximately 430 tons. However, since the species reproduces for the first time at 5 years, extracting younger specimens would collapse the population. The critical value of fishing mortality was detected at Fc = 0.25. If exceeded, the population tends to exhaustion and the fishery is no longer profitable. In conclusion, I. fuscus fishery is highly vulnerable to overfishing and age of catch. It must be taken into account that the management policies should be considered as pilot and used on a regional basis. Continuous monitoring of the stock, control of the number of fishing licenses and extracting only specimens 5 yeasr-old and older (around 20 cm and >400 g), will allow the populations to recover from fishing activities. Rev. Biol. Trop.  相似文献   

4.
A total of 3226 walleye were removed from Henderson Lake, Ontario over 3 years (1980–2), causing the stock to collapse. This removal tested the applicability of 'pulse' fishing as a management alternative, and also provided an opportunity to determine which population characteristics might be monitored to serve as predictors of stock collapse in this species.
Following initial exploitation, increased length at age occurred only within younger age-lasses. To use this response as a predictor, one must first obtain pre-exploitation length-at-age data through using the proper gear to sample small fish. Abrosov's mean age to mean age at maturity index may also forewarn of stress (1.2 critical t value for Henderson Lake), but poor recruitment usually invalidates this index, since the lower angling vulnerability of large fish biases mean age calculations. While annual production estimates were a good indicator of the collapse, their determination required much effort. Petersen population estimates produced much more realistic estimates of population size than Schumacher–Eschmeyer estimates, but both estimates not only require much effort but also are influenced by changes in recruitment.
Poor predictors of the walleye collapse included: catch-per-unit-effort data, which, while giving some idea of fish density, were not good indices of exploitation stress; condition factors, which were not correlated to fish abundance; fecundity increases, which suffered far too much of a retarded response in Henderson Lake to serve as a predictor of stock collapse. The inability to determine accurately sex ratios of measure recruitment made these parameters unless.
At least over the short term, neither northern pike nor white sucker populations have increased following the walleye collapse. As yet, walleye have not returned to their former abundance, so the operational usefulness of 'pulse' fishing remains an unknown.  相似文献   

5.
Some overharvested fish populations fail to recover even after considerable reductions in fishing pressure. The reasons are unclear but may involve genetic changes in life history traits that are detrimental to population growth when natural environmental factors prevail. We empirically modelled this process by subjecting populations of a harvested marine fish, the Atlantic silverside, to experimental size-biased fishing regimes over five generations and then measured correlated responses across multiple traits. Populations where large fish were selectively harvested (as in most fisheries) displayed substantial declines in fecundity, egg volume, larval size at hatch, larval viability, larval growth rates, food consumption rate and conversion efficiency, vertebral number, and willingness to forage. These genetically based changes in numerous traits generally reduce the capacity for population recovery.  相似文献   

6.
The idea of using marine reserves, where all fishing is banned is not new to fisheries management. It was first formally considered by Beverton and Holt but rejected in favour of approaches such as fleet and gear control. Since that analysis, many fisheries have collapsed worldwide, illustrating the vulnerability of fishery resources and the ineffectiveness of these approaches. Empirical data and modelling suggest that marine reserves would generally increase yields, especially at the high fishing mortality that occurs in most fisheries. However, the most interesting feature of reserves is their ability to provide resilience to overexploitation, thereby reducing the risk of stock collapse. Benefits from reserves come from the increase in biomass and individual size within them, resulting in adult migration and/or larval dispersal that would replenish fishing grounds. The use of marine reserves in managing fisheries necessitates a thorough understanding of critical habitat requirements, fish movement, fish behaviour, the relations between subpopulations and the critical density effect for larval dispersal. When properly designed, and coupled with other management practices, reserves may provide a better insurance against uncertainties in stock assessment, fishing control and management by protecting a part of the population from exploitation. This strategy can be used for both sedentary and migratory species.  相似文献   

7.
A rough guide to population change in exploited fish stocks   总被引:2,自引:0,他引:2  
R. Cook 《Ecology letters》2000,3(5):394-398
Interpreting how populations will change in response to exploitation is essential to the sound management of fish stocks. While deterministic models can be of use in evaluating sustainable fishing rates, the inherent variability of fish populations limits their value. In this paper a probabilistic approach is investigated which avoids having to make strong assumptions about the functional relationship between spawning stock size and the annual number of young fish (recruits) produced. Empirical probability distributions for recruits are derived, conditioned on stock size, and used to indicate likely stock changes under different fishing mortality rates. The method is applied to cod ( Gadus morhua ) in the North Sea to illustrate how population change can be inferred and used by fishery managers to choose fishing mortality rates which are likely to achieve sustainable exploitation.  相似文献   

8.
In the northern part of the South China Sea the 'big-eye', Priacanthus tayenus , spawned once a year in June, had von Bertalanffy growth parameters of k = 0.8 and L ∞= 30 cm, and a mean total annual instantaneous mortality of Z = 2.0, calculated from adjusted catch curves and a mean length equation. The natural mortality rate M = 1.4, fishing mortality rate F = 0.6, and the exploitation rate (E) was 0.27. The maximum potential yield, calculated using Marten's method, was 0.06 kg/recruit when F = 5.4. The fish were heavily parasitised by the protozoan Pleistophora priacanthicola .
A second big-eye, P. macracanthus , spawned twice a year in May-June and September, had growth parameters of κ= 0.7 and L∞= 32, and population parameters of Z = 2.0, . F = 0.7, and E = 0.34. The maximum potential yield was 0.13 kg/recruit when F = 5.8.
A marked reduction in fishing mortality occurred for both species between 1965 and 1966, coinciding with the onset of the Chinese Cultural Revolution. Our estimates of maximum potential yield correspond to fishing mortalities eight times estimated levels, though such heavy exploitation could risk recruitment failure.  相似文献   

9.
Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species.  相似文献   

10.
Marine reserves (no-take zones) are widely recommended asconservation and fishery management tools. One potential benefitof marine reserves is that they can reduce fishing mortality.This can lead to increases in the abundance of spawners,providing insurance against recruitment failure and maintainingor enhancing yields in fished areas. This paper considers thefactors that influence recovery following marine reserveprotection, describes patterns of recovery in numbers andbiomass, and suggests how recovery rates can be predicted.Population recovery is determined by initial population size, theintrinsic rate of population increase r, and the degree ofcompensation (increases in recruits per spawner as spawnerabundance falls) or depensation (lower than expected recruitmentat low abundance, Allee effect) in the spawner-recruitrelationship. Within a reserve, theoretical recovery rates arefurther modified by metapopulation structure and the success ofindividual recruitment events. Recovery also depends on theextent of reductions in fishing mortality (F) as determined bythe relationship between patterns of movement, migration, anddensity-dependent habitat use (buffer effect) in relation to thesize, shape and location of the reserve. The effects ofreductions in F on population abundance have been calculatedusing a variety of models that incorporate transfer rates betweenthe reserve and fished areas, fishing mortality outside thereserve and life history parameters of the population. Thesemodels give useful indications of increases in production andbiomass (as yield per recruit and spawners per recruitrespectively) due to protection, but do not address recruitment.Many reserves are very small in relation to the geographicalrange of fish or invertebrate populations. In these reserves itmay be impossible to distinguish recovery due to populationgrowth from that due to redistribution. Mean rates of recoverycan be predicted from r, but the methods are data intensive. Thisis ironic when marine reserves are often favoured for managementor conservation in data-poor situations where conventional stockassessment is impossible. In these data-poor situations, it maybe possible to predict recovery rates from very low populationsizes by using maximum body size or age at maturity as simplecorrelates of the intrinsic rate of natural increase.  相似文献   

11.
1. A collapse of Nile perch stocks of Lake Victoria could affect up to 30 million people. Furthermore, changes in Nile perch population size‐structure and stocks make the threat of collapse imminent. However, whether eutrophication or fishing will be the bane of Nile perch is still debated. 2. Here, we attempt to unravel how changes in food resources, a side effect of eutrophication, and fishing mortality determine fish population growth and size structures. We parameterised a physiologically structured model to Nile perch, analysed the influence of ontogenetic diet shifts and relative resource abundances on existence boundaries of Nile perch and described the populations on either side of these boundaries. 3. Our results showed that ignoring ontogenetic diet shifts can lead to over‐estimating the maximum sustainable mortality of a fish population. Size distributions can be indicators of processes driving population dynamics. However, the vulnerability of stocks to fishing mortality is dependent on its environment and is not always reflected in size distributions. 4. We suggest that the ecosystem, instead of populations, should be used to monitor long‐term effects of human impact.  相似文献   

12.
Commercial fishing is having an increasingly negative impact on marine biodiversity, with over 70% of the world's fish stocks being fully exploited and, in many cases, overexploited. On top of this, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) has granted commercial fishing permits in the most remote marine environment on earth, the high-latitude Southern Ocean. The primary target of these new commercial fishing ventures is the large pelagic piscivorous predator, the Antarctic toothfish (Dissostichus mawsoni). Unfortunately, little information is available on the demography, genetics, or life history of this large fish. Without such information we have little idea as to the effects of commercial fishing on the population structure and survival of this species. In this study, we focus on patterns of genetic diversity within and between geographically disparate populations of the Antarctic toothfish, using randomly amplified polymorphic DNA markers. Results of our study showed high levels of genetic similarity within and between populations. Despite high levels of genetic similarity, genetic analyses detected significant population structure, including fixed differences among populations, a significant fixation index (Fst) and between-population differentiation via a Mantel test. From a conservation perspective, low levels of genetic diversity may be indicative of relatively small populations that would not be able to withstand heavy commercial fishing pressures. Given that there is evidence for significant genetic structure, it will be important to manage these fisheries in a manner that will help prevent the loss of unique genetic variation from regional overfishing.  相似文献   

13.
为研究海南半鲿(Hemibagrus hainanensis Tchang 1935)种群生物学及资源动态特征, 2019年1—12月于南渡江上游采集358尾海南半鲿,其体长范围为42—289 mm,体质量范围为1.14—282.79 g。利用FiSATⅡ软件中ELEFAN I法估算南渡江上游海南半鲿种群参数,其资源变动趋势则通过Beverton-Holt动态综合模型进行评估。结果显示:von Bertalanffy生长方程所描述的各参数值分别为L∞=304.5 mm、K=0.49、t0=–0.29,体质量的生长拐点为t=1.95,即TL=202.9 mm。利用Pauly经验公式和长度变换渔获曲线法分别估算出:自然死亡系数(M)为1.05,总死亡系数(Z)为1.22,捕捞死亡系数(F)为0.17及资源开发率(E)为0.14,表明其资源未处在过度捕捞状态。研究结果填补了南渡江上游海南半鲿的种群生长特性及动态特征基础资料的空白,为其种群资源恢复和保护策略的制定提供理论依据。  相似文献   

14.
Many collapsed fish populations have failed to recover after a decade or more with little fishing. This may reflect evolutionary change in response to the highly selective mortality imposed by fisheries. Recent experimental work has demonstrated a rapid genetic change in growth rate in response to size-selective harvesting of laboratory fish populations. Here, we use a 30-year time-series of back-calculated lengths-at-age to test for a genetic response to size-selective mortality in the wild in a heavily exploited population of Atlantic cod (Gadus morhua). Controlling for the effects of density- and temperature-dependent growth, the change in mean length of 4-year-old cod between offspring and their parental cohorts was positively correlated with the estimated selection differential experienced by the parental cohorts between this age and spawning. This result supports the hypothesis that there have been genetic changes in growth in this population in response to size-selective fishing. Such changes may account for the continued small size-at-age in this population despite good conditions for growth and little fishing for over a decade. This study highlights the need for management regimes that take into account the evolutionary consequences of fishing.  相似文献   

15.
Many elasmobranchs have experienced strong population declines, which have been largely attributed to the direct and indirect effects of exploitation. Recently, however, live elasmobranchs are being increasingly valued for their role in marine ecosystems, dive tourism and intrinsic worth. Thus, management plans have been implemented to slow and ultimately reverse negative trends, including shark-specific (e.g. anti-finning laws) to ecosystem-based (e.g. no-take marine reserves) strategies. Yet it is unclear how successful these measures are, or will be, given the degree of depletion and slow recovery potential of most elasmobranchs. Here, current understanding of elasmobranch population recoveries is reviewed. The potential and realized extent of population increases, including rates of increase, timelines and drivers are evaluated. Across 40 increasing populations, only 25% were attributed to decreased anthropogenic mortality, while the majority was attributed to predation release. It is also shown that even low exploitation rates (2-6% per year) can halt or reverse positive population trends in six populations currently managed under recovery plans. Management measures that help restore elasmobranch populations include enforcement or near-zero fishing mortality, protection of critical habitats, monitoring and education. These measures are highlighted in a case study from the south-eastern U.S.A., where some evidence of recovery is seen in Pristis pectinata, Galeocerdo cuvier and Sphyrna lewini populations. It is concluded that recovery of elasmobranchs is certainly possible but requires time and a combination of strong and dedicated management actions to be successful.  相似文献   

16.
Using the Ecopath with Ecosim software, a trophic structure model of the Beibu Gulf was constructed to explore the energy flows and provide a snapshot of the ecosystem operations. Input data were mainly from the trawl survey data collected from October 1998 to September 1999 and related literatures. The impacts of various fishing pressure on the biomass were examined by simulation at different fishing mortality rates. The model consists of 20 functional groups (boxes), each representing organisms with a similar role in the food web, and only covers the major trophic flows in the Beibu Gulf ecosystem. It was found that the food web of the Beibu Gulf was dominated by the primary producers path, and phytoplankton was the primary producer mostly used as a food source. The fractional trophic levels ranged from 1.0 to 4.02, and the marine mammals occupied the highest trophic level. Using network analysis, the ecosystem network was mapped into a linear food chain, and six discrete trophic levels were found with a mean transfer efficiency of 11.2%. The Finn cycling index was 9.73%. The path length was 1.821. The omnivory index was 0.197. The ecosystem had some degree of instability due to exploitation and other human activities, according to Odum’s theory of ecosystem development. A 10-year simulation was performed for each fishery scenario. The fishing mortality rate was found to have a strong impact on the biomass. By keeping the fishing mortality rate at the current level for all fishing sectors, scenario 1 had a drastic decrease in the large fish groups. The biomass of the small and medium pelagic fish would increase to some extent. The biomass of the small and low trophic level species, jellyfish, prawns and benthic crustaceans would be stable. The total biomass of the fishery resources would have a 10% decrease from the current biomass after 10 years. In contrast, the reduced fishing mortality rate induced the recovery of biomass (scenarios 2–4). In scenario 2, the biomass of the large demersal fish and the large pelagic fish would increase to over 16 times and 10 times, respectively, of their current level. In scenario 4, the biomass of the large pelagic fish would increase to over 3 times of its current level. The total biomass of the fish groups, especially the high trophic level groups, would become significantly higher after 10 years, which illustrates the contribution on biomass recovery by relaxing the fishing pressure. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Author contributions: Xiaoping Jia designed research; Zuozhi Chen and Yongsong Qiu performed research; Zuozhi Chen, Yongsong Qiu, and Shannan Xu analyzed data; and Zuozhi Chen and Shannan Xu wrote the article.  相似文献   

17.
Sex change is widespread among tropical marine fishes, many of which are targeted by fisheries. Conservation concerns have been raised that sex-changing species may be particularly prone to overexploitation by size-selective fishing. In the case of male-first sex-changers, populations may become egg limited if large females are disproportionately killed. However, if males reduce the size at which they change sex in response to higher female mortality, the population may still be sufficiently productive. We develop an age-based model to explore the effects of fishing on two types of male-first sex-changing fish: one with flexibility in size-at-sex-change and one without. These effects were compared with those of non-sex-changing populations with similar life-history and population characteristics. The model predicts that if male-first sex-changers cannot respond to elevated female mortality by adjusting their size-at-sex-change, the population will be more prone to recruitment limitation and extinction than non-sex-changers. These effects will be amplified as smaller individuals become susceptible to fishing mortality. However, if size-at-sex-change is flexible, sex-changers may be as resilient to fishing as non-sex-changers. Knowledge of a species' size-at-sex-change, and the mechanisms controlling it, should be fundamental to the selection of fisheries conservation strategies.  相似文献   

18.
The octopus (Octopus maya) is one of the most important fish resources in the Mexican Gulf of Mexico with a mean annual yield of 9000 ton, and a reasonable number of jobs created; O. maya represents 80% of the total octopus catch, followed by Octopus vulgaris. There are two artisanal fleets based on Octopus maya and a middle-size fleet that covers both species. Catch-at-length structured data from the artisanal fleets, for the 1994 season (August 1st to December 15th) were used to analyze the O. maya population dynamics and stock and to estimate the current level of exploitation. Von Bertalanffy growth parameters were: L infinity = 252 mm, mantle length; K = 1.4 year-1; oscillation parameters C = 1.0, WP = 0.6; and tz = 0.842 years. A rough estimate of natural mortality was M = 2.2, total mortality from catch curve Z = 8.77, and exploitation rate F/Z = 0.75. This last value suggests an intensive exploitation, even when yield per recruit analysis indicates both fleets may increase the minimum legal size on about 10% to increase yields. The length-based VPA also shows that the stock is being exploited under its maximum acceptable biological limit. These apparently contradictory results are explained by biological and behavioral characteristics of this species. Because most females die after reproduction, a new gross estimation of natural mortality was computed as M = 3.3. The new estimate of exploitation rate was F/Z = 0.57. This new value coincides with results from the length-VPA and the Thompson and Bell methods, the former suggesting that a reduction of 20% in fishing mortality may provide larger yields. This fishery resource is fully exploited and current management measures must be revised to sustain and probably optimize yields.  相似文献   

19.
The world faces a global fishing crisis. Wild marine fisheries comprise nearly 15% of all animal protein in the human diet, but, according to the U.N. Food and Agriculture Organization, nearly 60% of all commercially important marine fish stocks are overexploited, recovering, or depleted (FAO 2012 ; Fig.  1 ). Some authors have suggested that the large population sizes of harvested marine fish make even collapsed populations resistant to the loss of genetic variation by genetic drift (e.g. Beverton 1990 ). In contrast, others have argued that the loss of alleles because of overfishing may actually be more dramatic in large populations than in small ones (Ryman et al. 1995). In this issue, Pinsky & Palumbi (2014) report that overfished populations have approximately 2% lower heterozygosity and 12% lower allelic richness than populations that are not overfished. They also performed simulations which suggest that their estimates likely underestimate the actual loss of rare alleles by a factor of three or four. This important paper shows that the harvesting of marine fish can have genetic effects that threaten the long‐term sustainability of this valuable resource.  相似文献   

20.
Illegal and unreported fishing contributes to overexploitation of fish stocks and is a hindrance to the recovery of fish populations and ecosystems. This study is the first to undertake a world-wide analysis of illegal and unreported fishing. Reviewing the situation in 54 countries and on the high seas, we estimate that lower and upper estimates of the total value of current illegal and unreported fishing losses worldwide are between $10 bn and $23.5 bn annually, representing between 11 and 26 million tonnes. Our data are of sufficient resolution to detect regional differences in the level and trend of illegal fishing over the last 20 years, and we can report a significant correlation between governance and the level of illegal fishing. Developing countries are most at risk from illegal fishing, with total estimated catches in West Africa being 40% higher than reported catches. Such levels of exploitation severely hamper the sustainable management of marine ecosystems. Although there have been some successes in reducing the level of illegal fishing in some areas, these developments are relatively recent and follow growing international focus on the problem. This paper provides the baseline against which successful action to curb illegal fishing can be judged.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号